
Common Eiffel Errors:

Contracts vs. Implementations

EECS3311 A: Software Design
Fall 2019

CHEN-WEI WANG

Contracts vs. Implementations: Definitions

In Eiffel, there are two categories of constructs:○ Implementations
● are step-by-step instructions that have side-effects

e.g., . . . := . . . , across . . . as . . . loop . . . end

● change attribute values● do not return values● ≈ commands○ Contracts
● are Boolean expressions that have no side-effects

e.g., . . . = . . . , across . . . as . . . all . . . end

● use attribute and parameter values to specify a condition● return a Boolean value (i.e., True or False)● ≈ queries
2 of 23

Contracts vs. Implementations: Where?

● Instructions for Implementations: inst1, inst2● Boolean expressions for Contracts: exp1, exp2, exp3, exp4, exp5

class

ACCOUNT

feature -- Queries

balance: INTEGER

require

exp1
do

inst1
ensure

exp2
end

feature -- Commands

withdraw

require

exp3
do

inst2
ensure

exp4
end

invariant

exp5
end -- end of class ACCOUNT

3 of 23

Implementations:

Instructions with No Return Values

● Assignments
balance := balance + a

● Selections with branching instructions:
if a > 0 then acc.deposit (a) else acc.withdraw (-a) end

● Loops
from

i := a.lower
until

i > a.upper
loop

Result :=
Result + a[i]

i := i + 1
end

from

list.start
until

list.after
loop

list.item.wdw(10)
list.forth

end

across

list as cursor

loop

sum :=
sum + cursor.item

end

4 of 23

Contracts:

Expressions with Boolean Return Values

● Relational Expressions (using =, /=, ∼, /∼, >, <, >=, <=)
a > 0

● Binary Logical Expressions (using and, and then, or, or else,
implies)
(a.lower <= index) and (index <= a.upper)

● Logical Quantification Expressions (using all, some)
across

a.lower |..| a.upper as cursor

all

a [cursor.item] >= 0
end

● old keyword can only appear in postconditions (i.e., ensure).
balance = old balance + a

5 of 23

Contracts: Common Mistake (1)

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

. . .
ensure

balance := old balance - a

end

. . .

Colon-Equal sign (:=) is used to write assignment instructions.

6 of 23

Contracts: Common Mistake (1) Fixed

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

. . .
ensure

balance = old balance - a

end

. . .

7 of 23

Contracts: Common Mistake (2)

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

. . .
ensure

across

a as cursor

loop

. . .
end

. . .

across . . . loop . . .end is used to create loop instructions.

8 of 23

Contracts: Common Mistake (2) Fixed

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

. . .
ensure

across

a as cursor

all -- if you meant ∀, or use some if you meant ∃
. . . -- A Boolean expression is expected here!

end

. . .

9 of 23

Contracts: Common Mistake (3)

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

. . .
ensure

old balance - a

end

. . .

Contracts can only be specified as Boolean expressions.

10 of 23

Contracts: Common Mistake (3) Fixed

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

. . .
ensure

postcond_1: balance = old balance - a

postcond_2: old balance > 0
end

. . .

11 of 23

Contracts: Common Mistake (4)

class

ACCOUNT

feature

withdraw (a: INTEGER)
require

old balance > 0
do

. . .
ensure

. . .
end

. . .

● Only postconditions may use the old keyword to specify the
relationship between pre-state values (before the execution of
withdraw) and post-state values (after the execution of
withdraw).● Pre-state values (right before the feature is executed) are
indeed the old values, so there’s no need to qualify them!12 of 23

Contracts: Common Mistake (4) Fixed

class

ACCOUNT

feature

withdraw (a: INTEGER)
require

balance > 0
do

. . .
ensure

. . .
end

. . .

13 of 23

Contracts: Common Mistake (5)

class LINEAR_CONTAINER

create make

feature -- Attributes

a: ARRAY[STRING]
feature -- Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end

feature -- Commands

make do create a.make_empty end

update (i: INTEGER; v: STRING)
do . . .
ensure -- Others Unchanged

across

1 |..| count as j

all

j.item /= i implies old get(j.item) ∼ get(j.item)
end

end

end

Compilation Error :○ Expression value to be cached before executing update?
[Current.get(j.item)]○ But, in the pre-state, integer cursor j does not exist!

14 of 23

Contracts: Common Mistake (5) Fixed

class LINEAR_CONTAINER

create make

feature -- Attributes

a: ARRAY[STRING]
feature -- Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end

feature -- Commands

make do create a.make_empty end

update (i: INTEGER; v: STRING)
do . . .
ensure -- Others Unchanged

across

1 |..| count as j

all

j.item /= i implies (old Current).get(j.item) ∼ get(j.item)
end

end

end

○ The idea is that the old expression should not involve the local
cursor variable j that is introduced in the postcondition.○ Whether to put (old Current.twin) or (old
Current.deep twin) is up to your need.

15 of 23

Implementations: Common Mistake (1)

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

balance = balance + 1
end

. . .

● Equal sign (=) is used to write Boolean expressions.
● In the context of implementations, Boolean expression values

must appear:○ on the RHS of an assignment ;○ as one of the branching conditions of an if-then-else statement; or○ as the exit condition of a loop instruction.

16 of 23

Implementations: Common Mistake (1) Fixed

class

ACCOUNT

feature

withdraw (a: INTEGER)
do

balance := balance + 1
end

. . .

17 of 23

Implementations: Common Mistake (2)

class

BANK

feature

min_credit: REAL

accounts: LIST[ACCOUNT]

no_warning_accounts: BOOLEAN

do

across

accounts as cursor

all

cursor.item.balance > min_credit

end

end

. . .

Again, in implementations, Boolean expressions cannot appear
alone without their values being “captured”.

18 of 23

Implementations: Common Mistake (2) Fixed

1 class

2 BANK

3 feature

4 min_credit: REAL

5 accounts: LIST[ACCOUNT]
6
7 no_warning_accounts: BOOLEAN

8 do

9 Result :=
10 across

11 accounts as cursor

12 all

13 cursor.item.balance > min_credit

14 end

15 end

16 . . .

Rewrite L10 – L14 using across . . . as . . . some . . . end.
Hint: ∀x ●P(x) ≡ ¬(∃x ● ¬P(x))

19 of 23

Implementations: Common Mistake (3)

class

BANK

feature

accounts: LIST[ACCOUNT]

total_balance: REAL

do

Result :=
across

accounts as cursor

loop

Result := Result + cursor.item.balance
end

. . .
end

. . .

In implementations, since instructions do not return values, they
cannot be used on the RHS of assignments.

20 of 23

Implementations: Common Mistake (3) Fixed

class

BANK

feature

accounts: LIST[ACCOUNT]

total_balance: REAL

do

across

accounts as cursor

loop

Result := Result + cursor.item.balance
end

end

21 of 23

Index (1)

Contracts vs. Implementations: Definitions

Contracts vs. Implementations: Where?

Implementations:

Instructions with No Return Values

Contracts:

Expressions with Boolean Return Values

Contracts: Common Mistake (1)

Contracts: Common Mistake (1) Fixed

Contracts: Common Mistake (2)

Contracts: Common Mistake (2) Fixed

Contracts: Common Mistake (3)

Contracts: Common Mistake (3) Fixed

Contracts: Common Mistake (4)

Contracts: Common Mistake (4) Fixed

Contracts: Common Mistake (5)
22 of 23

Index (2)

Contracts: Common Mistake (5) Fixed

Implementations: Common Mistake (1)

Implementations: Common Mistake (1) Fixed

Implementations: Common Mistake (2)

Implementations: Common Mistake (2) Fixed

Implementations: Common Mistake (3)

Implementations: Common Mistake (3) Fixed

23 of 23

