
EECS3311 Fall 2019 Name (Print):
Practice Exam
2019-12-06 Prism Login
Time Limit: 90 Minutes
Software Design Signature

This exam contains 11 pages (including this cover page) and 5 problems.

Check to see if any pages are missing.

Enter all requested information on the top of this page before you start the exam, and put your
initials on the top of every page, in case the pages become separated.

This is a closed book exam, and no data sheets are permitted.

Attempt all questions. Answer each question in the boxed space provided.

The following rules apply:

• NO QUESTIONS DURING THE TEST.

• If a question is ambiguous or unclear, then
please write your assumptions and proceed
to answer the question.

• Write in valid Eiffel syntax wherever required.

• Where descriptive answers are requested, use com-
plete sentences and paragraphs. Be precise and
concise.

• Organize your work, in a reasonably neat and
coherent way, in the space provided. Work scat-
tered all over the page without a clear ordering
will receive very little credit.

• Mysterious or unsupported answers will not
receive credit. A correct answer, unsupported by
calculations or explanation will receive no credit;
an incorrect answer supported by substantially cor-
rect calculations and explanations might still re-
ceive partial credit.

• All answers must appear in the boxed areas in this
booklet. In the worst case, if you feel you need
more space, use the back of the pages; clearly in-
dicate when you have done this.

Do not write in this table which
contains your raw mark scores.

Problem Points Score

1 20

2 10

3 15

4 15

5 40

Total: 100

EECS3311 Fall 2019 Practice Exam - Page 2 of 11 2019-12-06

Eiffel Basics

1. All parts of this question are independent of each other.

(a) The following Eiffel code does not compile, which line (or lines)? Why?

1 class ACCOUNT
2 balance: INTEGER
3 deposit (a: INTEGER)
4 -- Deposit amount ‘a’ into current account.
5 do
6 balance = balance + a
7 ensure
8 balance decreased: balance := old balance + a
9 end

10 end

[of 4 points]

(b) The following Eiffel code does not compile, which line (or lines)? Why?

1 class ACCOUNT
2 balance: INTEGER
3 withdraw (a: INTEGER)
4 -- Withdraw amount ‘a’ from current account.
5 require
6 enough balance: old balance − a >= 0
7 do
8 balance = old balance − a
9 end

10 end

[of 4 points]

(c) The following Eiffel code does not compile, which line (or lines)? Why?

1 class ACCOUNT
2 balance: INTEGER
3 do -- Implementation is omitted here.
4 end
5 withdraw (a: INTEGER)
6 -- Withdraw amount ‘a’ from current account.
7 do
8 balance := balance − a
9 ensure

10 balance = old balance − a

EECS3311 Fall 2019 Practice Exam - Page 3 of 11 2019-12-06

11 end
12 end

[of 4 points]

(d) The following Eiffel code implements a Boolean query that can be used as a test case. It
compiles and returns True, but it is potentially problematic, why? How do you fix it?

1 test account withdraw: BOOLEAN
2 local
3 acc: ACCOUNT
4 do
5 -- initialize an account with credit of 10 dollars
6 create acc.make (10)
7 Result := acc.balance = 0 and acc.credit = 10
8
9 -- withdraw 9 dollars from current account

10 acc.withdraw (9)
11 Result := acc.balance = −9 and acc.credit = 10
12 end

[of 4 points]

(e) The following Eiffel code implements a command which withdraws from an account whose
current balance is greater than the argument amount a. It compiles, but it is problematic,
which line? Why? How do you fix it?
Note: You do not need to worry about the postcondition for this command.

1 class BANK
2 accounts: ARRAY[ACCOUNT]
3 withdraw from (i: INTEGER; a: INTEGER)
4 -- Withdraw amount ‘a’ from account stored as the ‘i’th item in ‘accounts’.
5 require
6 positive amount: a > 0
7 enough balance: accounts.valid index (i) and accounts [i].balance > a
8 do
9 accounts[i].withdraw (a)

10 end
11 end

[of 4 points]

EECS3311 Fall 2019 Practice Exam - Page 4 of 11 2019-12-06

Writing Unit Tests for Contracts

2. Consider the following Eiffel code for: 1) the contract view of the ACCOUNT class; and 2) its
(client) test class:

class ACCOUNT
create make
feature

balance: INTEGER
credit: INTEGER
make (new credit: INTEGER)

ensure
balance = 0 and credit = new credit

withdraw (a: INTEGER)
-- Withdraw amount ‘a’.

require
positive amount: a > 0
enough balance: balance + credit − a >= 0

ensure
balance = old balance − a and credit = old credit

invariant
positive credit: credit > 0
balance not too low: balance + credit >= 0

end

class
TEST ACCOUNT

inherit
ES TEST

create
make

feature
make

do
-- Add tests here.

end
feature

-- Define test features here.
end

You can assume that the two invariant constraints are correct: the credit is always positive,
and the balance may go negative, provided that it is not smaller than −credit (i.e., 0− credit).

(a) You are required to write a test case which verifies that the current precondition for the
withdraw feature in class ACCOUNT is not too weak. Consider the following use case:
say an account object acc is created with an initial credit value of 10, and a subsequent
call of acc.withdraw(11) should cause a precondition violation with the corresponding tag.

Your have two tasks (both written in valid Eiffel syntax): 1) Convert this use case to a
feature test withdraw precondition not too weak ; and 2) Write the line of code, appearing
in the make feature of class TEST ACCOUNT, that adds this feature as a test case.

Hint: You should first decide whether to implement this feature as a command or a query.

[of 5 points]

EECS3311 Fall 2019 Practice Exam - Page 5 of 11 2019-12-06

(b) You are required to write a test case which verifies that the current precondition for the
withdraw feature in class ACCOUNT is not too strong. Consider the following use case:
say an account object acc is created with an initial credit value of 10, and a subsequent
call of acc.withdraw(10) should not cause any precondition violations.

Your have two tasks (both written in valid Eiffel syntax): 1) Convert this use case to a
feature test withdraw precondition not too strong ; and 2) Write the line of code, appearing
in the make feature of class TEST ACCOUNT, that adds this feature as a test case.

Hint: You should first decide whether to implement this feature as a command or a query.

[of 5 points]

Information Hiding and the Iterator Pattern

3. Consider the following three classes:

class
SHOP

feature
cart: CART
checkout: INTEGER

do
from

orders.start
until

orders.after
do

Result := Result +
cart.orders.item.price ∗

cart.orders.item.quantity
orders.forth

end
end

end

class
CART

feature
orders: LINKED LIST [ORDER]

end

class
ORDER

feature
product name: STRING
price: INTEGER
quantity: INTEGER

end

Each shop object contains a cart of orders. The checkout feature calculates the total amount
that is due for the current cart of orders.

EECS3311 Fall 2019 Practice Exam - Page 6 of 11 2019-12-06

(a) The above design violates the principle of information hiding. How?
Your answer should clearly explain all of the following:

• who the supplier is and who the client is;

• the problem on the supplier side; and

• the problem on the client side.

[of 5 points]

(b) One way to resolve the above problem is to apply the iterator pattern to it. Your task is to
draw a BON diagram detailing the new design after the iterator pattern is implemented.
Your diagram must include all of the following:

• all necessary deferred and effective classes and features;

• all necessary client-supplier and inheritance relations;

• an expanded view of the SHOP class showing how the checkout feature is changed.

[of 10 points]

EECS3311 Fall 2019 Practice Exam - Page 7 of 11 2019-12-06

Genericity: Design

4. Figure 1 shows the design (omitting contracts) of a book that stores people’s records of any
types, implemented using two arrays. It is assumed that the stored records are indexed by the
set of names (i.e., an existing name maps to a single record, whereas an existing record might
be associated with multiple names).

class BOOK
create make
feature

make
-- Initialize an empty book.

add (r: ANY; n: STRING)
-- Add an entry to the book.

get (n: STRING): ANY
-- The associated record of person with name ‘n’.

find (r: ANY): ARRAY[STRING]
-- Names of people whose associated records are equal to ‘r’.

feature {NONE} -- Implementation
names: ARRAY[STRING]
records: ARRAY[ANY]

end

Figure 1: Design of A Book of Any Records

Consider the following Eiffel test case for the above design of book (Figure 1). The feature
day of the week is a query defined in the DATE class, which returns an integer value, ranging
from 1 to 7, representing the current date’s day of the week (1 for Sunday, 7 for Saturday, and
so on).

1 test book: BOOLEAN
2 local
3 b: BOOK
4 birthday: DATE
5 phone number: STRING
6 do
7 create b.make
8 create phone number.make from string (‘‘416−967−1010’’)
9 b.add (phone number, ‘‘Jared’’)

10 create birthday.make (1975, 4, 10)
11 b.add (birthday, ‘‘David’’)
12 Result := b.get (‘‘David’’).day of the week = 4
13 end

Figure 2: A test case for the book

EECS3311 Fall 2019 Practice Exam - Page 8 of 11 2019-12-06

(a) The above Eiffel code (Figure 2) does not compile, which line? Why?

[of 3 points]

(b) Write, in valid Eiffel syntax, the fix for making the identified line in part (a) compile.
Hint: Consider an explicit cast via the attached expression in Eiffel.

[of 3 points]

(c) Improve the design shown in Figure 1 (page7) by creating a new class GENERIC BOOK.
This new class declares a generic parameter for the type of stored records. In your answer,
show both the class declaration and feature signatures (do not worry about implementa-
tions or contracts).

[of 3 points]

(d) Consider the above test case in Figure 2 (page7). Say the client decides to have the local
variable b as a book that stores dates only. How should the declaration in Line 3 be
changed using a generic book?

[of 3 points]

(e) After the fix from part (d) on Figure 2 (page7), the code does not compile, which line?
Why?

[of 3 points]

EECS3311 Fall 2019 Practice Exam - Page 9 of 11 2019-12-06

Genericity: Contracts and Implementations

5. All parts of this question are related to your new design of a generic book from Question 4 (c).

Contracts

(a) An invariant for the GENERIC BOOK class is formally specified as:

∀i, j : INTEGER |
names.valid index(i) ∧ names.valid index(j) •

names[i] ∼ names[j]⇒ i = j

That is, there are no duplicates of strings stored in the names array (since book records
are indexed by string names). Convert this mathematical expression to valid Eiffel using
the across syntax. Hints: Consider nesting two across expressions, and using the |..|

operator to create iterable integer interval expressions.

[of 10 points]

(b) The precondition of feature add(r, n) is formally specified as:

∀name : STRING | name ∈ names • ¬ (name ∼ n)

That is, each string in the names array is not equal to the argument name n to be added.
Convert this mathematical expression to valid Eiffel using the across syntax.

[of 3 points]

(c) The postcondition of feature add(r, n) asserts that: 1) sizes of the names and records
arrays are both incremented by one; and 2) the argument name n and record r are inserted
to the end of the names array and records array, respectively. Write this postcondition in
valid Eiffel syntax.
Hint: Consider using the count, lower, and/or upper features from the ARRAY class.

[of 4 points]

EECS3311 Fall 2019 Practice Exam - Page 10 of 11 2019-12-06

(d) The precondition of feature get(n) is formally specified as:

∃name : STRING | name ∈ names • name ∼ n

That is, there exists a string in the names array that is equal to the argument name n.
Convert this mathematical expression to valid Eiffel using the across syntax.

[of 3 points]

(e) The postcondition of feature find(r) asserts that if the argument record r exists in the
book, then the returned array is non-empty. Convert this into valid Eiffel syntax.
Hints: Do not use the if . . . then . . . else . . . end instruction to write this contract; in-
stead, consider using a combination of the logical negation and implication, and the
is empty and has features from the ARRAY class.

[of 3 points]

(f) Since both features get(n) and find(r) are queries, they should not modify the state of
the current account. So they have the same postcondition which asserts that the pre-state
values of the two implementation arrays names and records are equal to their post-state
values. Write these two constraints in valid Eiffel syntax.

[of 6 points]

Implementations

(g) Write in valid Eiffel syntax the implementation for the add feature. Start your answer
with the signature of add. Hints: Write your implementation in terms of the two array
attributes names and dates. You may declare local variables if necessary. Consider using
the force(v: G; i: INTEGER) or put(v: G; i: INTEGER) feature from the ARRAY class.

[of 4 points]

EECS3311 Fall 2019 Practice Exam - Page 11 of 11 2019-12-06

(h) Write in valid Eiffel syntax the implementation for the find feature. Start your answer
with the signature of find. Hints: Write your implementation in terms of the two array
attributes names and dates. You may declare local variables if necessary. Consider using
the force(v: G; i: INTEGER) or put(v: G; i: INTEGER) feature from the ARRAY class.

[of 7 points]

