Measuring "Goodness" of an Algorithm

Asymptotic Analysis of Algorithms

EECS2030 B: Advanced Object Oriented Programming Fall 2019

CHEN-WEI WANG

1. Correctness :

- Does the algorithm produce the expected output?
- Use JUnit to ensure this.
- **2.** Efficiency:
 - Time Complexity: processor time required to complete
 - Space Complexity: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?

3 of 42

Algorithm and Data Structure

- A data structure is:
 - A systematic way to store and organize data in order to facilitate access and modifications
 - Never suitable for all purposes: it is important to know its *strengths* and *limitations*
- A well-specified computational problem precisely describes the desired input/output relationship.
 - **Input:** A sequence of *n* numbers (a_1, a_2, \ldots, a_n)
 - **Output:** A permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \le a'_2 \le \ldots \le a'_n$
 - An *instance* of the problem: (3, 1, 2, 5, 4)
- An *algorithm* is:
 - A solution to a well-specified computational problem
 - A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an *algorithm* manipulate well-chosen *data structure(s)*.

Measuring Efficiency of an Algorithm

- *Time* is more of a concern than is *storage*.
- Solutions that are meant to be run on a computer should run *as fast as possible*.
- Particularly, we are interested in how *running time* depends on two *input factors*:
- 1. size
 - e.g., sorting an array of 10 elements vs. 1m elements
- **2.** structure e.g., sorting an already-sorted array vs. a hardly-sorted array
- How do you determine the running time of an algorithm?
 - **1.** Measure time via *experiments*
 - 2. Characterize time as a *mathematical function* of the input size

4 of 42

Measure Running Time via Experiments

- Once the algorithm is implemented in Java:
 - Execute the program on test inputs of various sizes and structures.
 - For each test, record the *elapsed time* of the execution.

```
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- Visualize the result of each test.
- To make *sound statistical claims* about the algorithm's *running time*, the set of input tests must be "reasonably" *complete*.

Example Experiment: Detailed Statistics

п	repeat1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
1,600,000	2,847,968	13
3,200,000	12,809,631	28
6,400,000	59,594,275	58
12,800,000	265,696,421 (≈ 3 days)	135

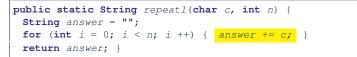
- As *input size* is doubled, *rates of increase* for both algorithms are *linear*:
 - Running time of repeat1 increases by ≈ 5 times.
 - *Running time* of repeat2 increases by ≈ 2 times.

7 of 42

5 of 42

Example Experiment

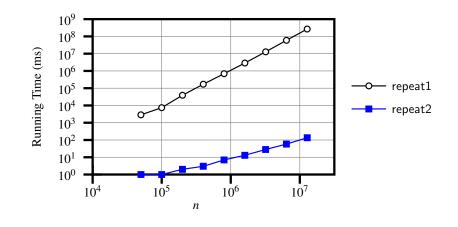
- Computational Problem:
 - Input: A character c and an integer n
- Algorithm 1 using String Concatenations:



• Algorithm 2 using StringBuilder append's:

```
public static String repeat2(char c, int n) {
   StringBuilder sb = new StringBuilder();
   for (int i = 0; i < n; i ++) {     sb.append(c); }
   return sb.toString(); }</pre>
```

Example Experiment: Visualization



Experimental Analysis: Challenges

LASSONDE

- **1.** An algorithm must be *fully implemented* (i.e., translated into valid Java syntax) in order study its runtime behaviour experimentally.
 - What if our purpose is to choose among alternative data structures or algorithms to implement?
 - Can there be a *higher-level analysis* to determine that one algorithm or data structure is *superior* than others?
- 2. Comparison of multiple algorithms is only *meaningful* when experiments are conducted under the same environment of:
 - Hardware: CPU, running processes
 - Software: OS, JVM version
- 3. Experiments can be done only on a limited set of test inputs.
 - What if "important" inputs were not included in the experiments?

9 of 42

Counting Primitive Operations

[e.g., x = 5;]

[e.g., a[i]]

- A *primitive operation* corresponds to a low-level instruction with
- a constant execution time.
- Assignment
- Indexing into an array
- Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
- Accessing an attribute of an object [e.g., acc.balance]
- Returning from a method [e.g., return result;]
- Q: Why is a method call in general *not* a primitive operation? A: It may be a call to:
- a "cheap" method (e.g., printing Hello World), or
- an "expensive" method (e.g., sorting an array of integers)

11 of 42

1 2

3 4

5

7

Moving Beyond Experimental Analysis

- A better approach to analyzing the *efficiency* (e.g., *running times*) of algorithms should be one that:
 - Allows us to calculate the *relative efficiency* (rather than absolute elapsed time) of algorithms in a ways that is independent of the hardware and software environment.
 - Can be applied using a *high-level description* of the algorithm (without fully implementing it).
 - Considers <u>all</u> possible inputs.
- We will learn a better approach that contains 3 ingredients:
 - 1. Counting primitive operations
 - 2. Approximating running time as a function of input size
 - 3. Focusing on the *worst-case* input (requiring the most running time)

Example: Counting Primitive Operations

findMax	(int[]	a, int	n) {
curren	tMax =	a[0];	
for (i	nt <i>i</i> =	1; i <	n;) {
if (a	a[i] >	current.	Max) {

- currentMax = a[i]; } *i* ++ }
- 6 return currentMax;)

of times i < n in Line 3 is executed?

[*n*]

LASSONDE

of times the loop body (Line 4 to Line 6) is executed? [n-1]

- [1 indexing + 1 assignment] • Line 2: 2
- Line 3: [1 assignment + n comparisons] n+1
- $(n-1) \cdot 2$ [1 indexing + 1 comparison] • Line 4: [1 indexing + 1 assignment]
- Line 5: $(n-1) \cdot 2$ • Line 6:
 - [1 addition + 1 assignment] $(n-1) \cdot 2$
 - [1 return]
- Total # of Primitive Operations: 7n - 2

• Line 7: 1

From Absolute RT to Relative RT

- Each *primitive operation* (PO) takes approximately the <u>same</u>, <u>constant</u> amount of time to execute. [say *t*]
- The *number of primitive operations* required by an algorithm should be *proportional* to its *actual running time* on a specific environment.

e.g., findMax (int[] a, int n) has 7n-2 POs

$$RT = (7n - 2) \cdot t$$

Say two algorithms with RT $(7n - 2) \cdot t$ and RT $(10n + 3) \cdot t$. \Rightarrow It suffices to compare their *relative* running time:

7n - 2 vs. 10n + 3.

To determine the *time efficiency* of an algorithm, we only focus on their *number of POs*.

Approximating Running Time as a Function of Input Size

Given the *high-level description* of an algorithm, we associate it with a function f, such that f(n) returns the *number of primitive operations* that are performed on an *input of size n*.

0	f(n) = 5	[constant]
0	$f(n) = log_2 n$	[logarithmic]
0	$f(n) = 4 \cdot n$	[linear]
0	$f(n) = n^2$	[quadratic]
0	$f(n) = n^3$	[cubic]
0	$f(n) = 2^n$	[exponential]

15 of 42

Example: Approx. # of Primitive Operations

 Given # of primitive operations counted precisely as 7n – 2, we view it as

 $7 \cdot n^1 - 2 \cdot n^0$

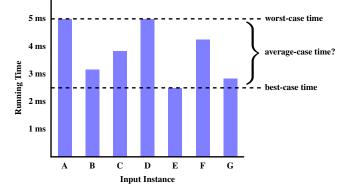
- We say
 - *n* is the *highest power*
 - 7 and 2 are the *multiplicative constants*
 - 2 is the *lower term*
- When approximating a function (considering that input size may be very large):
 - Only the *highest power* matters.
 - multiplicative constants and lower terms can be dropped.
 - \Rightarrow 7*n* 2 is approximately *n*
 - **Exercise**: Consider $7n + 2n \cdot \log n + 3n^2$:
 - highest power?
 - *multiplicative constants*?*lower terms*?

[7, 2, 3] [7n+2n · log n]

 $[n^2]$

14 of 42

Focusing on the Worst-Case Input



• *Average-case* analysis calculates the *expected running times* based on the probability distribution of input values.

• *worst-case* analysis or *best-case* analysis?

LASSONDE

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing *behaviour in the limit*:
 - How the *running time* of the algorithm under analysis changes as the *input size* changes without bound
 - e.g., contrast $RT_1(n) = n$ with $RT_2(n) = n^2$
- Allows us to compare the *relative* performance of alternative algorithms:
 - For large enough inputs, the *multiplicative constants* and *lower-order* terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n 100$ are considered **equally efficient**, *asymptotically*.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, *asymptotically*.

17 of 42

Asymptotic Upper Bound: Definition

- Let *f*(*n*) and *g*(*n*) be functions mapping positive integers (input size) to positive real numbers (running time).
 - f(n) characterizes the running time of some algorithm.
 - O(g(n)) denotes a collection of functions.
- O(g(n)) consists of *all* functions that can be upper bounded by g(n), starting at some point, using some constant factor.
- $f(n) \in O(g(n))$ if there are:
 - A real constant c > 0
 - An integer *constant* $n_0 \ge 1$

such that:

 $f(n) \leq c \cdot g(n)$ for $n \geq n_0$

- For each member function f(n) in O(g(n)), we say that:
 - f(n) ∈ O(g(n))
 f(n) is O(g(n))

```
[f(n) is a member of "big-Oh of g(n)"]
```

```
[f(n) is "big-Oh of g(n)"]
```

• f(n) is order of g(n)

Three Notions of Asymptotic Bounds

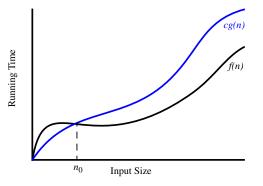
[0]

[Ω]

We may consider three kinds of *asymptotic bounds* for the *running*

time of an algorithm:

- Asymptotic upper bound
- Asymptotic lower bound
- Asymptotic tight bound $[\Theta]$



From n_0 , f(n) is upper bounded by $c \cdot g(n)$, so f(n) is O(g(n)).

18 of 42

Asymptotic Upper Bound: Example (1)

LASSONDE

Prove: The function 8n + 5 is O(n). **Strategy**: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

 $8n + 5 \le c \cdot n$

Can we choose c = 9? What should the corresponding n_0 be?

n	8n + 5	9n
1	13	9
2	21	18
3	29	27
4	37	36
5	45	45
6	53	54

Therefore, we prove it by choosing c = 9 and $n_0 = 5$. We may also prove it by choosing c = 13 and $n_0 = 1$. Why?

Asymptotic Upper Bound: Proposition (1)

If f(n) is a polynomial of degree d, i.e.,

$$f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d$$

and a_0, a_1, \ldots, a_d are integers, then f(n) is $O(n^d)$

• We prove by choosing

$$C = |a_0| + |a_1| + \dots + |a_d|$$

 $n_0 = 1$

• We know that for
$$n \ge 1$$
:
• Upper-bound effect: $n_0 = 1$?
 $a_0 \cdot 1^0 + a_1 \cdot 1^1 + \dots + a_d \cdot 1^d \le |a_0| \cdot 1^d + |a_1| \cdot 1^d + \dots + |a_d| \cdot 1^d$

• Upper-bound effect holds? $[f(\mathbf{n}) \le (|\mathbf{a}_0| + |\mathbf{a}_1| + \dots + |\mathbf{a}_d|) \cdot \mathbf{n}^d]$ $a_0 \cdot \mathbf{n}^0 + a_1 \cdot \mathbf{n}^1 + \dots + a_d \cdot \mathbf{n}^d \le |\mathbf{a}_0| \cdot \mathbf{n}^d + |\mathbf{a}_1| \cdot \mathbf{n}^d + \dots + |\mathbf{a}_d| \cdot \mathbf{n}^d$

Asymptotic Upper Bound: Example (2)

24 of 42

Prove: The function $f(n) = 5n^4 + 3n^3 + 2n^2 + 4n + 1$ is $O(n^4)$. **Strategy**: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$5n^4 + 3n^3 + 2n^2 + 4n + 1 \le c \cdot n^4$$

f(1) = 5 + 3 + 2 + 4 + 1 = 15Choose c = 15 and $n_0 = 1!$ Asymptotic Upper Bound: Proposition (2)

$$O(n^0) \subset O(n^1) \subset O(n^2) \subset \dots$$

If a function f(n) is *upper bounded* by another function g(n) of degree $d, d \ge 0$, then f(n) is also upper bounded by all other functions of a *strictly higher degree* (i.e., d + 1, d + 2, etc.).

e.g., Family of $O(n)$ contains:	
$n^0, 2n^0, 3n^0, \ldots$	[functions with degree 0]
n, 2n, 3n,	[functions with degree 1]
e.g., Family of $O(n^2)$ contains:	
$n^0, 2n^0, 3n^0, \ldots$	[functions with degree 0]
n, 2n, 3n,	[functions with degree 1]
n^2 , $2n^2$, $3n^2$,	[functions with degree 2]

Asymptotic Upper Bound: More Examples

- $5n^2 + 3n \cdot logn + 2n + 5$ is $O(n^2)$ [$c = 15, n_0 = 1$] • $20n^3 + 10n \cdot logn + 5$ is $O(n^3)$ [$c = 35, n_0 = 1$]
- $3 \cdot logn + 2$ is O(logn)
 - Why can't n₀ be 1?
 - Choosing $n_0 = 1$ means $\Rightarrow f(1)$ is upper-bounded by $c \cdot log[1]$:
 - We have $f(1) = 3 \cdot log 1 + 2$, which is 2.
 - We have $c \cdot \log[1]$, which is 0.
 - $\Rightarrow f(1)$ is not upper-bounded by $c \cdot log[1]$ [Contradiction!]
- 2^{*n*+2} is O(2^{*n*})
- 2*n* + 100 · *logn* is *O*(*n*)

 $[c = 5, n_0 = 2]$

 $[c = 4, n_0 = 1]$

 $[c = 102, n_0 = 1]$

upper bound	class	cost
<i>O</i> (1)	constant	cheapest
O(log(n))	logarithmic	
<i>O</i> (<i>n</i>)	linear	
$O(n \cdot log(n))$	"n-log-n"	
$O(n^2)$	quadratic	
<i>O</i> (<i>n</i> ³)	cubic	
$O(n^k), k \ge 1$	polynomial	
$O(a^n), a > 1$	exponential	most expensive

LASSONDE

LASSONDE

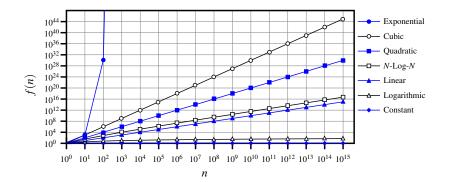
27 of 42

Using Asymptotic Upper Bound Accurately

- Use the big-Oh notation to characterize a function (of an algorithm's running time) *as closely as possible*.
 - For example, say $f(n) = 4n^3 + 3n^2 + 5$:
 - Recall: $O(n^3) \subset O(n^4) \subset O(n^5) \subset \dots$
 - It is the *most accurate* to say that f(n) is $O(n^3)$.
 - It is *true*, but not very useful, to say that f(n) is $O(n^4)$ and that f(n) is $O(n^5)$.
 - It is *false* to say that f(n) is $O(n^2)$, O(n), or O(1).
- Do not include *constant factors* and *lower-order terms* in the big-Oh notation.

For example, say $f(n) = 2n^2$ is $O(n^2)$, do not say f(n) is $O(4n^2 + 6n + 9)$.

Rates of Growth: Comparison



Upper Bound of Algorithm: Example (1)

1	maxOf (int x, int y) {
2	<pre>int max = x;</pre>
3	if $(y > x)$ {
4	max = y;
5	}
6	return max;
7	}
5	}

• # of primitive operations: 4

2 assignments + 1 comparison + 1 return = 4

- Therefore, the running time is O(1).
- That is, this is a *constant-time* algorithm.

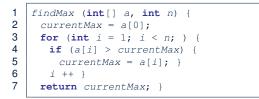
29 of 42

Upper Bound of Algorithm: Example (3)

- 1 containsDuplicate (int[] a, int n) { 2 **for** (**int** *i* = 0; *i* < *n*;) { 3 for (int j = 0; j < n;) {</pre> 4 if (i != j && a[i] == a[j]) { 5 return true; } 6 *i* ++; } 7 *i* ++; } 8 return false; }
- · Worst case is when we reach Line 8.
- # of primitive operations $\approx c_1 + n \cdot n \cdot c_2$, where c_1 and c_2 are some constants.
- Therefore, the running time is $O(n^2)$.
- That is, this is a *quadratic* algorithm.

31 of 42

Upper Bound of Algorithm: Example (2)



- From last lecture, we calculated that the # of primitive operations is 7n 2.
- Therefore, the running time is O(n).
- That is, this is a *linear-time* algorithm.

Upper Bound of Algorithm: Example (4)

_	SCHOOL OF ENGINEERING

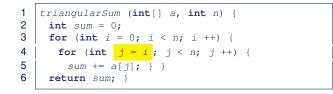
```
1
    sumMaxAndCrossProducts (int[] a, int n) {
2
     int max = a[0];
3
     for(int i = 1; i < n; i ++) {</pre>
4
      if (a[i] > max) { max = a[i]; }
5
6
     int sum = max;
7
     for (int j = 0; j < n; j ++) {
8
      for (int k = 0; k < n; k ++) {
9
        sum += a[j] * a[k]; \}
10
     return sum; }
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1, c_2, c_3 , and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

30 of 42

Upper Bound of Algorithm: Example (5)

LASSONDE



- # of primitive operations $\approx n + (n-1) + \cdots + 2 + 1 = \frac{n \cdot (n+1)}{2}$
- Therefore, the running time is $O(\frac{n^2+n}{2}) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

33 of 42

Array Case Study: Comparing Two Sorting Strategies

• Problem:

Input: An array *a* of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$ **Output:** A permutation (reordering) $\langle a'_1, a'_2, ..., a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq ... \leq a'_n$

- We propose two *alternative implementation strategies* for solving this problem.
- At the end, we want to know which one to choose, based on *time complexity*.

35 of 42

36 of 42

Basic Data Structure: Arrays

- An array is a sequence of indexed elements.
- Size of an array is fixed at the time of its construction.
- Supported operations on an array:
- Accessing: e.g., int max = a[0]; Time Complexity: O(1)
 Updating: e.g., a[i] = a[i + 1];
- Time Complexity: O(1)
- Inserting/Removing:

```
String[] insertAt(String[] a, int n, String e, int i)
String[] result = new String[n + 1];
for(int j = 0; j <= i - 1; j ++) { result[j] = a[j]; }
result[i] = e;
for(int j = i + 1; j <= n - 1; j ++) { result[j] = a[j-1]; }
return result;</pre>
```

Time Complexity: O(n)

```
[linear operation]
```

[constant operation]

Sorting: Strategy 1 – Selection Sort

LASSONDE

- Maintain a (initially empty) *sorted portion* of array *a*.
- From left to right in array *a*, select and insert *the minimum element* to the end of this sorted portion, so it remains sorted.

1 selectionSort(int[] a, int n) 2 for (int i = 0; i <= (n - 2); i ++)</pre> 3 int minIndex = i; 4 for (int j = i; j <= (n - 1); j ++)</pre> 5 if $(a[j] < a[minIndex]) \{ minIndex = j; \}$ 6 int temp = a[i]; 7 a[i] = a[minIndex];8 a[minIndex] = temp;

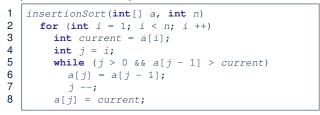
- How many times does the body of for loop (Line 4) run?
- Running time? $[O(n^2)]$

```
find \{a[0], \ldots, a[n-1]\} find \{a[1], \ldots, a[n-1]\} find \{a[n - 2], a[a[n - 1]]\}
```

```
• So selection sort is a quadratic-time algorithm.
```


Sorting: Strategy 2 – Insertion Sort

- Maintain a (initially empty) *sorted portion* of array *a*.
- From left to right in array *a*, insert *one element at a time* into the "right" spot in this sorted portion, so it remains sorted.



- while loop (L5) exits when? j <= 0 or a[j 1] <= current
- Running time?

O(1 + 2 $+\cdots+$

insert into {a[0]} insert into {a[0], a[1]} insert into {a[0], ..., a[n-2]}

• So insertion sort is a *quadratic-time algorithm*.

Comparing Insertion & Selection Sorts

LASSONDE

- Asymptotically, running times of selection sort and insertion sort are both $O(n^2)$.
- We will later see that there exist better algorithms that can perform better than quadratic: $O(n \cdot logn)$.

39 of 42

Sorting: Alternative Implementations?

 $O(n^2)$ 1

(n-1)

- In the Java implementations for *selection* sort and *insertion* sort, we maintain the "sorted portion" from the *left* end.
 - For *selection* sort, we select the *minimum* element from the "unsorted portion" and insert it to the *end* in the "sorted portion".
- For *insertion* sort, we choose the *left-most* element from the "unsorted portion" and insert it at the "*right spot*" in the "sorted portion".
- **Question:** Can we modify the Java implementations, so that the "sorted portion" is maintained and grown from the *right* end instead?

Index (1)

- Algorithm and Data Structure
- Measuring "Goodness" of an Algorithm
- Measuring Efficiency of an Algorithm
- Measure Running Time via Experiments
- Example Experiment
- Example Experiment: Detailed Statistics
- Example Experiment: Visualization
- Experimental Analysis: Challenges
- Moving Beyond Experimental Analysis
- Counting Primitive Operations
- Example: Counting Primitive Operations
- From Absolute RT to Relative RT
- Example: Approx. # of Primitive Operations

Index (2)

_

Approximating Running Time
as a Function of Input Size
Focusing on the Worst-Case Input
What is Asymptotic Analysis?
Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)
Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately
Classes of Functions
41 01 42

Index (3)	
Rates of Growth: Comparison	
Upper Bound of Algorithm: Example (1)	
Upper Bound of Algorithm: Example (2)	
Upper Bound of Algorithm: Example (3)	
Upper Bound of Algorithm: Example (4)	
Upper Bound of Algorithm: Example (5)	
Basic Data Structure: Arrays	
Array Case Study:	
Comparing Two Sorting Strategies	
Sorting: Strategy 1 – Selection Sort	
Sorting: Strategy 2 – Insertion Sort	
Sorting: Alternative Implementations?	
Comparing Insertion & Selection Sorts	
42 of 42	