Common Eiffel Errors:
Contracts vs. Implementations

EECS3311 A: Software Design

' Fall 2019

CHEN-WEI WANG

YORK

\
\

cic
z|z
mim
D |
wlwn
==
<Im

ooooooooooooooooo

In Eiffel, there are two categories of constructs:
o Implementations
o are step-by-step instructions that have side-effects

e.g.,,’across ... as ... loop ... end

e change attribute values
e do not return values
e ~ commands
o Contracts
e are Boolean expressions that have no side-effects

eg.,|... = ... ,’across ... as ... all ... end

o use attribute and parameter values to specify a condition
e return a Boolean value (i.e., True or False)
e ~ queries

20f23

LASSONDE

ooooooooooooooooo

Contracts vs. Implementations: Where?

e Instructions for Implementations: insty, insts
¢ Boolean expressions for Contracts: expi, expo, exps, €xps, €Xps

feature Comi
class i thdraw
w1l
ACCOUNT require
feature —— Queries qu ex
balance: INTEGER do Ps
require insty
exp;
ensure
do exp
. 4
inst
1 end
ensure . .
invariant
expo ex
end Ps)) R
end - end of class ACCOUNI
3of23

LASSONDE

ooooooooooooooooo

Implementations:
Instructions with No Return Values

e Assignments

’ balance := balance + a ‘

¢ Selections with branching instructions:

’if a > 0 then acc.deposit (a) else acc.withdraw (-a) end ‘

e Loops
from from
i = a.l)
unltil - fomer list.start across
i > a.upver until list as cursor
loo Supp list.after loop
Repsult 1= loop sum :=
Result + ali] list.item.wdw(10) sum + cursor.item
; : list.forth end
i::=1i+1 end
end
4 of 23

Contracts:

Expressions with Boolean Return Values
¢ Relational Expressions (using =, /=, ~, /~, >, <, >=, <=)
’ a>a»0 ‘

e Binary Logical Expressions (using and, and then, or, or else,
implies)

’ (a.lower <= index) and (index <= a.upper)

¢ Logical Quantification Expressions (using all, some)

across

a.lower |..| a.upper as cursor
all

a [cursor.item] >= 0
end

¢ old keyword can only appear in postconditions (i.e., ensure).

balance = old balance + a ‘
50f23

Contracts: Common Mistake (1)

LASSONDE

ooooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do

ensure
balance := old balance - a
end

Colon-Equal sign (: =) is used to write assignment instructions.

e

Contracts: Common Mistake (1) Fixed

ASSONDE

—

ooooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do

ensure
balance = old balance - a
end

70f23

Contracts: Common Mistake (2)

LASSONDE

ooooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do

ensure
across

a as cursor
loop

end

across...loop...end is used to create loop instructions.

8of23

Contracts: Common Mistake (2) Fixed LASSONDE Contracts: Common Mistake (3) Fixed o
class
ACCOUNT class
feature ACCOUNT
withdraw (a: INTEGER) feature
do withdraw (a: INTEGER)
do
enasc:Jrroess er;é;lre
a as cursor postcond_1: balance = old balance - a
all —— if ant 3 postcond_2: old balance > 0
co. end
end
Contracts: Common Mistake (3) o Contracts: Common Mistake (4) o
class
ACCOUNT
feature
class withdraw (a: INTEGER)
ACCOUNT require
feaFure old balance > 0
withdraw (a: INTEGER) do
do .
e ensure
ensure
old balance - a eﬂaA
end
e Only postconditions may use the old keyword to specify the
relationship between pre-state values (before the execution of
Contracts can only be specified as Boolean expressions. withdraw) and post-state values (after the execution of

withdraw).
* Pre-state values (right before the feature is executed) are
10 of 23 .

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (4) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
balance > 0
do

ensure

end

130f23

LASSONDE

ooooooooooooooooo

Contracts: Common Mistake (5)

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature - Commands

make do create a.make_empty end
update (i: INTEGER; v: STRING)
do ...
ensure Others nchanged
across
1 |..| count as j
all
j.item /= i implies old get (j.item) ~ get(j.item)
end
end
end

Compilation Error:

o Expression value to be cached before executing update?
[Current.get (j.item)]
o But, in the pre-state, integer cursor § does not exist!

14 of 23

Contracts: Common Mistake (5) Fixed

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature —- Comn 5

make do create a.make_empty end
update (i: INTEGER; v: STRING)

do ...
ensure Others Unchanged
across
1 |..| count as j
all
j.item /= i implies (old Current) .get (j.item) ~ get(j.item)
end
end
end

o The idea is that the old expression should not involve the local
cursor variable 5 that is introduced in the postcondition.
o Whether to put (old Current.twin) or (old
Current.deep twin) is up to your need.
15 of 23

Implementations: Common Mistake (1)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance = balance + 1
end

e Equal sign (=) is used to write Boolean expressions.
¢ In the context of implementations, Boolean expression values
must appear:

o on the RHS of an assignment;
o as one of the branching conditions of an if-then-else statement; or
o as the exit condition of a loop instruction.

S——

ooooooooooooooooo

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance := balance + 1
end

17 of 23

Implementations: Common Mistake (2) LASSONDE

ooooooooooooooooo

class
BANK

feature
min_credit: REAL
accounts: LIST[ACCOUNT

no_warning_accounts: BOOLEAN
do
across
accounts as cursor
all
cursor.item.balance > min_credit
end
end

Again, in implementations, Boolean expressions cannot appear
alone without their values being “captured”.

18 of 23

ooooooooooooooooo

O©CoONOOHA~WN =

class
BANK

feature
min_credit: REAL
accounts: LIST[ACCOUNT

no_warning_accounts: BOOLEAN

do
Result :=
across
accounts as cursor
all
cursor.item.balance > min_credit
end
end
Rewrite L10 — L14 using across ... as ... some ... end.
Hint: Vx e P(x) = —(3x ¢ =P(x))
19 of 23

Implementations: Common Mistake (3) LASSONDE

ooooooooooooooooo

class
BANK
feature
accounts: LIST[ACCOUNT

total_balance: REAL
do
Result :=

across
accounts as cursor

loop
Result := Result + cursor.item.balance

end

end

In implementations, since instructions do not return values, they

cannot be used on the RHS of assignments.
20 of 23

I —
Implementations: Common Mistake (3) Fixed:on Index (2) o
Contracts: Common Mistake (5) Fixed

Implementations: Common Mistake (1)

class
BANK
feature . . .
accounts: LIST[ACCOUNT] Implementations: Common Mistake (1) Fixed
total_balance: REAL
do Implementations: Common Mistake (2)
across
accounts as cursor
loop Implementations: Common Mistake (2) Fixed
Result := Result + cursor.item.balance
end
end Implementations: Common Mistake (3)

Implementations: Common Mistake (3) Fixed

Index (1) Lassonpe

Contracts vs. Implementations: Definitions

Contracts vs. Implementations: Where?
Implementations:

Instructions with No Return Values
Contracts:

Expressions with Boolean Return Values
Contracts: Common Mistake (1)
Contracts: Common Mistake (1) Fixed
Contracts: Common Mistake (2)
Contracts: Common Mistake (2) Fixed
Contracts: Common Mistake (3)
Contracts: Common Mistake (3) Fixed
Contracts: Common Mistake (4)
Contracts: Common Mistake (4) Fixed

(gzofnzgracts: Common Mistake (5)

