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Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.
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No Inheritance: ResidentStudent Class
class ResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double premiumRate; /* there’s a mutator method for this */

ResidentStudent (String name) {
this.name = name;

registeredCourses = new Course[10];
}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * premiumRate ;

}
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No Inheritance: NonResidentStudent Class
class NonResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double discountRate; /* there’s a mutator method for this */

NonResidentStudent (String name) {
this.name = name;

registeredCourses = new Course[10];
}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * discountRate ;
}

}
4 of 92



No Inheritance: Testing Student Classes
class Course {
String title;
double fee;
Course(String title, double fee) {
this.title = title; this.fee = fee; } }

class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}
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No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.
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No Inheritance: Maintainability of Code (1)

What if the way for registering a course changes?
e.g.,

void register(Course c) {
if (numberOfCourses >= MAX_ALLOWANCE) {
throw new IllegalArgumentException("Too many courses");

}
else {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
}

We need to change the register method in both student
classes!
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No Inheritance: Maintainability of Code (2)

What if the way for calculating the base tuition changes?
e.g.,

double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
/* . . . can be premiumRate or discountRate */
return tuition * inflationRate * . . .;

}

We need to change the getTuition method in both student
classes.
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No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
ResidentStudent[] rss;
NonResidentStudent[] nrss;
int nors; /* number of resident students */
int nonrs; /* number of non-resident students */
void addRS(ResidentStudent rs){ rss[nors]=rs; nors++; }
void addNRS(NonResidentStudent nrs){ nrss[nonrs]=nrs;nonrs++; }
void registerAll(Course c) {
for(int i = 0; i < nors; i ++) { rss[i].register(c); }
for(int i = 0; i < nonrs; i ++) { nrss[i].register(c); }

} }

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately !

a polymorphic collection of students
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Inheritance Architecture

ResidentStudent NonResidentStudent

Student

extends
extends
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Inheritance: The Student Parent/Super Class
class Student {
String name;
Course[] registeredCourses;
int numberOfCourses;

Student (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
return tuition; /* base amount only */

}
}
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Inheritance:
The ResidentStudent Child/Sub Class

1 class ResidentStudent extends Student {

2 double premiumRate; /* there’s a mutator method for this */

3 ResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * premiumRate ;

8 }
9 }

● L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
12 of 92



Inheritance:
The NonResidentStudent Child/Sub Class

1 class NonResidentStudent extends Student {

2 double discountRate; /* there’s a mutator method for this */

3 NonResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * discountRate ;
8 }
9 }

● L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
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Inheritance Architecture Revisited

ResidentStudent NonResidentStudent

Student

extends
extends

● The class that defines the common attributes and methods is
called the parent or super class.

● Each “extended” class is called a child or sub class.
14 of 92



Using Inheritance for Code Reuse

Inheritance in Java allows you to:
○ Define common attributes and methods in a separate class.

e.g., the Student class
○ Define an “extended” version of the class which:

● inherits definitions of all attributes and methods
e.g., name, registeredCourses, numberOfCourses
e.g., register
e.g., base amount calculation in getTuition

This means code reuse and elimination of code duplicates!
● defines new attributes and methods if necessary

e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent

● redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent
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Visualizing Parent/Child Objects (1)

● A child class inherits all attributes from its parent class.
⇒ A child instance has at least as many attributes as an
instance of its parent class.
Consider the following instantiations:

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

● How will these initial objects look like?
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Visualizing Parent/Child Objects (2)

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

null

0

null
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… null

8

null

9

0
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name
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registeredCourses
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s

null

0

null
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… null

8

null
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null

9
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Testing the Two Student Sub-Classes
class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

● The software can be used in exactly the same way as before
(because we did not modify method signatures).

● But now the internal structure of code has been made
maintainable using inheritance .
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Inheritance Architecture: Static Types &
Expectations

NonResidentStudent

Student

ResidentStudent

String name
Course[] registeredCourses
int numberOfCourses

Student(String name)
void register(Course c)
double getTuition()

/* new attributes, new methods */
ResidentStudent(String name)
double premiumRate
void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* new attributes, new methods */
NonResidentStudent(String name)
double discountRate
void setDiscountRate(double r)
/* redefined/overridden methods */
double getTuition()

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

name rcs noc reg getT pr setPR dr setDR

s. ✓ ×

rs. ✓ ✓ ×

nrs. ✓ × ✓
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Polymorphism: Intuition (1)

1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● Which one of L4 and L5 is valid? Which one is invalid?
● Hints:

○ L1: What kind of address can s store? [ Student ]
∴ The context object s is expected to be used as:
● s.register(eecs2030) and s.getTuition()

○ L2: What kind of address can rs store? [ ResidentStudent ]
∴ The context object rs is expected to be used as:
● rs.register(eecs2030) and rs.getTuition()
● rs.setPremiumRate(1.50) [increase premium rate]
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Polymorphism: Intuition (2)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● rs = s (L5) should be invalid :

“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since rs is declared of type ResidentStudent, a subsequent
call rs.setPremiumRate(1.50) can be expected.

● rs is now pointing to a Student object.
● Then, what would happen to rs.setPremiumRate(1.50)?

CRASH ∵ rs.premiumRate is undefined !!
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Polymorphism: Intuition (3)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● s = rs (L4) should be valid :
“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since s is declared of type Student, a subsequent call
s.setPremiumRate(1.50) is never expected.

● s is now pointing to a ResidentStudent object.
● Then, what would happen to s.getTuition()?

OK ∵ s.premiumRate is never directly used !!
22 of 92



Dynamic Binding: Intuition (1)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition());/* output: 125.0 */

8 s = nrs; System.out.println( s .getTuition());/* output: 75.0 */

After s = rs (L7), s points to a ResidentStudent object.
⇒ Calling s .getTuition() applies the premiumRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s
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Dynamic Binding: Intuition (2)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition()); /* output: 125.0 */

8 s = nrs; System.out.println( s .getTuition()); /* output: 75.0 */

After s = nrs (L8), s points to a NonResidentStudent object.
⇒ Calling s .getTuition() applies the discountRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s
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Multi-Level Inheritance Architecture

DomesticResidentStudent DomesticNonResidentStudent ForeignResidentStudent ForeignNonResidentStudent

DomesticStudent ForeignStudent

Student

25 of 92



Multi-Level Inheritance Hierarchy:
Smart Phones

IPhoneXSMax IPhone11Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP30Pro HuaweiMate20Pro GalaxyS10 GalaxyS10Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ quickTake /* new method */

zoomage /* new method */
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Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.

○ Every class can be used as a type: the set of runtime objects.
● Use of inheritance creates a hierarchy of classes:

○ (Implicit) Root of the hierarchy is Object.
○ Each extends declaration corresponds to an upward arrow.
○ The extends relationship is transitive: when A extends B and B

extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.

● Ancestor vs. Descendant classes:
○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, extends.
● A inherits all code (attributes and methods) from its ancestor classes.
∴ A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.

○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends A.
● Code defined in A is inherited to all its descendant classes.
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Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:
○ A descendant class inherits all code from its ancestor classes.
○ A descendant class may also:

● Declare new attributes
● Define new methods
● Redefine / Override inherited methods

● Consequently:
○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).

○ When expecting an object of a particular class, we may substitute
it with ( re-assign it to) an object of any of its descendant classes.

○ e.g., When expecting a SmartPhone object, we may substitute it
with either a IPhone11Pro or a Samsung object.

○ Justification: A descendant class contains at least as many
methods as defined in its ancestor classes (but not vice versa!).
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Static Types Determine Expectations
● A reference variable’s static type is what we declare it to be.

○ Student jim declares jim’s ST as Student.
○ SmartPhone myPhone declares myPhone’s ST as SmartPhone.

○ The static type of a reference variable never changes .

● For a reference variable v , its static type C defines the

expected usages of v as a context object .
● A method call v.m(. . .) is compilable if m is defined in C .

○ e.g., After declaring Student jim , we
● may call register and getTuition on jim
● may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim

○ e.g., After declaring SmartPhone myPhone , we
● may call dial and surfWeb on myPhone
● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on myPhone
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Substitutions via Assignments
● By declaring C1 v1, reference variable v1 will store the

address of an object “of class C1” at runtime.
● By declaring C2 v2, reference variable v2 will store the

address of an object “of class C2” at runtime.
● Assignment v1 = v2 copies address stored in v2 into v1.

○ v1 will instead point to wherever v2 is pointing to. [ object alias ]

……

…C1 v1

……

…C2 v2

● In such assignment v1 = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type C2.

● Substitutions are subject to rules!
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Rules of Substitution
When expecting an object of static type A:
○ It is safe to substitute it with an object whose static type is any

of the descendant class of A (including A).
● ∵ Each descendant class of A, being the new substitute, is

guaranteed to contain all (non-private) attributes/methods defined in A.
● e.g., When expecting an IOS phone, you can substitute it with either

an IPhoneXSMax or IPhone11Pro.
○ It is unsafe to substitute it with an object whose static type is

any of the ancestor classes of A’s parent (excluding A).
● ∵ Class A may have defined new methods that do not exist in any of its

parent’s ancestor classes .
● e.g., When expecting IOS phone, unsafe to substitute it with a
SmartPhone ∵ facetime not supported in Android phone.

○ It is also unsafe to substitute it with an object whose static type
is neither an ancestor nor a descendant of A.
● e.g., When expecting IOS phone, unsafe to substitute it with a
HuaweiP30Pro ∵ facetime not supported in Android phone.
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Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.
○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
○ There are two ways to re-assigning a reference variable.
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Visualizing Static Type vs. Dynamic Type

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”Student s

premiumRate

...

● Each segmented box denotes a runtime object.
● Arrow denotes a variable (e.g., s) storing the object’s address.

Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

● Title of box indicates type of runtime object, which denotes the
dynamic type of the variable (ResidentStudent).
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Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.
○ e.g., Student jim = new ResidentStudent(. . .)

changes the dynamic type of jim to ResidentStudent.

○ e.g., jim = new NonResidentStudent(. . .)
changes the dynamic type of jim to NonResidentStudent.

○ e.g., ResidentStudent jeremy = new Student(. . .)

is illegal because Studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).
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Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v = other ):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.
○ e.g., Say we declare

Student jim = new Student(. . .);
ResidentStudent rs = new ResidentStudnet(. . .);
NonResidentStudnet nrs = new NonResidentStudent(. . .);

● jim = rs ✓

changes the dynamic type of jim to the dynamic type of rs
● jim = nrs ✓

changes the dynamic type of jim to the dynamic type of nrs
● rs = jim ×

● nrs = jim ×
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Polymorphism and Dynamic Binding (1)

● Polymorphism : An object variable may have “multiple possible
shapes” (i.e., allowable dynamic types).
○ Consequently, there are multiple possible versions of each method

that may be called.
● e.g., A Student variable may have the dynamic type of Student ,

ResidentStudent , or NonResidentStudent ,
● This means that there are three possible versions of the
getTuition() that may be called.

● Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
Student jim = new ResidentStudent(. . .);
jim.getTuition(); /* version in ResidentStudent */
jim = new NonResidentStudent(. . .);
jim.getTuition(); /* version in NonResidentStudent */

36 of 92



Polymorphism and Dynamic Binding (2.1)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester1 {
public static void main(String[] args) {
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
jim = rs; /* legal */
rs = jim; /* illegal */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
jim = nrs; /* legal */
nrs = jim; /* illegal */

}
}

37 of 92



Polymorphism and Dynamic Binding (2.2)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
rs.setPremiumRate(1.5);

jim = rs ;

System.out.println( jim.getTuition() ); /* 750.0 */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
nrs.setDiscountRate(0.5);

jim = nrs ;

System.out.println( jim.getTuition() ); /* 250.0 */

}
}
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Polymorphism and Dynamic Binding (3.1)

IPhoneXSMax IPhone11Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP30Pro HuaweiMate20Pro GalaxyS10 GalaxyS10Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ quickTake /* new method */

zoomage /* new method */
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Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTest1 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneXSMax();
Samsung ss = new GalaxyS10Plus();
myPhone = ip; /* legal */
myPhone = ss; /* legal */

IOS presentForHeeyeon;
presentForHeeyeon = ip; /* legal */
presentForHeeyeon = ss; /* illegal */

}
}
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Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone11Pro();
myPhone = ip;

myPhone. surfWeb (); /* version of surfWeb in IPhone11Pro */

Samsung ss = new GalaxyS10();
myPhone = ss;

myPhone. surfWeb (); /* version of surfWeb in GalaxyS10 */
}

}
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Reference Type Casting: Motivation (1.1)
1 Student jim = new ResidentStudent("J. Davis");
2 ResidentStudent rs = jim;
3 rs.setPremiumRate(1.5);

● L1 is legal : ResidentStudent is a descendant class of the
static type of jim (i.e., Student).

● L2 is illegal : jim’s ST (i.e., Student) is not a descendant
class of rs’s ST (i.e., ResidentStudent).

Java compiler is unable to infer that jim’s dynamic type in L2 is
ResidentStudent!

● Force the Java compiler to believe so via a cast in L2:
ResidentStudent rs = (ResidentStudent) jim;

● The cast (ResidentStudent) jim on the RHS of = temporarily modifies
jim’s ST to ResidentStudent.

● Alias rs of ST ResidentStudent is then created via an assignment.
● dynamic binding : After the cast , L3 will execute the correct

version of setPremiumRate.
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Reference Type Casting: Motivation (1.2)
ST: ResidentStudent

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ResidentStudent rs

valid substitution

³·µ
= (ResidentStudent)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
temporaily modify ST

ST: Student

³·µ

jim

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ST: ResidentStudent

;

○ Variable rs is declared of static type (ST ) ResidentStudent.
○ Variable jim is declared of ST Student.
○ The cast expression (ResidentStudent) jim temporarily modifies
jim’s ST to ResidentStudent.
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (ResidentStudent) is a descendant of LHS’s ST
(ResidentStudent).
⇒ The assignment creates an alias rs with ST ResidentStudent.

○ No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.

○ After the assignment, jim’s ST remains Student.
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Reference Type Casting: Motivation (2.1)
1 SmartPhone aPhone = new IPhone11Pro();
2 IOS forHeeyeon = aPhone;
3 forHeeyeon.facetime();

● L1 is legal : IPhone11Pro is a descendant class of the static
type of aPhone (i.e., SmartPhone).

● L2 is illegal : aPhone’s ST (i.e., SmartPhone) is not a
descendant class of forHeeyeon’s ST (i.e., IOS).

Java compiler is unable to infer that aPhone’s dynamic type in L2
is IPhone11Pro!

● Force Java compiler to believe so via a cast in L2:
IOS forHeeyeon = (IPhone11Pro) aPhone;

● The cast (IPhone11Pro) aPhone on the RHS of = temporarily modifies
aPhone’s ST to IPhone11Pro.

● Alias forHeeyeon of ST IOS is then created via an assignment.
● dynamic binding : After the cast , L3 will execute the correct

version of facetime.
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Reference Type Casting: Motivation (2.2)
ST: IOS

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

IOS forHeeyeon

valid substitution

³·µ
= (IPhone11Pro)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
temporaily modify ST

ST: SmartPhone

³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

aPhone

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ST: IPhone11Pro

;

○ Variable forHeeyeon is declared of static type (ST ) IOS.
○ Variable aPhone is declared of ST SmartPhone.
○ The cast expression (IPhone11Pro) aPhone temporarily modifies
aPhone’s ST to IPhone11Pro.
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (IPhone11Pro) is a descendant of LHS’s ST (IOS).
⇒ The assignment creates an alias forHeeyeon with ST IOS.

○ No new object is created.
Only an alias forHeeyeon with a different ST (IOS) is created.

○ After the assignment, aPhone’s ST remains SmartPhone.
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Type Cast: Named or Anonymous
Named Cast: Use intermediate variable to store the cast result.
SmartPhone aPhone = new IPhone11Pro();
IOS forHeeyeon = (IPhone11Pro) aPhone;
forHeeyeon.facetime();

Anonymous Cast: Use the cast result directly.
SmartPhone aPhone = new IPhone11Pro();
((IPhone11Pro) aPhone).facetime();

Common Mistake:

1 SmartPhone aPhone = new IPhone11Pro();
2 (IPhone11Pro) aPhone.facetime();

L2 ≡ (IPhone11Pro) (aPhone.facetime()) : Call, then cast.
⇒ This does not compile ∵ facetime() is not declared in the
static type of aPhone (SmartPhone).
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Notes on Type Cast (1)
○ Given variable v of static type STv , it is compilable to cast v to

C , as long as C is an ancestor or descendant of STv .
○ Without cast, we can only call methods defined in STv on v .
○ Casting v to C temporarily changes the ST of v from STv to C .
⇒ All methods that are defined in C can be called.

Android myPhone = new GalaxyS10Plus();
/* can call methods declared in Android on myPhone

* dial, surfweb, skype ✓ sideSync × */
SmartPhone sp = (SmartPhone) myPhone;
/* Compiles OK ∵ SmartPhone is an ancestor class of Android
* expectations on sp narrowed to methods in SmartPhone
* sp.dial, sp.surfweb ✓ sp.skype, sp.sideSync × */
GalaxyS10Plus ga = (GalaxyS10Plus) myPhone;
/* Compiles OK ∵ GalaxyS10Plus is a descendant class of Android
* expectations on ga widened to methods in GalaxyS10Plus
* ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */
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Reference Type Casting: Danger (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 ResidentStudent rs = (ResidentStudent) jim;

3 rs.setPremiumRate(1.5);

● L1 is legal : NonResidentStudent is a descendant of the
static type of jim (Student).

● L2 is legal (where the cast type is ResidentStudent):
○ cast type is descendant of jim’s ST (Student).
○ cast type is descendant of rs’s ST (ResidentStudent).

● L3 is legal ∵ setPremiumRate is in rs’ ST
ResidentStudent.

● Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

● Executing L2 will result in a ClassCastException .
∵ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.
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Reference Type Casting: Danger (2)
1 SmartPhone aPhone = new GalaxyS10Plus();
2 IPhone11Pro forHeeyeon = (IPhone11Pro) aPhone;

3 forHeeyeon.quickTake();

● L1 is legal : GalaxyS10Plus is a descendant of the static
type of aPhone (SmartPhone).

● L2 is legal (where the cast type is Iphone6sPlus):
○ cast type is descendant of aPhone’s ST (SmartPhone).
○ cast type is descendant of forHeeyeon’s ST (IPhone11Pro).

● L3 is legal ∵ quickTake is in forHeeyeon’ ST
IPhone11Pro.

● Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually NonResidentStudent.

● Executing L2 will result in a ClassCastException .
∵ Methods facetime, quickTake (expected from an
IPhone11Pro) is undefined on the GalaxyS10Plus object
being cast.49 of 92



Notes on Type Cast (2.1)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 GalaxyS10Plus ga = (GalaxyS10Plus) myPhone;
4 /* Compiles OK ∵ GalaxyS10Plus is a descendant class of SmartPhone
5 * can now call methods declared in GalaxyS10Plus on ga

6 * ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS10Plus (e.g., sideSync).
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Notes on Type Cast (2.2)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 IPhone11Pro ip = (IPhone11Pro) myPhone;
4 /* Compiles OK ∵ IPhone11Pro is a descendant class of SmartPhone
5 * can now call methods declared in IPhone11Pro on ip

6 * ip.dial, ip.surfweb, ip.facetime, ip.quickTake ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhone11Pro (e.g., quickTake).
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Notes on Type Cast (2.3)

A cast (C) v is compilable and runtime-error-free if C is
located along the ancestor path of DTv .

e.g., Given Android myPhone = new Samsung();
○ Cast myPhone to a class along the ancestor path of its DT

Samsung.
○ Casting myPhone to a class with more expectations than its DT

Samsung (e.g., GalaxyS10Plus) will cause
ClassCastException.

○ Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate20Pro) will cause ClassCastException.
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Required Reading:
Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2019/F/EECS2030/notes/EECS2030_F19_
Notes_Static_Types_Cast.pdf
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Compilable Cast vs. Exception-Free Cast

class A { }
class B extends A { }
class C extends B { }
class D extends A { }

1 B b = new C();
2 D d = (D) b;

● After L1:
○ ST of b is B
○ DT of b is C

● Does L2 compile? [ NO ]
∵ cast type D is neither an ancestor nor a descendant of b’s ST B

● Would D d = (D) ((A) b) fix L2? [ YES ]
∵ cast type D is an ancestor of b’s cast, temporary ST A

● ClassCastException when executing this fixed L2? [ YES ]
∵ cast type D is not an ancestor of b’s DT C
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Reference Type Casting: Runtime Check (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 if (jim instanceof ResidentStudent ) {

3 ResidentStudent rs = ( ResidentStudent ) jim;
4 rs.setPremiumRate(1.5);
5 }

● L1 is legal : NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

● L2 checks if jim’s dynamic type is ResidentStudent.

FALSE ∵ jim’s dynamic type is NonResidentStudent!
● L3 is legal : jim’s cast type (i.e., ResidentStudent) is a

descendant class of rs’s static type (i.e.,
ResidentStudent).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!
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Reference Type Casting: Runtime Check (2)

1 SmartPhone aPhone = new GalaxyS10Plus();
2 if (aPhone instanceof IPhone11Pro ) {

3 IOS forHeeyeon = ( IPhone11Pro ) aPhone;
4 forHeeyeon.facetime();
5 }

● L1 is legal : GalaxyS10Plus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

● L2 checks if aPhone’s dynamic type is IPhone11Pro.

FALSE ∵ aPhone’s dynamic type is GalaxyS10Plus!

● L3 is legal : aPhone’s cast type (i.e., IPhone11Pro) is a
descendant class of forHeeyeon’s static type (i.e., IOS).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!
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Notes on the instanceof Operator (1)
Given a reference variable v and a class C, you write

v instanceof C

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that (C) v is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Android);
/* true ∵ Samsung is a descendant of Android */}
println(myPhone instanceof Samsung);
/* true ∵ Samsung is a descendant of Samsung */}
println(myPhone instanceof GalaxyS10);
/* false ∵ Samsung is not a descendant of GalaxyS10 */
println(myPhone instanceof IOS);
/* false ∵ Samsung is not a descendant of IOS */
println(myPhone instanceof IPhone11Pro);
/* false ∵ Samsung is not a descendant of IPhone11Pro */

⇒ Samsung is the most specific type which myPhone can be
safely cast to.
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Notes on the instanceof Operator (2)
Given a reference variable v and a class C,
v instanceof C checks if the dynamic type of v, at the

moment of being checked, is a descendant class of C.
1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 if(myPhone instanceof Samsung) {
4 Samsung samsung = (Samsung) myPhone;
5 }
6 if(myPhone instanceof GalaxyS10Plus) {
7 GalaxyS10Plus galaxy = (GalaxyS10Plus) myPhone;
8 }
9 if(myphone instanceof HuaweiMate20Pro) {

10 Huawei hw = (HuaweiMate20Pro) myPhone;
11 }

● L3 evaluates to true. [safe to cast]
● L6 and L9 evaluate to false. [unsafe to cast]

This prevents L7 and L10, causing ClassCastException if
executed, from being executed.
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Static Type and Polymorphism (1.1)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone11Pro(); ✓
2 sp.dial(); ✓
3 sp.facetime(); ×
4 sp.quickTake(); ×

Static type of sp is SmartPhone
⇒ can only call methods defined in SmartPhone on sp
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Static Type and Polymorphism (1.2)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 IOS ip = new IPhone11Pro(); ✓
2 ip.dial(); ✓
3 ip.facetime(); ✓
4 ip.quickTake(); ×

Static type of ip is IOS
⇒ can only call methods defined in IOS on ip
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Static Type and Polymorphism (1.3)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 IPhone11Pro ip6sp = new IPhone11Pro(); ✓
2 ip6sp.dial(); ✓
3 ip6sp.facetime(); ✓
4 ip6sp.quickTake(); ✓

Static type of ip6sp is IPhone11Pro
⇒ can call all methods defined in IPhone11Pro on ip6sp

61 of 92



Static Type and Polymorphism (1.4)
class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone11Pro(); ✓
2 ( (IPhone11Pro) sp).dial(); ✓
3 ( (IPhone11Pro) sp).facetime(); ✓
4 ( (IPhone11Pro) sp).quickTake(); ✓

L4 is equivalent to the following two lines:

IPhone11Pro ip6sp = (IPhone11Pro) sp;

ip6sp.quickTake();
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Static Type and Polymorphism (2)
Given a reference variable declaration
C v;

○ Static type of reference variable v is class C
○ A method call v.m is valid if m is a method defined in class C.
○ Despite the dynamic type of v , you are only allowed to call

methods that are defined in the static type C on v .
○ If you are certain that v ’s dynamic type can be expected more than

its static type, then you may use an insanceof check and a cast.

Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent("Jim");
s.register(eecs2030);
if(s instanceof ResidentStudent) {

( (ResidentStudent) s).setPremiumRate(1.75);

System.out.println(( (ResidentStudent) s).getTuition());

}

63 of 92



Polymorphism: Method Call Arguments (1)
1 class StudentManagementSystem {

2 Student [] ss; /* ss[i] has static type Student */ int c;
3 void addRS(ResidentStudent rs) { ss[c] = rs; c ++; }
4 void addNRS(NonResidentStudent nrs) { ss[c] = nrs; c++; }
5 void addStudent(Student s) { ss[c] = s; c++; } }

● L3: ss[c] = rs is valid. ∵ RHS’s ST ResidentStudent is a
descendant class of LHS’s ST Student.

● Say we have a StudentManagementSystem object sms:
○ sms.addRS(o) attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:
rs = o;

○ Whether this argument passing is valid depends on o’s static type.
● In the signature of a method m, if the type of a parameter is

class C, then we may call method m by passing objects whose
static types are C’s descendants.
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Polymorphism: Method Call Arguments (2.1)

In the StudentManagementSystemTester:

Student s1 = new Student();
Student s2 = new ResidentStudent();
Student s3 = new NonResidentStudent();
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(s1); ×
sms.addRS(s2); ×
sms.addRS(s3); ×
sms.addRS(rs); ✓
sms.addRS(nrs); ×
sms.addStudent(s1); ✓
sms.addStudent(s2); ✓
sms.addStudent(s3); ✓
sms.addStudent(rs); ✓
sms.addStudent(nrs); ✓
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Polymorphism: Method Call Arguments (2.2)
In the StudentManagementSystemTester:

1 Student s = new Student("Stella");
2 /* s’ ST: Student; s’ DT: Student */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (Student) is not a descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.
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Polymorphism: Method Call Arguments (2.3)
In the StudentManagementSystemTester:

1 Student s = new NonResidentStudent("Nancy");
2 /* s’ ST: Student; s’ DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (NonResidentStudent) not descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.
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Polymorphism: Method Call Arguments (2.4)
In the StudentManagementSystemTester:

1 Student s = new ResidentStudent("Rachael");
2 /* s’ ST: Student; s’ DT: ResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ And, there will be no ClassCastException at runtime!
∵ s’ DT (ResidentStudent) is descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to true, meaning it is
safe to cast.
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Polymorphism: Method Call Arguments (2.5)

In the StudentManagementSystemTester:

1 NonResidentStudent nrs = new NonResidentStudent();
2 /* ST: NonResidentStudent; DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(nrs); ×

Will L4 with a cast compile?

sms.addRS( (ResidentStudent) nrs)

NO ∵ (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).
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Why Inheritance:
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent(Student s) {
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i < numberOfStudents; i ++) {
students[i].register(c)

}
}

}

a collection of students without inheritance70 of 92



Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)

1 ResidentStudent rs = new ResidentStudent("Rachael");
2 rs.setPremiumRate(1.5);
3 NonResidentStudent nrs = new NonResidentStudent("Nancy");
4 nrs.setDiscountRate(0.5);
5 StudentManagementSystem sms = new StudentManagementSystem();
6 sms.addStudent( rs ); /* polymorphism */
7 sms.addStudent( nrs ); /* polymorphism */
8 Course eecs2030 = new Course("EECS2030", 500.0);
9 sms.registerAll(eecs2030);

10 for(int i = 0; i < sms.numberOfStudents; i ++) {
11 /* Dynamic Binding:
12 * Right version of getTuition will be called */

13 System.out.println(sms.students[i]. getTuition() );

14 }
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Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent
StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)
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Polymorphism: Return Values (1)

1 class StudentManagementSystem {
2 Student[] ss; int c;
3 void addStudent(Student s) { ss[c] = s; c++; }

4 Student getStudent(int i) {
5 Student s = null;
6 if(i < 0 || i >= c) {
7 throw new IllegalArgumentException("Invalid index.");
8 }
9 else {

10 s = ss[i];
11 }
12 return s;
13 } }

L4: Student is static type of getStudent’s return value.
L10: ss[i]’s ST (Student) is descendant of s’ ST (Student).
Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of Student.
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Polymorphism: Return Values (2)
1 Course eecs2030 = new Course("EECS2030", 500);
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.5); rs.register(eecs2030);
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 nrs.setDiscountRate(0.5); nrs.register(eecs2030);
6 StudentManagementSystem sms = new StudentManagementSystem();
7 sms.addStudent(rs); sms.addStudent(nrs);
8 Student s = sms.getStudent(0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static return type: Student

; /* dynamic type of s? */

9 print(s instanceof Student && s instanceof ResidentStudent);/*true*/
10 print(s instanceof NonResidentStudent); /* false */

11 print( s.getTuition() );/*Version in ResidentStudent called:750*/

12 ResidentStudent rs2 = sms.getStudent(0); ×
13 s = sms.getStudent(1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static return type: Student

; /* dynamic type of s? */

14 print(s instanceof Student && s instanceof NonResidentStudent);/*true*/
15 print(s instanceof ResidentStudent); /* false */

16 print( s.getTuition() );/*Version in NonResidentStudent called:250*/

17 NonResidentStudent nrs2 = sms.getStudent(1); ×
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Polymorphism: Return Values (3)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent

StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)
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Static Type vs. Dynamic Type:
When to consider which?

● Whether or not Java code compiles depends only on the
static types of relevant variables.

∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Java code being executed at runtime (e.g.,
which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).
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Summary: Type Checking Rules

CODE CONDITION TO BE TYPE CORRECT

x = y Is y’s ST a descendant of x’s ST ?

x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?

z = x.m(y)

Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?
Is ST of m’s return value a descendant of z’s ST ?

(C) y Is C an ancestor or a descendant of y’s ST ?

x = (C) y
Is C an ancestor or a descendant of y’s ST ?
Is C a descendant of x’s ST ?

x.m((C) y)

Is C an ancestor or a descendant of y’s ST ?
Is method m defined in x’s ST ?
Is C a descendant of m’s parameter’s ST ?

Even if (C) y compiles OK, there will be a runtime
ClassCastException if C is not an ancestor of y’s DT !
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Root of the Java Class Hierarchy
● Implicitly:

○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.

● There are two useful accessor methods that every class
inherits from the Object class:
○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.
● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.

● Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and
toString.
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Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.
○ Every class inherits the default version of equals
○ Say a reference variable v has dynamic type D:

● Case 1 D overrides equals
⇒ v.equals(. . .) invokes the overridden version in D

● Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
⇒ v.equals(. . .) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
⇒ v.equals(. . .) invokes default version inherited from Object.

○ Same principle applies to the toString method, and all
overridden methods in general.
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Overriding and Dynamic Binding (2.1)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
} class A {

/*equals not overridden*/
}
class B extends A {
/*equals not overridden*/

}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ Object ]
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Overriding and Dynamic Binding (2.2)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
/*equals not overridden*/

}
class C extends B {
boolean equals(Object obj) {
/* overridden version */

}
}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ C ]
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Overriding and Dynamic Binding (2.3)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
boolean equals(Object obj) {
/* overridden version */

}
}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ B ]

82 of 92



Behaviour of Inherited toString Method (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

● Implicitly, the toString method is called inside the println
method.

● By default, the address stored in p1 gets printed.
● We need to redefine / override the toString method,

inherited from the Object class, in the Point class.
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Behaviour of Inherited toString Method (2)

class Point {
double x;
double y;
public String toString() {
return "(" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the toString method:

Point p1 = new Point(2, 4);
System.out.println(p1);

(2, 4)
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Behaviour of Inherited toString Method (3)

Exercise: Override the equals and toString methods for
the ResidentStudent and NonResidentStudent classes.
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