
Inheritance

EECS2030 B: Advanced
Object Oriented Programming

Fall 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

2 of 92



No Inheritance: ResidentStudent Class
class ResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double premiumRate; /* there’s a mutator method for this */

ResidentStudent (String name) {
this.name = name;

registeredCourses = new Course[10];
}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * premiumRate ;

}
}3 of 92



No Inheritance: NonResidentStudent Class
class NonResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double discountRate; /* there’s a mutator method for this */

NonResidentStudent (String name) {
this.name = name;

registeredCourses = new Course[10];
}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * discountRate ;
}

}
4 of 92



No Inheritance: Testing Student Classes
class Course {
String title;
double fee;
Course(String title, double fee) {
this.title = title; this.fee = fee; } }

class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

5 of 92



No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.

6 of 92



No Inheritance: Maintainability of Code (1)

What if the way for registering a course changes?
e.g.,

void register(Course c) {
if (numberOfCourses >= MAX_ALLOWANCE) {
throw new IllegalArgumentException("Too many courses");

}
else {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
}

We need to change the register method in both student
classes!

7 of 92



No Inheritance: Maintainability of Code (2)

What if the way for calculating the base tuition changes?
e.g.,

double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
/* . . . can be premiumRate or discountRate */
return tuition * inflationRate * . . .;

}

We need to change the getTuition method in both student
classes.

8 of 92



No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
ResidentStudent[] rss;
NonResidentStudent[] nrss;
int nors; /* number of resident students */
int nonrs; /* number of non-resident students */
void addRS(ResidentStudent rs){ rss[nors]=rs; nors++; }
void addNRS(NonResidentStudent nrs){ nrss[nonrs]=nrs;nonrs++; }
void registerAll(Course c) {
for(int i = 0; i < nors; i ++) { rss[i].register(c); }
for(int i = 0; i < nonrs; i ++) { nrss[i].register(c); }

} }

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately !

a polymorphic collection of students
9 of 92



Inheritance Architecture

ResidentStudent NonResidentStudent

Student

extends
extends

10 of 92



Inheritance: The Student Parent/Super Class
class Student {
String name;
Course[] registeredCourses;
int numberOfCourses;

Student (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
return tuition; /* base amount only */

}
}

11 of 92



Inheritance:
The ResidentStudent Child/Sub Class

1 class ResidentStudent extends Student {

2 double premiumRate; /* there’s a mutator method for this */

3 ResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * premiumRate ;

8 }
9 }

● L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
12 of 92



Inheritance:
The NonResidentStudent Child/Sub Class

1 class NonResidentStudent extends Student {

2 double discountRate; /* there’s a mutator method for this */

3 NonResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * discountRate ;
8 }
9 }

● L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
13 of 92



Inheritance Architecture Revisited

ResidentStudent NonResidentStudent

Student

extends
extends

● The class that defines the common attributes and methods is
called the parent or super class.

● Each “extended” class is called a child or sub class.
14 of 92



Using Inheritance for Code Reuse

Inheritance in Java allows you to:
○ Define common attributes and methods in a separate class.

e.g., the Student class
○ Define an “extended” version of the class which:

● inherits definitions of all attributes and methods
e.g., name, registeredCourses, numberOfCourses
e.g., register
e.g., base amount calculation in getTuition

This means code reuse and elimination of code duplicates!
● defines new attributes and methods if necessary

e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent

● redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

15 of 92



Visualizing Parent/Child Objects (1)

● A child class inherits all attributes from its parent class.
⇒ A child instance has at least as many attributes as an
instance of its parent class.
Consider the following instantiations:

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

● How will these initial objects look like?

16 of 92



Visualizing Parent/Child Objects (2)

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

null

0

null

1

… null

8

null

9

0

Student

name

numberOfCourses

registeredCourses

“Stella”
s

null

0

null

1

… null

8

null

9

0

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

null

0

null

1

… null

8

null

9

discountRate

premiumRate

17 of 92



Testing the Two Student Sub-Classes
class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

● The software can be used in exactly the same way as before
(because we did not modify method signatures).

● But now the internal structure of code has been made
maintainable using inheritance .

18 of 92



Inheritance Architecture: Static Types &
Expectations

NonResidentStudent

Student

ResidentStudent

String name
Course[] registeredCourses
int numberOfCourses

Student(String name)
void register(Course c)
double getTuition()

/* new attributes, new methods */
ResidentStudent(String name)
double premiumRate
void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* new attributes, new methods */
NonResidentStudent(String name)
double discountRate
void setDiscountRate(double r)
/* redefined/overridden methods */
double getTuition()

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

name rcs noc reg getT pr setPR dr setDR

s. ✓ ×

rs. ✓ ✓ ×

nrs. ✓ × ✓

19 of 92



Polymorphism: Intuition (1)

1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● Which one of L4 and L5 is valid? Which one is invalid?
● Hints:

○ L1: What kind of address can s store? [ Student ]
∴ The context object s is expected to be used as:
● s.register(eecs2030) and s.getTuition()

○ L2: What kind of address can rs store? [ ResidentStudent ]
∴ The context object rs is expected to be used as:
● rs.register(eecs2030) and rs.getTuition()
● rs.setPremiumRate(1.50) [increase premium rate]

20 of 92



Polymorphism: Intuition (2)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● rs = s (L5) should be invalid :

“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since rs is declared of type ResidentStudent, a subsequent
call rs.setPremiumRate(1.50) can be expected.

● rs is now pointing to a Student object.
● Then, what would happen to rs.setPremiumRate(1.50)?

CRASH ∵ rs.premiumRate is undefined !!
21 of 92



Polymorphism: Intuition (3)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● s = rs (L4) should be valid :
“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since s is declared of type Student, a subsequent call
s.setPremiumRate(1.50) is never expected.

● s is now pointing to a ResidentStudent object.
● Then, what would happen to s.getTuition()?

OK ∵ s.premiumRate is never directly used !!
22 of 92



Dynamic Binding: Intuition (1)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition());/* output: 125.0 */

8 s = nrs; System.out.println( s .getTuition());/* output: 75.0 */

After s = rs (L7), s points to a ResidentStudent object.
⇒ Calling s .getTuition() applies the premiumRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

23 of 92



Dynamic Binding: Intuition (2)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition()); /* output: 125.0 */

8 s = nrs; System.out.println( s .getTuition()); /* output: 75.0 */

After s = nrs (L8), s points to a NonResidentStudent object.
⇒ Calling s .getTuition() applies the discountRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

24 of 92



Multi-Level Inheritance Architecture

DomesticResidentStudent DomesticNonResidentStudent ForeignResidentStudent ForeignNonResidentStudent

DomesticStudent ForeignStudent

Student

25 of 92



Multi-Level Inheritance Hierarchy:
Smart Phones

IPhoneXSMax IPhone11Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP30Pro HuaweiMate20Pro GalaxyS10 GalaxyS10Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ quickTake /* new method */

zoomage /* new method */

26 of 92



Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.

○ Every class can be used as a type: the set of runtime objects.
● Use of inheritance creates a hierarchy of classes:

○ (Implicit) Root of the hierarchy is Object.
○ Each extends declaration corresponds to an upward arrow.
○ The extends relationship is transitive: when A extends B and B

extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.

● Ancestor vs. Descendant classes:
○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, extends.
● A inherits all code (attributes and methods) from its ancestor classes.
∴ A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.

○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends A.
● Code defined in A is inherited to all its descendant classes.

27 of 92



Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:
○ A descendant class inherits all code from its ancestor classes.
○ A descendant class may also:

● Declare new attributes
● Define new methods
● Redefine / Override inherited methods

● Consequently:
○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).

○ When expecting an object of a particular class, we may substitute
it with ( re-assign it to) an object of any of its descendant classes.

○ e.g., When expecting a SmartPhone object, we may substitute it
with either a IPhone11Pro or a Samsung object.

○ Justification: A descendant class contains at least as many
methods as defined in its ancestor classes (but not vice versa!).

28 of 92



Static Types Determine Expectations
● A reference variable’s static type is what we declare it to be.

○ Student jim declares jim’s ST as Student.
○ SmartPhone myPhone declares myPhone’s ST as SmartPhone.

○ The static type of a reference variable never changes .

● For a reference variable v , its static type C defines the

expected usages of v as a context object .
● A method call v.m(. . .) is compilable if m is defined in C .

○ e.g., After declaring Student jim , we
● may call register and getTuition on jim
● may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim

○ e.g., After declaring SmartPhone myPhone , we
● may call dial and surfWeb on myPhone
● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on myPhone
29 of 92



Substitutions via Assignments
● By declaring C1 v1, reference variable v1 will store the

address of an object “of class C1” at runtime.
● By declaring C2 v2, reference variable v2 will store the

address of an object “of class C2” at runtime.
● Assignment v1 = v2 copies address stored in v2 into v1.

○ v1 will instead point to wherever v2 is pointing to. [ object alias ]

……

…C1 v1

……

…C2 v2

● In such assignment v1 = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type C2.

● Substitutions are subject to rules!
30 of 92



Rules of Substitution
When expecting an object of static type A:
○ It is safe to substitute it with an object whose static type is any

of the descendant class of A (including A).
● ∵ Each descendant class of A, being the new substitute, is

guaranteed to contain all (non-private) attributes/methods defined in A.
● e.g., When expecting an IOS phone, you can substitute it with either

an IPhoneXSMax or IPhone11Pro.
○ It is unsafe to substitute it with an object whose static type is

any of the ancestor classes of A’s parent (excluding A).
● ∵ Class A may have defined new methods that do not exist in any of its

parent’s ancestor classes .
● e.g., When expecting IOS phone, unsafe to substitute it with a
SmartPhone ∵ facetime not supported in Android phone.

○ It is also unsafe to substitute it with an object whose static type
is neither an ancestor nor a descendant of A.
● e.g., When expecting IOS phone, unsafe to substitute it with a
HuaweiP30Pro ∵ facetime not supported in Android phone.

31 of 92



Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.
○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
○ There are two ways to re-assigning a reference variable.

32 of 92



Visualizing Static Type vs. Dynamic Type

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”Student s

premiumRate

...

● Each segmented box denotes a runtime object.
● Arrow denotes a variable (e.g., s) storing the object’s address.

Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

● Title of box indicates type of runtime object, which denotes the
dynamic type of the variable (ResidentStudent).

33 of 92



Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.
○ e.g., Student jim = new ResidentStudent(. . .)

changes the dynamic type of jim to ResidentStudent.

○ e.g., jim = new NonResidentStudent(. . .)
changes the dynamic type of jim to NonResidentStudent.

○ e.g., ResidentStudent jeremy = new Student(. . .)

is illegal because Studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).

34 of 92



Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v = other ):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.
○ e.g., Say we declare

Student jim = new Student(. . .);
ResidentStudent rs = new ResidentStudnet(. . .);
NonResidentStudnet nrs = new NonResidentStudent(. . .);

● jim = rs ✓

changes the dynamic type of jim to the dynamic type of rs
● jim = nrs ✓

changes the dynamic type of jim to the dynamic type of nrs
● rs = jim ×

● nrs = jim ×

35 of 92



Polymorphism and Dynamic Binding (1)

● Polymorphism : An object variable may have “multiple possible
shapes” (i.e., allowable dynamic types).
○ Consequently, there are multiple possible versions of each method

that may be called.
● e.g., A Student variable may have the dynamic type of Student ,

ResidentStudent , or NonResidentStudent ,
● This means that there are three possible versions of the
getTuition() that may be called.

● Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
Student jim = new ResidentStudent(. . .);
jim.getTuition(); /* version in ResidentStudent */
jim = new NonResidentStudent(. . .);
jim.getTuition(); /* version in NonResidentStudent */

36 of 92



Polymorphism and Dynamic Binding (2.1)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester1 {
public static void main(String[] args) {
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
jim = rs; /* legal */
rs = jim; /* illegal */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
jim = nrs; /* legal */
nrs = jim; /* illegal */

}
}

37 of 92



Polymorphism and Dynamic Binding (2.2)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
rs.setPremiumRate(1.5);

jim = rs ;

System.out.println( jim.getTuition() ); /* 750.0 */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
nrs.setDiscountRate(0.5);

jim = nrs ;

System.out.println( jim.getTuition() ); /* 250.0 */

}
}

38 of 92



Polymorphism and Dynamic Binding (3.1)

IPhoneXSMax IPhone11Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP30Pro HuaweiMate20Pro GalaxyS10 GalaxyS10Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ quickTake /* new method */

zoomage /* new method */

39 of 92



Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTest1 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneXSMax();
Samsung ss = new GalaxyS10Plus();
myPhone = ip; /* legal */
myPhone = ss; /* legal */

IOS presentForHeeyeon;
presentForHeeyeon = ip; /* legal */
presentForHeeyeon = ss; /* illegal */

}
}

40 of 92



Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone11Pro();
myPhone = ip;

myPhone. surfWeb (); /* version of surfWeb in IPhone11Pro */

Samsung ss = new GalaxyS10();
myPhone = ss;

myPhone. surfWeb (); /* version of surfWeb in GalaxyS10 */
}

}

41 of 92



Reference Type Casting: Motivation (1.1)
1 Student jim = new ResidentStudent("J. Davis");
2 ResidentStudent rs = jim;
3 rs.setPremiumRate(1.5);

● L1 is legal : ResidentStudent is a descendant class of the
static type of jim (i.e., Student).

● L2 is illegal : jim’s ST (i.e., Student) is not a descendant
class of rs’s ST (i.e., ResidentStudent).

Java compiler is unable to infer that jim’s dynamic type in L2 is
ResidentStudent!

● Force the Java compiler to believe so via a cast in L2:
ResidentStudent rs = (ResidentStudent) jim;

● The cast (ResidentStudent) jim on the RHS of = temporarily modifies
jim’s ST to ResidentStudent.

● Alias rs of ST ResidentStudent is then created via an assignment.
● dynamic binding : After the cast , L3 will execute the correct

version of setPremiumRate.
42 of 92



Reference Type Casting: Motivation (1.2)
ST: ResidentStudent

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ResidentStudent rs

valid substitution

³·µ
= (ResidentStudent)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
temporaily modify ST

ST: Student

³·µ

jim

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ST: ResidentStudent

;

○ Variable rs is declared of static type (ST ) ResidentStudent.
○ Variable jim is declared of ST Student.
○ The cast expression (ResidentStudent) jim temporarily modifies
jim’s ST to ResidentStudent.
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (ResidentStudent) is a descendant of LHS’s ST
(ResidentStudent).
⇒ The assignment creates an alias rs with ST ResidentStudent.

○ No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.

○ After the assignment, jim’s ST remains Student.
43 of 92



Reference Type Casting: Motivation (2.1)
1 SmartPhone aPhone = new IPhone11Pro();
2 IOS forHeeyeon = aPhone;
3 forHeeyeon.facetime();

● L1 is legal : IPhone11Pro is a descendant class of the static
type of aPhone (i.e., SmartPhone).

● L2 is illegal : aPhone’s ST (i.e., SmartPhone) is not a
descendant class of forHeeyeon’s ST (i.e., IOS).

Java compiler is unable to infer that aPhone’s dynamic type in L2
is IPhone11Pro!

● Force Java compiler to believe so via a cast in L2:
IOS forHeeyeon = (IPhone11Pro) aPhone;

● The cast (IPhone11Pro) aPhone on the RHS of = temporarily modifies
aPhone’s ST to IPhone11Pro.

● Alias forHeeyeon of ST IOS is then created via an assignment.
● dynamic binding : After the cast , L3 will execute the correct

version of facetime.
44 of 92



Reference Type Casting: Motivation (2.2)
ST: IOS

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

IOS forHeeyeon

valid substitution

³·µ
= (IPhone11Pro)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
temporaily modify ST

ST: SmartPhone

³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

aPhone

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ST: IPhone11Pro

;

○ Variable forHeeyeon is declared of static type (ST ) IOS.
○ Variable aPhone is declared of ST SmartPhone.
○ The cast expression (IPhone11Pro) aPhone temporarily modifies
aPhone’s ST to IPhone11Pro.
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (IPhone11Pro) is a descendant of LHS’s ST (IOS).
⇒ The assignment creates an alias forHeeyeon with ST IOS.

○ No new object is created.
Only an alias forHeeyeon with a different ST (IOS) is created.

○ After the assignment, aPhone’s ST remains SmartPhone.
45 of 92



Type Cast: Named or Anonymous
Named Cast: Use intermediate variable to store the cast result.
SmartPhone aPhone = new IPhone11Pro();
IOS forHeeyeon = (IPhone11Pro) aPhone;
forHeeyeon.facetime();

Anonymous Cast: Use the cast result directly.
SmartPhone aPhone = new IPhone11Pro();
((IPhone11Pro) aPhone).facetime();

Common Mistake:

1 SmartPhone aPhone = new IPhone11Pro();
2 (IPhone11Pro) aPhone.facetime();

L2 ≡ (IPhone11Pro) (aPhone.facetime()) : Call, then cast.
⇒ This does not compile ∵ facetime() is not declared in the
static type of aPhone (SmartPhone).

46 of 92



Notes on Type Cast (1)
○ Given variable v of static type STv , it is compilable to cast v to

C , as long as C is an ancestor or descendant of STv .
○ Without cast, we can only call methods defined in STv on v .
○ Casting v to C temporarily changes the ST of v from STv to C .
⇒ All methods that are defined in C can be called.

Android myPhone = new GalaxyS10Plus();
/* can call methods declared in Android on myPhone

* dial, surfweb, skype ✓ sideSync × */
SmartPhone sp = (SmartPhone) myPhone;
/* Compiles OK ∵ SmartPhone is an ancestor class of Android
* expectations on sp narrowed to methods in SmartPhone
* sp.dial, sp.surfweb ✓ sp.skype, sp.sideSync × */
GalaxyS10Plus ga = (GalaxyS10Plus) myPhone;
/* Compiles OK ∵ GalaxyS10Plus is a descendant class of Android
* expectations on ga widened to methods in GalaxyS10Plus
* ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

47 of 92



Reference Type Casting: Danger (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 ResidentStudent rs = (ResidentStudent) jim;

3 rs.setPremiumRate(1.5);

● L1 is legal : NonResidentStudent is a descendant of the
static type of jim (Student).

● L2 is legal (where the cast type is ResidentStudent):
○ cast type is descendant of jim’s ST (Student).
○ cast type is descendant of rs’s ST (ResidentStudent).

● L3 is legal ∵ setPremiumRate is in rs’ ST
ResidentStudent.

● Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

● Executing L2 will result in a ClassCastException .
∵ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.

48 of 92



Reference Type Casting: Danger (2)
1 SmartPhone aPhone = new GalaxyS10Plus();
2 IPhone11Pro forHeeyeon = (IPhone11Pro) aPhone;

3 forHeeyeon.quickTake();

● L1 is legal : GalaxyS10Plus is a descendant of the static
type of aPhone (SmartPhone).

● L2 is legal (where the cast type is Iphone6sPlus):
○ cast type is descendant of aPhone’s ST (SmartPhone).
○ cast type is descendant of forHeeyeon’s ST (IPhone11Pro).

● L3 is legal ∵ quickTake is in forHeeyeon’ ST
IPhone11Pro.

● Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually NonResidentStudent.

● Executing L2 will result in a ClassCastException .
∵ Methods facetime, quickTake (expected from an
IPhone11Pro) is undefined on the GalaxyS10Plus object
being cast.49 of 92



Notes on Type Cast (2.1)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 GalaxyS10Plus ga = (GalaxyS10Plus) myPhone;
4 /* Compiles OK ∵ GalaxyS10Plus is a descendant class of SmartPhone
5 * can now call methods declared in GalaxyS10Plus on ga

6 * ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS10Plus (e.g., sideSync).

50 of 92



Notes on Type Cast (2.2)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 IPhone11Pro ip = (IPhone11Pro) myPhone;
4 /* Compiles OK ∵ IPhone11Pro is a descendant class of SmartPhone
5 * can now call methods declared in IPhone11Pro on ip

6 * ip.dial, ip.surfweb, ip.facetime, ip.quickTake ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhone11Pro (e.g., quickTake).

51 of 92



Notes on Type Cast (2.3)

A cast (C) v is compilable and runtime-error-free if C is
located along the ancestor path of DTv .

e.g., Given Android myPhone = new Samsung();
○ Cast myPhone to a class along the ancestor path of its DT

Samsung.
○ Casting myPhone to a class with more expectations than its DT

Samsung (e.g., GalaxyS10Plus) will cause
ClassCastException.

○ Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate20Pro) will cause ClassCastException.

52 of 92



Required Reading:
Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2019/F/EECS2030/notes/EECS2030_F19_
Notes_Static_Types_Cast.pdf

53 of 92

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/F/EECS2030/notes/EECS2030_F19_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/F/EECS2030/notes/EECS2030_F19_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/F/EECS2030/notes/EECS2030_F19_Notes_Static_Types_Cast.pdf


Compilable Cast vs. Exception-Free Cast

class A { }
class B extends A { }
class C extends B { }
class D extends A { }

1 B b = new C();
2 D d = (D) b;

● After L1:
○ ST of b is B
○ DT of b is C

● Does L2 compile? [ NO ]
∵ cast type D is neither an ancestor nor a descendant of b’s ST B

● Would D d = (D) ((A) b) fix L2? [ YES ]
∵ cast type D is an ancestor of b’s cast, temporary ST A

● ClassCastException when executing this fixed L2? [ YES ]
∵ cast type D is not an ancestor of b’s DT C

54 of 92



Reference Type Casting: Runtime Check (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 if (jim instanceof ResidentStudent ) {

3 ResidentStudent rs = ( ResidentStudent ) jim;
4 rs.setPremiumRate(1.5);
5 }

● L1 is legal : NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

● L2 checks if jim’s dynamic type is ResidentStudent.

FALSE ∵ jim’s dynamic type is NonResidentStudent!
● L3 is legal : jim’s cast type (i.e., ResidentStudent) is a

descendant class of rs’s static type (i.e.,
ResidentStudent).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

55 of 92



Reference Type Casting: Runtime Check (2)

1 SmartPhone aPhone = new GalaxyS10Plus();
2 if (aPhone instanceof IPhone11Pro ) {

3 IOS forHeeyeon = ( IPhone11Pro ) aPhone;
4 forHeeyeon.facetime();
5 }

● L1 is legal : GalaxyS10Plus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

● L2 checks if aPhone’s dynamic type is IPhone11Pro.

FALSE ∵ aPhone’s dynamic type is GalaxyS10Plus!

● L3 is legal : aPhone’s cast type (i.e., IPhone11Pro) is a
descendant class of forHeeyeon’s static type (i.e., IOS).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

56 of 92



Notes on the instanceof Operator (1)
Given a reference variable v and a class C, you write

v instanceof C

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that (C) v is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Android);
/* true ∵ Samsung is a descendant of Android */}
println(myPhone instanceof Samsung);
/* true ∵ Samsung is a descendant of Samsung */}
println(myPhone instanceof GalaxyS10);
/* false ∵ Samsung is not a descendant of GalaxyS10 */
println(myPhone instanceof IOS);
/* false ∵ Samsung is not a descendant of IOS */
println(myPhone instanceof IPhone11Pro);
/* false ∵ Samsung is not a descendant of IPhone11Pro */

⇒ Samsung is the most specific type which myPhone can be
safely cast to.

57 of 92



Notes on the instanceof Operator (2)
Given a reference variable v and a class C,
v instanceof C checks if the dynamic type of v, at the

moment of being checked, is a descendant class of C.
1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 if(myPhone instanceof Samsung) {
4 Samsung samsung = (Samsung) myPhone;
5 }
6 if(myPhone instanceof GalaxyS10Plus) {
7 GalaxyS10Plus galaxy = (GalaxyS10Plus) myPhone;
8 }
9 if(myphone instanceof HuaweiMate20Pro) {

10 Huawei hw = (HuaweiMate20Pro) myPhone;
11 }

● L3 evaluates to true. [safe to cast]
● L6 and L9 evaluate to false. [unsafe to cast]

This prevents L7 and L10, causing ClassCastException if
executed, from being executed.

58 of 92



Static Type and Polymorphism (1.1)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone11Pro(); ✓
2 sp.dial(); ✓
3 sp.facetime(); ×
4 sp.quickTake(); ×

Static type of sp is SmartPhone
⇒ can only call methods defined in SmartPhone on sp

59 of 92



Static Type and Polymorphism (1.2)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 IOS ip = new IPhone11Pro(); ✓
2 ip.dial(); ✓
3 ip.facetime(); ✓
4 ip.quickTake(); ×

Static type of ip is IOS
⇒ can only call methods defined in IOS on ip

60 of 92



Static Type and Polymorphism (1.3)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 IPhone11Pro ip6sp = new IPhone11Pro(); ✓
2 ip6sp.dial(); ✓
3 ip6sp.facetime(); ✓
4 ip6sp.quickTake(); ✓

Static type of ip6sp is IPhone11Pro
⇒ can call all methods defined in IPhone11Pro on ip6sp

61 of 92



Static Type and Polymorphism (1.4)
class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone11Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone11Pro(); ✓
2 ( (IPhone11Pro) sp).dial(); ✓
3 ( (IPhone11Pro) sp).facetime(); ✓
4 ( (IPhone11Pro) sp).quickTake(); ✓

L4 is equivalent to the following two lines:

IPhone11Pro ip6sp = (IPhone11Pro) sp;

ip6sp.quickTake();

62 of 92



Static Type and Polymorphism (2)
Given a reference variable declaration
C v;

○ Static type of reference variable v is class C
○ A method call v.m is valid if m is a method defined in class C.
○ Despite the dynamic type of v , you are only allowed to call

methods that are defined in the static type C on v .
○ If you are certain that v ’s dynamic type can be expected more than

its static type, then you may use an insanceof check and a cast.

Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent("Jim");
s.register(eecs2030);
if(s instanceof ResidentStudent) {

( (ResidentStudent) s).setPremiumRate(1.75);

System.out.println(( (ResidentStudent) s).getTuition());

}

63 of 92



Polymorphism: Method Call Arguments (1)
1 class StudentManagementSystem {

2 Student [] ss; /* ss[i] has static type Student */ int c;
3 void addRS(ResidentStudent rs) { ss[c] = rs; c ++; }
4 void addNRS(NonResidentStudent nrs) { ss[c] = nrs; c++; }
5 void addStudent(Student s) { ss[c] = s; c++; } }

● L3: ss[c] = rs is valid. ∵ RHS’s ST ResidentStudent is a
descendant class of LHS’s ST Student.

● Say we have a StudentManagementSystem object sms:
○ sms.addRS(o) attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:
rs = o;

○ Whether this argument passing is valid depends on o’s static type.
● In the signature of a method m, if the type of a parameter is

class C, then we may call method m by passing objects whose
static types are C’s descendants.

64 of 92



Polymorphism: Method Call Arguments (2.1)

In the StudentManagementSystemTester:

Student s1 = new Student();
Student s2 = new ResidentStudent();
Student s3 = new NonResidentStudent();
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(s1); ×
sms.addRS(s2); ×
sms.addRS(s3); ×
sms.addRS(rs); ✓
sms.addRS(nrs); ×
sms.addStudent(s1); ✓
sms.addStudent(s2); ✓
sms.addStudent(s3); ✓
sms.addStudent(rs); ✓
sms.addStudent(nrs); ✓

65 of 92



Polymorphism: Method Call Arguments (2.2)
In the StudentManagementSystemTester:

1 Student s = new Student("Stella");
2 /* s’ ST: Student; s’ DT: Student */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (Student) is not a descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

66 of 92



Polymorphism: Method Call Arguments (2.3)
In the StudentManagementSystemTester:

1 Student s = new NonResidentStudent("Nancy");
2 /* s’ ST: Student; s’ DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (NonResidentStudent) not descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

67 of 92



Polymorphism: Method Call Arguments (2.4)
In the StudentManagementSystemTester:

1 Student s = new ResidentStudent("Rachael");
2 /* s’ ST: Student; s’ DT: ResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ And, there will be no ClassCastException at runtime!
∵ s’ DT (ResidentStudent) is descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to true, meaning it is
safe to cast.

68 of 92



Polymorphism: Method Call Arguments (2.5)

In the StudentManagementSystemTester:

1 NonResidentStudent nrs = new NonResidentStudent();
2 /* ST: NonResidentStudent; DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(nrs); ×

Will L4 with a cast compile?

sms.addRS( (ResidentStudent) nrs)

NO ∵ (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).

69 of 92



Why Inheritance:
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent(Student s) {
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i < numberOfStudents; i ++) {
students[i].register(c)

}
}

}

a collection of students without inheritance70 of 92



Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)

1 ResidentStudent rs = new ResidentStudent("Rachael");
2 rs.setPremiumRate(1.5);
3 NonResidentStudent nrs = new NonResidentStudent("Nancy");
4 nrs.setDiscountRate(0.5);
5 StudentManagementSystem sms = new StudentManagementSystem();
6 sms.addStudent( rs ); /* polymorphism */
7 sms.addStudent( nrs ); /* polymorphism */
8 Course eecs2030 = new Course("EECS2030", 500.0);
9 sms.registerAll(eecs2030);

10 for(int i = 0; i < sms.numberOfStudents; i ++) {
11 /* Dynamic Binding:
12 * Right version of getTuition will be called */

13 System.out.println(sms.students[i]. getTuition() );

14 }

71 of 92



Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent
StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

72 of 92



Polymorphism: Return Values (1)

1 class StudentManagementSystem {
2 Student[] ss; int c;
3 void addStudent(Student s) { ss[c] = s; c++; }

4 Student getStudent(int i) {
5 Student s = null;
6 if(i < 0 || i >= c) {
7 throw new IllegalArgumentException("Invalid index.");
8 }
9 else {

10 s = ss[i];
11 }
12 return s;
13 } }

L4: Student is static type of getStudent’s return value.
L10: ss[i]’s ST (Student) is descendant of s’ ST (Student).
Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of Student.

73 of 92



Polymorphism: Return Values (2)
1 Course eecs2030 = new Course("EECS2030", 500);
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.5); rs.register(eecs2030);
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 nrs.setDiscountRate(0.5); nrs.register(eecs2030);
6 StudentManagementSystem sms = new StudentManagementSystem();
7 sms.addStudent(rs); sms.addStudent(nrs);
8 Student s = sms.getStudent(0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static return type: Student

; /* dynamic type of s? */

9 print(s instanceof Student && s instanceof ResidentStudent);/*true*/
10 print(s instanceof NonResidentStudent); /* false */

11 print( s.getTuition() );/*Version in ResidentStudent called:750*/

12 ResidentStudent rs2 = sms.getStudent(0); ×
13 s = sms.getStudent(1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static return type: Student

; /* dynamic type of s? */

14 print(s instanceof Student && s instanceof NonResidentStudent);/*true*/
15 print(s instanceof ResidentStudent); /* false */

16 print( s.getTuition() );/*Version in NonResidentStudent called:250*/

17 NonResidentStudent nrs2 = sms.getStudent(1); ×
74 of 92



Polymorphism: Return Values (3)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent

StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

75 of 92



Static Type vs. Dynamic Type:
When to consider which?

● Whether or not Java code compiles depends only on the
static types of relevant variables.

∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Java code being executed at runtime (e.g.,
which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

76 of 92



Summary: Type Checking Rules

CODE CONDITION TO BE TYPE CORRECT

x = y Is y’s ST a descendant of x’s ST ?

x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?

z = x.m(y)

Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?
Is ST of m’s return value a descendant of z’s ST ?

(C) y Is C an ancestor or a descendant of y’s ST ?

x = (C) y
Is C an ancestor or a descendant of y’s ST ?
Is C a descendant of x’s ST ?

x.m((C) y)

Is C an ancestor or a descendant of y’s ST ?
Is method m defined in x’s ST ?
Is C a descendant of m’s parameter’s ST ?

Even if (C) y compiles OK, there will be a runtime
ClassCastException if C is not an ancestor of y’s DT !

77 of 92



Root of the Java Class Hierarchy
● Implicitly:

○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.

● There are two useful accessor methods that every class
inherits from the Object class:
○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.
● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.

● Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and
toString.

78 of 92



Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.
○ Every class inherits the default version of equals
○ Say a reference variable v has dynamic type D:

● Case 1 D overrides equals
⇒ v.equals(. . .) invokes the overridden version in D

● Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
⇒ v.equals(. . .) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
⇒ v.equals(. . .) invokes default version inherited from Object.

○ Same principle applies to the toString method, and all
overridden methods in general.

79 of 92



Overriding and Dynamic Binding (2.1)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
} class A {

/*equals not overridden*/
}
class B extends A {
/*equals not overridden*/

}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ Object ]

80 of 92



Overriding and Dynamic Binding (2.2)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
/*equals not overridden*/

}
class C extends B {
boolean equals(Object obj) {
/* overridden version */

}
}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ C ]

81 of 92



Overriding and Dynamic Binding (2.3)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
boolean equals(Object obj) {
/* overridden version */

}
}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ B ]

82 of 92



Behaviour of Inherited toString Method (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

● Implicitly, the toString method is called inside the println
method.

● By default, the address stored in p1 gets printed.
● We need to redefine / override the toString method,

inherited from the Object class, in the Point class.

83 of 92



Behaviour of Inherited toString Method (2)

class Point {
double x;
double y;
public String toString() {
return "(" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the toString method:

Point p1 = new Point(2, 4);
System.out.println(p1);

(2, 4)

84 of 92



Behaviour of Inherited toString Method (3)

Exercise: Override the equals and toString methods for
the ResidentStudent and NonResidentStudent classes.

85 of 92



Index (1)
Why Inheritance: A Motivating Example
No Inheritance: ResidentStudent Class
No Inheritance: NonResidentClass
No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes
No Inheritance: Maintainability of Code (1)
No Inheritance: Maintainability of Code (2)
No Inheritance:
A Collection of Various Kinds of Students
Inheritance Architecture
Inheritance: The Student Parent/Super Class
Inheritance:
The ResidentStudent Child/Sub Class

86 of 92



Index (2)
Inheritance:
The NonResidentStudent Child/Sub Class
Inheritance Architecture Revisited
Using Inheritance for Code Reuse
Visualizing Parent/Child Objects (1)
Visualizing Parent/Child Objects (2)
Testing the Two Student Sub-Classes
Inheritance Architecture: Static Types & Expectations
Polymorphism: Intuition (1)
Polymorphism: Intuition (2)
Polymorphism: Intuition (3)
Dynamic Binding: Intuition (1)
Dynamic Binding: Intuition (2)
Multi-Level Inheritance Architecture

87 of 92



Index (3)
Multi-Level Inheritance Hierarchy:
Smart Phones
Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse
Static Types Determine Expectations
Substitutions via Assignments
Rules of Substitution
Reference Variable: Dynamic Type
Visualizing Static Type vs. Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)
Polymorphism and Dynamic Binding (1)
Polymorphism and Dynamic Binding (2.1)

88 of 92



Index (4)
Polymorphism and Dynamic Binding (2.2)
Polymorphism and Dynamic Binding (3.1)
Polymorphism and Dynamic Binding (3.2)
Polymorphism and Dynamic Binding (3.3)
Reference Type Casting: Motivation (1.1)
Reference Type Casting: Motivation (1.2)
Reference Type Casting: Motivation (2.1)
Reference Type Casting: Motivation (2.2)
Type Cast: Named or Anonymous
Notes on Type Cast (1)
Reference Type Casting: Danger (1)
Reference Type Casting: Danger (2)
Notes on Type Cast (2.1)
Notes on Type Cast (2.2)

89 of 92



Index (5)
Notes on Type Cast (2.3)
Required Reading:
Static Types, Dynamic Types, Casts
Compilable Cast vs. Exception-Free Cast
Reference Type Casting: Runtime Check (1)
Reference Type Casting: Runtime Check (2)
Notes on the instanceof Operator (1)
Notes on the instanceof Operator (2)
Static Type and Polymorphism (1.1)
Static Type and Polymorphism (1.2)
Static Type and Polymorphism (1.3)
Static Type and Polymorphism (1.4)
Static Type and Polymorphism (2)
Polymorphism: Method Call Arguments (1)

90 of 92



Index (6)
Polymorphism: Method Call Arguments (2.1)
Polymorphism: Method Call Arguments (2.2)
Polymorphism: Method Call Arguments (2.3)
Polymorphism: Method Call Arguments (2.4)
Polymorphism: Method Call Arguments (2.5)
Why Inheritance:
A Polymorphic Collection of Students
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)
Polymorphism: Return Values (1)
Polymorphism: Return Values (2)
Polymorphism: Return Values (3)

91 of 92



Index (7)
Static Type vs. Dynamic Type:
When to consider which?

Summary: Type Checking Rules

Root of the Java Class Hierarchy

Overriding and Dynamic Binding (1)

Overriding and Dynamic Binding (2.1)

Overriding and Dynamic Binding (2.2)

Overriding and Dynamic Binding (2.3)

Behaviour of Inherited toString Method (1)

Behaviour of Inherited toString Method (2)

Behaviour of Inherited toString Method (3)
92 of 92


	Why Inheritance: A Motivating Example
	No Inheritance: ResidentStudent Class
	No Inheritance: NonResidentClass
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Inheritance Architecture
	Inheritance: The Student Parent/Super Class
	Inheritance: The ResidentStudent Child/Sub Class
	Inheritance: The NonResidentStudent Child/Sub Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Visualizing Parent/Child Objects (1)
	Visualizing Parent/Child Objects (2)
	Testing the Two Student Sub-Classes
	Inheritance Architecture: Static Types & Expectations
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture
	Multi-Level Inheritance Hierarchy: Smart Phones
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Static Types Determine Expectations
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Dynamic Type
	Visualizing Static Type vs. Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Polymorphism and Dynamic Binding (3.1)
	Polymorphism and Dynamic Binding (3.2)
	Polymorphism and Dynamic Binding (3.3)
	Reference Type Casting: Motivation (1.1)
	Reference Type Casting: Motivation (1.2)
	Reference Type Casting: Motivation (2.1)
	Reference Type Casting: Motivation (2.2)
	Type Cast: Named or Anonymous
	Notes on Type Cast (1)
	Reference Type Casting: Danger (1)
	Reference Type Casting: Danger (2)
	Notes on Type Cast (2.1)
	Notes on Type Cast (2.2)
	Notes on Type Cast (2.3)
	Required Reading: Static Types, Dynamic Types, Casts
	Compilable Cast vs. Exception-Free Cast
	Reference Type Casting: Runtime Check (1)
	Reference Type Casting: Runtime Check (2)
	Notes on the instanceof Operator (1)
	Notes on the instanceof Operator (2)
	Static Type and Polymorphism (1.1)
	Static Type and Polymorphism (1.2)
	Static Type and Polymorphism (1.3)
	Static Type and Polymorphism (1.4)
	Static Type and Polymorphism (2)
	Polymorphism: Method Call Arguments (1)
	Polymorphism: Method Call Arguments (2.1)
	Polymorphism: Method Call Arguments (2.2)
	Polymorphism: Method Call Arguments (2.3)
	Polymorphism: Method Call Arguments (2.4)
	Polymorphism: Method Call Arguments (2.5)
	Why Inheritance: A Polymorphic Collection of Students
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (1)
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (2)
	Polymorphism: Return Values (1)
	Polymorphism: Return Values (2)
	Polymorphism: Return Values (3)
	Static Type vs. Dynamic Type: When to consider which?
	Summary: Type Checking Rules
	Root of the Java Class Hierarchy
	Overriding and Dynamic Binding (1)
	Overriding and Dynamic Binding (2.1)
	Overriding and Dynamic Binding (2.2)
	Overriding and Dynamic Binding (2.3)
	Behaviour of Inherited toString Method (1)
	Behaviour of Inherited toString Method (2)
	Behaviour of Inherited toString Method (3)

