Inheritance

EECS2030 B: Advanced
Object Oriented Programming

YORKQI

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Why Inheritance: A Motivating Example o

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.
20192

/|

NO Inheritance: ResidentStudent ClaSS fASSONDE

- 1

class ResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double premiumRate; /+* t

ResidentStudent (String name) {
this.name = name;
registeredCourses = new Course[l0];
}
void register(Course c) {
registeredCourses|[numberOfCourses] = c;
numberOfCourses ++;
}
double getTuition() {
double tuition = 0;
for(int i = 0; i1 < numberOfCourses; 1 ++) {
tuition += registeredCourses|[1i].fee;
}
return tuition x premiumRate ;
}
) a0t92

/|

No Inheritance: NonResidentStudent Clas$:sono:

class NonResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;
double discountRate; /=
NonResidentStudent (String name) ({
this.name = name;
registeredCourses = new Course[l0];
}
void register(Course c) {
registeredCourses[numberOfCourses]
numberOfCourses ++;
}
double getTuition() |

double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++)

= c;

tuition += registeredCourses|[i].fee;

}

return tuition x discountRate ;

{

/|

N
No Inheritance: Testing Student Classes féésésonos

bl

|

{

double fee)
= fee;

class Course {
String title;

{

double fee;
Course(String title,
this.title = title; this.fee =
args)
500.00); /= and */
500.00); /# and */
Davis");

class StudentTester {
static void main(String[]
Course cl = new Course ("EECS2030",

Course c2 = new Course("EECS3311",
new ResidentStudent ("J.

new NonResidentStudent ("J. Gibbons")

ResidentStudent jim
jim.setPremiumRate(1.25);
jim.register(c2);

jeremy.setDiscountRate(0.75);
jeremy.register(cl);
System.out.println("Jim pays
System.out.println("Jeremy pays "
}
}
e e

jim.register(cl);
NonResidentStudent jeremy
jeremy.register(c2);

+ jim.getTuition());

+ jeremy.getTuition());

No Inheritance: LASSONDE
Issues with the Student Classes

Implementations for the two student classes seem to work. But
can you see any potential problems with it?

The code of the two student classes share a lot in common.

Duplicates of code make it hard to maintain your software!

This means that when there is a change of policy on the
common part, we need modify more than one places.

No Inheritance: Maintainability of Code (1)

/|

|

SSONDE

What if the way for registering a course changes?
e.g.

void register(Course c) {
if (numberOfCourses >= MAX ALLOWANCE) {
throw new IllegalArgumentException("Too many courses");
}
else {
registeredCourses|[numberOfCourses] = c;
numberOfCourses ++;
}
}

We need to change the register method in both student
classes!

Zot 93

/|

SSONDE

No Inheritance: Maintainability of Code (2)

|

What if the way for calculating the base tuition changes?
e.g.,

double getTuition() {
double tuition = 0;

for(int i = 0; i < numberOfCourses; 1 ++) {
tuition += registeredCourses[i].fee;

}

/% ... can be premiumRate or discountRate #*/

return tuition * inflationRate * .

ey

We need to change the get Tuition method in both student
classes.

e

/|

No Inheritance: LASSONDE
A Collection of Various Kinds of Students

How do you define a class studentManagementSystem that
contains a list of resident and non-resident students?

class StudentManagementSystem {

ResidentStudent[] rss;
NonResidentStudent[] nrss;
int nors; /* ! f resid

Or 1ts */

int nonrs; /+* C o1 1t
void addRS (ResidentStudent rs){ rss[nors]=rs; nors++; }
void addNRS (NonResidentStudent nrs){ nrss|[nonrs]=nrs;nonrs++; }
void registerAll(Course c) {
for(int i = 0; i < nors; 1 ++) { rss[i].register(c); }
for(int i = 0; 1 < nonrs; 1 ++) { nrss[i].register(c); }

bl

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately!
a polymorphic collection of students

e

Inheritance Architecture

LASSONDE
i

extends

Student

ResidentStudent

extends

NonResidentStudent

Inheritance: The student Parent/Super Clas$:ou:

T
class Student ({

String name;
Course[] registeredCourses;
int numberOfCourses;
Student (String name) {
this.name = name;
registeredCourses = new Course[l0];
}
void register(Course c) {
registeredCourses|[numberOfCourses] = c;
numberOfCourses ++;
}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++)
tuition += registeredCourses|[1i].fee;
}
return tuition; /+*
}
}

{

e

/|

Inheritance: LASSONDE
The ResidentStudent Child/Sub Class

T
‘class ResidentStudent extends Student {

double premiumRate; /* there’s a mutator method for this x*/ ‘

ResidentStudent (Strlng name) { super (name); }

rited */

/;\ regis
double getTu1tlon() {
double base = super.getTuition();

1od 1is

‘ return base x premiumRate ;

OO NOOOhW N =

e L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L4 is as if calling Student (name)

e Use of super in L8 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
e

/|

Inheritance: LASSONDE
The NonResidentStudent Child/Sub Class

class NonResidentStudent extends Student {
double discountRate; /+ there’s a mutator method for this x/
* reg %/

double getTu1tlon() {
double base = super.getTuition();
return base » discountRate ;

}

©CoOoNOOOR~WN =

—

T 1
NonR651dentStudent (String name) { super (name); }

e L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L4 is as if calling Student (name)

e Use of super in L8 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
e

Inheritance Architecture Revisited LAssoNDE

Student

extends
extends

ResidentStudent NonResidentStudent

e The class that defines the common attributes and methods is
called the parent or super class.

e Each “extended” class is called a child or sub class.
14.0£92

/|

SSONDE

|

Using Inheritance for Code Reuse

Inheritance in Java allows you to:

o Define common attributes and methods in a separate class.
e.g., the student class
o Define an “extended” version of the class which:
e inherits definitions of all attributes and methods
e.g., name, registeredCourses, numberOfCourses
e.g., register
e.g., base amount calculation in getTuition
This means code reuse and elimination of code duplicates!
e defines new attributes and methods if necessary
e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent
e redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

e

Visualizing Parent/Child Objects (1)

|

SSONDE

¢ A child class inherits all attributes from its parent class.

= A child instance has at least as many attributes as an
instance of its parent class.

Consider the following instantiations:

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;

* How will these initial objects look like?

Visualizing Parent/Child Objects (2)

“Stella”

Student
0

1

SSONDE

LA!
i

8 9

nul | nun |

IETEEYE

numberOfCourses
registeredCourses

“Rachael”
0 1

8 9
IETRETE

ResidentStudent

nul [nunt |

numberOfCourses
registeredCourses

premiumRate

“Nancy”
0 1

8 9

‘ null ‘ null ‘

NonResidentStudent
null ‘ null

numberOfCourses
registeredCourses

discountRate

{

args)
500.00);

class StudentTester {
static void main(String]]
Course cl new Course ("EECS2030",
Course c2 = new Course("EECS3311", 500.00);
ResidentStudent jim = new ResidentStudent ("J. DaVlS")
jim.setPremiumRate (1.25);
; Jjim.register(c2);

new NonResidentStudent (

-
Testing the Two Student Sub-Classes ﬂ,géé

"J. Gibbons")

jim.register(cl);
NonResidentStudent jeremy
jeremy.setDiscountRate (0.75);
jeremy.register(cl); jeremy.register(c2)
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}
¢ The software can be used in exactly the same way as before

(because we did not modify method signatures)
¢ But now the internal structure of code has been made
maintainable using inheritance .
e

/|

Inheritance Architecture: Static Types & issonoe
Expectations

Student(String name) String name
void register(Course c) Student Course[] registeredCourses
double getTuition() int numberOfCourses

<

/* new attributes, new methods */]/: m)rv‘v a.liri[m‘{as, dnew gle{ho(ls ¥)
ResidentStudent(String name) ResidentStudent NonReside! udent(String name
double premiumRate double discountRate
void setl: remi double r) void setDiscountRate(double r)

/* redefined/overridden methods */

/* redefined/overridden methods */

double getTuition() double getTuition()

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;

l H name [rcs [noc [reg [getT H pr [setPR H dr [setDR

S. v X
rs. v v X
nrs. v X v

e

/|

Polymorphism: Intuition (1)

|

SSONDE

1 |Student s = new Student ("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate (1.25);
4 |s = rs; /+ Is
5 |rs = s; /* Is */
e Which one of L4 and L5 is valid? Which one is invalid?
¢ Hints:

o L1: What kind of address can s store? [student]

.. The context object s is expected to be used as:
e s.register (eecs2030) and s.getTuition ()
o L2: What kind of address can rs store? [ResidentStudent]
.. The context object rs is expected to be used as:

e rs.register (eecs2030) and rs.getTuition ()
e rs.setPremiumRate (1.50) [increase premium rate]
20.0£92

/|

Polymorphism: Intuition (2)

Student s = new Student ("Stella");

ResidentStudent rs new ResidentStudent ("Rachael");
rs.setPremiumRate (1.25);

s = rs; /x Is

|

SSONDE

g~ wn =

tnis val *

e rs = s (L5) should be invalid:

Student s

call rs.setPremiumRate (1.50) can be expected.
e rsis now pointing to a Student object.
e Then, what would happen to rs.setPremiumRate (1.50)7?
CRASH - rs.premiumRate is undefined!!
210192

Polymorphism: Intuition (3)

|

SSONDE

s = rs; /+*

ahs wn =

rs = s; /*

Student s =
ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate (1.25);

new Student ("Stella");

Is

Tg 7 /
Is e */

e s=rs(L4)

should be valid:

Student s

udent
a
numbe
Residentstu&;;;‘;;\\\\\

s.setPremiumRate (1.50) is never expected.

* sis now pointing to a ResidentStudent object.

* Then, what would happento s.getTuition ()?
OK -+ s.premiumRate is never directly used!!

220199

/|

Dynamic Binding: Intuition (1)

|

SSONDE

1 ’Course eecs2030 = new Course("EECS2030", 100.0); ‘
2 Student s;

3 |ResidentStudent rs = new ResidentStudent ("Rachael");

4 | NonResidentStudent nrs = new NonResidentStudent ("Nancy");
5 | rs.setPremiumRate(1.25); rs.register(eecs2030);

6 |nrs.setDiscountRate(0.75); nrs.register(eecs2030);

7 s = rs; System.out.println(s .getTuition()); /+*
8

s = nrs; System.out.println(s .getTuition());/+

After s = rs (L7), s points to @ ResidentStudent oObject.
= Calling s .getTuition () applies the premiumRate.

ResidentStudent rs Residentstudent

name
/ registeredCourses

Student s

o 1 2 28 29

NonResidentStudent nrs

/|

Dynamic Binding: Intuition (2) o

1 ’Course eecs2030 = new Course("EECS2030", 100.0); ‘
2 Student s;

3 |ResidentStudent rs = new ResidentStudent ("Rachael");

4 | NonResidentStudent nrs = new NonResidentStudent ("Nancy");
5 | rs.setPremiumRate(1.25); rs.register(eecs2030);

6 | nrs.setDiscountRate(0.75); nrs.register(eecs2030);

7
8

;

s = rs; System.out.println(s .getTuition()); /+

s = nrs; System.out.println(s .getTuition()); /+*

After s = nrs (L8), s points to @ NonResidentStudent oObject.
= Calling s .getTuition () appliesthe discountRate.

ResidentStudent rs ——— ResidentStudent
name 0 1 2 28 29
registeredCourses.
numberofCourses
premiumRate

Student s

NonResidentStudent nrs NonResidentStudent

registeredCourses

numberOfCourses l l
discountRate

Multi-Level Inheritance Architecture o

ttttttt

Multi-Level Inheritance Hierarchy: LASSONDE
Smart Phones

dial /* basic method */
surfWeb /* basic method */

SmartPhone

surfWeb /* overridden using safari */

. surfWeb /* overridden using firefox */
RN . Android
facetime /* new method */ skype /* new method */
quickTake /* new method */ sideSync /* new method */
‘ IPhoneXSMax ‘ ‘ IPhone11Pro m
zoomage /* new method */
HuaweiP30Pro ‘ ‘ HuaweiMate20Pro ‘ ‘ GalaxyS10 ‘ ‘ GalaxyS10Plus ‘

| Tl

R
Inheritance Forms a Type Hierarchy légsgsom

e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.

e Use of inheritance creates a hierarchy of classes:
o (Implicit) Root of the hierarchy is 0bject.
o Each extends declaration corresponds to an upward arrow.
o The extends relationship is fransitive: when A extends B and B

extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.

e Ancestor vs. Descendant classes:
o The ancestor classes of a class & are: A itself and all classes that

A directly, or indirectly, extends.
¢ Ainherits all code (attributes and methods) from its ancestor classes.
. A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.

o The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends A.
e Code defined in 2 is inherited to all its descendant classes.
22092
e

/|

Inheritance Accumulates Code for Reuse

e The Jower a class is in the type hierarchy, the more code it
accumulates from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
¢ Declare new attributes
o Define new methods
o Redefine / Override inherited methods
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).
o When expecting an object of a particular class, we may substitute
it with (re-assign it to) an object of any of its descendant classes.
o e.g., When expecting a SmartPhone object, we may substitute it
with either a TPhone11Pro Or a Samsung object.
o Justification: A descendant class contains at least as many
methods as defined in its ancestor classes (but not vice versal).

e

\n,

-

ASSONDE

k

/|

Static Types Determine Expectations LassonDE
¢ A reference variable’s static type is what we declare it to be.

o declares jim’'s ST as Student.

o] SmartPhone myPhone \ declares myPhone’s ST as SmartPhone.

o The static type of a reference variable never changes .

¢ For a reference variable v, its static type defines the
expected usages of v as a context object .

e Amethod call v.m(...) is compilable if mis defined in .

o e.g., After declaring , we

e may call register and getTuition on jim

e may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim

o e.g., After declaring] SmartPhone myPhone \ we

e may call dial and surfileb on myPhone

e may not call facetime (specific to an I0S phone) or skype (specific
to an Android phone) on myPhone

29.0192

Substitutions via Assignments LassonDE

By declaring c1 v1, reference variable v1 will store the
address of an object “of class c1” at runtime.
By declaring c2 v2, reference variable v2 will store the
address of an object “of class c2” at runtime.

Assignment copies address stored in v2 into v1.

o v1 will instead point to wherever v2 is pointing to. [object alias |
%

v \ .
R ’
c2 v2 |

In such assignment v1 = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type c2.

e Substitutions are subject to rules!

300199

|

SSONDE

Rules of Substitution
When expecting an object of static type A:
o ltis safe to substitute it with an object whose static type is any

of the descendant class of a (including 2).
o .- Each descendant class of n, being the new substitute, is
guaranteed to contain all (non-private) attributes/methods defined in A.

¢ e.g., When expecting an 10s phone, you can substitute it with either

an IPhoneXSMax Or IPhonellPro.
o ltis unsafe to substitute it with an object whose static type is

any of the ancestor classes of A’s parent (excluding 2).
o - Class A may have defined new methods that do not exist in any of its

parent’s ancestor classes .
¢ e.g., When expecting 10s phone, unsafe to substitute it with a
SmartPhone - facetime not supported in Android phone.
o ltis also unsafe to substitute it with an object whose static type

is neither an ancestor nor a descendant of A.
¢ e.g., When expecting 10s phone, unsafe to substitute it with a
HuaweiP30Pro . facetime not supported in Android phone.
dlot92
e

/|

Reference Variable: Dynamic Type o

A reference variable’s dynamic type is the type of object that it

is currently pointing to at runtime.

o The dynamic type of a reference variable may change whenever
we re-assign that variable to a different object.

o There are two ways to re-assigning a reference variable.

Visualizing Static Type vs. Dynamic Type sou

(_’ ResidentStudent
name

Student s

“Rachael”

numberOfCourses

registeredCourses

premiumRate

e Each segmented box denotes a runtime object.
¢ Arrow denotes a variable (e.g., s) storing the object’s address.
Usually, when the context is clear, we leave the variable’s static
type implicit (Student).
¢ Title of box indicates type of runtime object, which denotes the
dynamic type of the variable (ResidentStudent).
33.0£92

/|

Reference Variable: LASSONDE
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

o

Substitution Principle ‘: the new object’s class must be a

descendant class of the reference variable’s static type.
o e.g., ’ Student jim = new ResidentStudent(...) ‘
changes the dynamic type of jim to ResidentStudent.

o e.g., ’ jim = new NonResidentStudent(...) ‘
changes the dynamic type of jim 10 NonResidentStudent.

o e.g.,’ResidentStudent jeremy = new Student(...) ‘

is illegal because studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).

34.01.99

/|

Reference Variable: LASSONDE
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is

referenced by another variable other (i.e.,[v = other]):

Substitution Principle ‘: the static type of other must be a

o

descendant class of v’s static type.
o e.g., Say we declare

Student jim = new Student(...);
ResidentStudent rs = new ResidentStudnet(...);
NonResidentStudnet nrs = new NonResidentStudent(...);

e | jim = rs v
changes the dynamic type of jim to the dynamic type of rs
+ [Gim - nes] ‘

changes the dynamic type of jim to the dynamic type of nrs

rs = jim

U

® | nrs = X

35.01.99

[
o
3

/|

Polymorphism and Dynamic Binding (1) sonoe

F=

e Polymorphism : An object variable may have “multiple possible
shapes” (i.e., allowable dynamic types).

o Consequently, there are multiple possible versions of each method
that may be called.

¢ e.g., A Student variable may have the dynamic type of Student,
ResidentStudent, or NonResidentStudent,

e This means that there are ‘ three possible versions ‘ of the
getTuition () that may be called.
e Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.

Student jim = new ResidentStudent(...);
jim.getTuition(); /* version in ResidentStudent */
jim = new NonResidentStudent (..

jim.getTuition(); /* version in NonResidentStudent =*/

36.01.99

/|

R
Polymorphism and Dynamic Binding (2.1) 4%

class ResidentStudent extends Student {...}

|

class Student {...}
class NonResidentStudent extends Student {...}

args) |

{

class StudentTesterl
public static void main(String[]
new Student ("J. Davis");
new ResidentStudent ("J. Davis");

Student jim
ResidentStudent rs

new NonResidentStudent ("J. Davis");

= Jjim;
rs =

NonResidentStudnet n

jim =
nrs

|

R
Polymorphism and Dynamic Binding (2.2) P

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}
class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course ("EECS2030", 500.0);
= new Student ("J. Davis");
= new ResidentStudent ("J. Davis");
\
/ ‘

TEN)«
/20.0 #/

Student jim
ResidentStudent rs

/ *

rs.setPremiumRate(1.5);
‘ jim = rs ;
System.out.println(jim.getTuition());
= new NonResidentStudent ("J. Davis");
/% 250.0 */ \

NonResidentStudnet nrs
nrs.setDiscountRate(0.5);

jim = nrs ;
System.out.println(jim.getTuition());

Polymorphism and Dynamic Binding (3.1) iassonoe

=

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */

surfWeb /* overridden using firefox */

facetime /* new method */ Android skype /* new method */
quickTake /* new method */ sideSync /* new method */
‘ IPhoneXSMax ‘ ‘ IPhone11Pro m
zoomage /* new method */
HuaweiP30Pro ‘ ‘ HuaweiMate20Pro ‘ ‘ GalaxyS10 ‘ ‘ GalaxyS10Plus ‘

SSONDE

|

Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTestl {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneXSMax () ;
Samsung ss = new GalaxyS10Plus();
myPhone = ip; /+ legal #*/
myPhone Ss; /* 1 ‘

IOS presentForHeeyeon;
presentForHeeyeon = ip; /+
presentForHeeyeon = ss; / *

Polymorphism and Dynamic Binding (3.3)

|

SSONDE

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhonellPro();
myPhone = ip;

- a11 1+ Flila
>f surfieb

myPhone. surfWeb (); /+*

Samsung ss = new GalaxyS10();
myPhone = ss;
myPhone. surfWeb (); /* version o

Reference Type Casting: Motivation (1.1)

new ResidentStudent ("J. Davis");

—_

Jim;

rs.setPremiumRate(1.5);

Student jim
ResidentStudent rs
e L1is /egal: ResidentStudent is a descendant class of the

static type of jim (i.e., Student).
e L2is illegal: §im’s ST (i.e., Student) is not a descendant
class of rs’s ST (i.e., ResidentStudent).
Java compiler is unable to infer that jim’s dynamic type in L2 is
jim;

ResidentStudent!
¢ Force the Java compiler to believe so via a cast in L2:
= (ResidentStudent)

e The cast ’ (ResidentStudent) jim ‘ on the RHS of = temporarily modifies

ResidentStudent rs

jim's ST to ResidentStudent.
e Alias rs of ST ResidentStudent is then created via an assignment.
e dynamic binding : After the cast , L3 will execute the correct
version of setPremiumRate.
e

/|

Reference Type Casting: Motivation (1.2) Jsow

ST: ResidentStudent valid substitution ST: Student
—— — =
ResidentStudent rs = (ResidentStudent) jim

temporaily modify ST

ST: ResidentStudent

[e]

Variable rs is declared of static type (ST) ResidentStudent.
Variable jim is declared of ST Student.
The cast expression] (ResidentStudent) jim \ temporarily modifies

jim’'s ST to ResidentStudent.
= Such a cast makes the assignment valid.
-+ RHS’s ST (ResidentStudent) is a descendant of LHS’s ST
(ResidentStudent).
= The assignment creates an alias rs with ST ResidentStudent.
No new object is created.
Only an alias rs with a different ST (ResidentsStudent) is created.
o After the assignment, jim’s ST remains Student.
43.0£92

[e]

o

o

R
Reference Type Casting: Motivation (2.1) ﬂ,géé

new IPhonellPro();

—_

IOS forHeeyeon = aPhone;
forHeeyeon. facetime() ;

SmartPhone aPhone
e L1is /egal: IPhonellPro is a descendant class of the static

type of aPhone (i.e., SmartPhone).
e L2is illegal: aPhone’s ST (i.e., SmartPhone) is not a
descendant class of forHeeyeon’s ST (i.e., I0S).
Java compiler is unable to infer that aPhone’s dynamic type in L2

is IPhonellPro!
e Force Java compiler to believe so via a cast in L2:
= (IPhonellPro) aPhone;
e The cast ’ (IPhone11Pro) aPhone ‘ on the RHS of = temporarily modifies

IOS forHeeyeon

aPhone’s ST to IPhonellPro.
e Alias forHeeyeon of ST 10s is then created via an assignment.
e dynamic binding : After the cast , L3 will execute the correct
version of facetime.
e

/|

|

Reference Type Casting: Motivation (2.2)

SSONDE
ST: IOS valid substitution ST: SmartPhone
Py ——e
10S forHeeyeon = (IPhonellPro) aPhone ;

———
temporaily modify ST

ST: IPhonellPro

o

Variable forHeeyeon is declared of static type (ST) 10s.
Variable aPhone is declared of ST SmartPhone.

The cast expression] (IPhone11Pro) aPhone ‘ temporarily modifies
aPhone’s ST to IPhonellPro.

= Such a cast makes the assignment valid.
-+ RHS’s ST (IPhonellPro) is a descendant of LHS’s ST (10s).
= The assignment creates an alias forHeeyeon with ST 10s.

No new object is created.
Only an alias forHeeyeon with a different ST (10S) is created.
o After the assignment, aPhone’s ST remains SmartPhone.
45.0£92

o

[e]

[e]

/|

Type Cast: Named or Anonymous Lassonpe

Named Cast: Use intermediate variable to store the cast result.

SmartPhone aPhone = new IPhonellPro();
IOS forHeeyeon = (IPhonellPro) aPhone;
forHeeyeon. facetime () ;

Anonymous Cast: Use the cast result directly.

SmartPhone aPhone = new IPhonellPro();
((IPhonellPro) aPhone) .facetime();

_

Common Mistake:

SmartPhone aPhone = new IPhonellPro();
(IPhonellPro) aPhone.facetime();

L2 z[(IPhonellPro) (aPhone.facetime()) \: Call, then cast.

= This does not compile - facetime () is not declared in the
static type of aPhone (SmartPhone).

/|

Notes on Type Cast (1) LassonDE

o Given variable v of static type ST,, itis compilable to cast v to
C ,aslong as C is an ancestor or descendant of ST,.

o Without cast, we can only call methods defined in ST, on v.

o Casting vto C temporarily changes the ST of v from ST, to C.
= All methods that are defined in C can be called.

Android myPhone new GalaxySlOPlusU
/ I n Android on

SmartPhone sp = (SmartPhone) myPhone;
‘% C I)K - SmartPhone is

X */

(GalaxySlOPlus) myPhone;
GalaxyS10Plus is a descendant class of Android
2 widened to GalaxySlOPlus

wc v o/

OK -

/|

Reference Type Casting: Danger (1) LassonDE
1 ’Student jim = new NonResidentStudent ("J. Davis");
2 ‘Residentstudent rs = (ResidentStudent) Jjim;

3 ‘rs.setPremiumRate(l.B);

e L1is /egal: NonResidentStudent is a descendant of the
static type of jim (Student).

e L2 is legal (where the cast type is ResidentStudent):
o cast type is descendant of jim’s ST (Student).
o cast type is descendant of rs’s ST (ResidentStudent).

e L3is /egal - setPremiumRateisin rs’ ST
ResidentStudent.

e Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

e Executing L2 will resultina ClassCastException.
-+ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.

e

/|

Reference Type Casting: Danger (2) LassonDE
1 ’SmartPhone aPhone = new GalaxyS10Plus(); ‘
2 ‘IPhonellPro forHeeyeon = (IPhonellPro) aPhone; ‘

3 ‘ forHeeyeon.quickTake(); ‘

e L1is /egal: GalaxyS10P1lus is a descendant of the static
type of aPhone (SmartPhone).

e L2 is /egal (where the cast type is Iphone6sPlus):
o cast type is descendant of aPhone’s ST (SmartPhone).
o cast type is descendant of forHeeyeon’s ST (IPhonellPro).

e L3is legal - quickTake isin forHeeyeon’ ST
IPhonellPro.

e Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually NonResidentStudent.

e Executing L2 will resultina ClassCastException.
-~ Methods facetime, quickTake (expected from an
IPhone11Pro) is undefined on the GalaxyS10Plus object

mk?ﬁing cast.

e

/|

|

Notes on Type Cast (2.1)

Given a variable v of static type ST, and dynamic type DT,:

o is compilable if c is ST,’s ancestor or descendant.
o Casting v to C’s ancestor/descendant narrows/widens expectations.

o However, being compilable does not guarantee runtime-error-free!

SSONDE

: GalaxySlOPlus is a descendant clas

hods declared

n GalaxyS10Plus

ga.sideSync v ox/

* Type castin L3 is compilable .

1 SmartPhone myPhone = new Samsung();

2 one 1is SmartPhone; DT of m o1 is Samsung x*/

3 = (GalaxyS10Plus) myPhone;

4 f SmartPhone
5

6

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS10Plus (e.g., sideSync).
S0ofa?

/|

Notes on Type Cast (2.2)

Given a variable v of static type ST, and dynamic type DT,:

o is compilable if c is ST,’s ancestor or descendant.
o Casting v to C’s ancestor/descendant narrows/widens expectations.
o However, being compilable does not guarantee runtime-error-free!

|

SSONDE

1 SmartPhone myPhone = new Samsung();
2 |/+x ST of m one is SmartPhone; DT of m is Samsung x*/
3 | IPhonellPro ip = (IPhonellPro) myPhone;
4 | /+ C s OK - IPhonellPro is a descendant class of SmartPhone
5 : W C nethods decla 1 in IPhonellPro on ip
6 ‘ * ip.dial, 1ip.st b, 1p ime, N4
L

* Type castin L3 is compilable .

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhonellPro (e.9., quickTake).
510fa2

N
Notes on Type Cast (2.3)

|

SSONDE

A cast is compilable and runtime-error-free if C is
located along the ancestor path of DT,.

e.g., Given ’ Android myPhone = new Samsung();

o Cast myPhone to a class along the ancestor path of its DT
Samsung.

o Casting myPhone to a class with more expectations than its DT
Samsung (e.g., GalaxyS10P1us) will cause
ClassCastException.

o Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate20Pro) will cause ClassCastException.

820199

Required Reading:
Static Types, Dynamic Types, Casts

https://www.eecs.vorku.ca/~jackie/teaching/
lectures/2019/F/EECS2030/notes/EECS2030 F19
Notes Static Types Cast.pdf

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/F/EECS2030/notes/EECS2030_F19_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/F/EECS2030/notes/EECS2030_F19_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/F/EECS2030/notes/EECS2030_F19_Notes_Static_Types_Cast.pdf

/|

Compilable Cast vs. Exception-Free Cast Jsous

class A { }

class B extends A
class C extends B
class D extends A

—_ -

}
}
}

B b new C();
D d (D) b;

After L1:

o STofbisB

o DT of bisC

Does L2 compile? [No]
-+ cast type D is neither an ancestor nor a descendant of b’s ST B

Would[D d = (D) ((&) b)|fix L2? [YES]
-+ cast type D is an ancestor of b’s cast, temporary ST A

* ClassCastException when executing this fixed L2? [YES]

-+ cast type D is not an ancestor of b’s DT C

e

/|

Reference Type Casting: Runtime Check (1) Jssone

’Student jim = new NonResidentStudent ("J. Davis"); ‘

‘if (jim instanceof ResidentStudent) { ‘

1
2
3 ResidentStudent rs = (ResidentStudent) jim;
4 rs.setPremiumRate (1.5);

5

}

e L1is /egal: NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

e L2 checks if 7im's dynamic type is ResidentStudent.

FALSE - 5im’s dynamic type is NonResidentStudent!

e L3is legal: jim’s cast type (i.e., ResidentStudent)is a
descendant class of rs’s static type (i.e.,
ResidentStudent).

e L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!
22.0£92

/|

Reference Type Casting: Runtime Check (2) Jssone

1 ’SmartPhone aPhone = new GalaxyS10Plus(); ‘
2 ‘if (aPhone instanceof IPhonellPro) { ‘
3 IOS forHeeyeon = (IPhonellPro) aPhone;
4 forHeeyeon. facetime () ;

5

}

e L1is /egal: GalaxyS10P1lus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

L2 checks if aPhone’s dynamic type is IPhonellPro.

FALSE -- aPhone’s dynamic type is GalaxyS10Plus!

L3 is legal: aPhone’s cast type (i.e., ITPhonell1Pro)is a
descendant class of forHeeyeon’s static type (i.e., I0S).
L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

86.01.99

/|

SSONDE

|

Notes on the instanceof Operator (1)
Given a reference variable v and a class ¢, you write

’v instanceof C‘

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that| (C) v |is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Andr01d)

/ des
is a des

/* true - Samsung 21
println(myPhone instanceof Samsung);

/% true °' Samsung 1s a descendant of Samsung x/}
println(myPhone instanceof GalaxyS10);

/+ false ' Sa ng is not a descendant of GalaxyS10 */
println(myPhone 1nstanceof I0s);

/* false ' Samsung 1is not a descendant of IOS x*/
println(myPhone 1nstanceof IPhonellPro)

/% false °’ Samsung 1s not a descen t of IPhonellPro */

= Samsung is the most specific type which myPhone can be
safely cast to.
5Z0f07

/|

Notes on the instanceof Operator (2)
Given a reference variable v and a class c,
|v instanceof C|checks if the dynamic type of v, at the
moment of being checked, is a descendant class of C.

SmartPhone myPhone = new Samsung();

/#* ST of myPhone 1is SmartPhone; DT of n

|

SSONDE

is Samsung */

if (myPhone instanceof Samsung) {
Samsung samsung = (Samsung) myPhone;
}
if (myPhone instanceof GalaxyS10Plus) ({
GalaxyS10Plus galaxy = (GalaxyS10Plus) myPhone;
}
if (myphone instanceof HuaweiMate20Pro) {
Huawei hw = (HuaweiMate20Pro) myPhone;
}

O OVWONOOORAWN =

—_

e L3 evaluates to frue. [safe to cast]
e L6 and L9 evaluate to false. [unsafe to cast]
This prevents L7 and L10, causing ClassCastException if

executed, from being executed.

e

Static Type and Polymorphism (1.1)

|

SSONDE

class SmartPhone {
void dial() { ... }

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonellPro extends IOS {
void quickTake() { ... }

}

T

1 SmartPhone sp = new IPhonellPro(); N
2 |sp.dial(); v

3 | sp.facetimel(); X

4

sp.quickTake () ; X

Static type of spis SmartPhone
= can only call methods defined in SmartPhone on sp

e

|

Static Type and Polymorphism (1.2)

SSONDE

class SmartPhone {
void dial() { ... }

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonellPro extends IOS {
void quickTake() { ... }

}

1 IOS ip = new IPhonellPro(); Vv
2 |ip.dial(); Vg

3 | ip.facetime(); v

4 | ip.quickTake(); X

Static type of ipis 10S

= can only call methods defined in T0s on ip
Bof a2

|

Static Type and Polymorphism (1.3)

SSONDE

class SmartPhone {
void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonellPro extends IOS ({
void quickTake() { ... }

}

T
IPhonellPro ipésp = new IPhonellPro(); v
ip6sp.dial(); v

ip6sp.facetime () ; v

ip6sp.quickTake () ; N

O =

Static type of ip6spis IPhonellPro

= can call all methods defined in ITPhonellPro on jp6sp
60192

Static Type and Polymorphism (1.4)

class SmartPhone {
void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonellPro extends IOS ({
void quickTake() { ...}

}

|

SSONDE

T

1 ‘ SmartPhone sp new IPhonellPro(); v
2 | ((IPhonellPro) sp).dial(); |
3 ‘((IPhonellPro) sp).facetime(); ‘
4 ‘((IPhonellPro) sp).quickTake(); v

|

L

L4 is equivalent to the following two lines:

r
‘IPhonellPro ip6sp = (IPhonellPro) sp; ‘

‘ip6sp.quickTake();

620199

/|

Static Type and Polymorphism (2)

Given a reference variable declaration

o |

|

SSONDE

(e]

Static type of reference variable v is class C

A method call is valid if mis a method defined in class C.
Despite the dynamic type of v, you are only allowed to call
methods that are defined in the static type C on v.

If you are certain that v’s dynamic type can be expected more than
its static type, then you may use an insanceof check and a cast.

[e]

[e]

o

Course eecs2030 = new Course ("EECS2030", 500.0);
Student s = new ResidentStudent ("Jim");
s.register(eecs2030);

if (s instanceof ResidentStudent) ({

| ((ResidentStudent) s).setPremiumRate(1.75); |

System.out.println(((ResidentStudent) s).getTuition());
}

63.01.99

- ___
—

Polymorphism: Method Call Arguments (1) ssono:
1 ’class StudentManagementSystem {

2 Student ss; /* ss[i] has static ty}w Student */ int c;

3 void addRS(Res:.dentStudent rs) { sslcl = rs; c ++; }

4 void addNRS (NonResidentStudent nrs) { ss[c] = nrs; c++; }

5 void addStudent (Student s) { ssl[c] = s; c++; } }

e L3:ss| = rsisvalid. - RHS’s ST ResidentStudent is a

descendant class of LHS’s ST student.
e Say we have a StudentManagementSystem object sms:
o ’sms.addRS (o) | attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:

’ rs = 0y
o Whether this argument passing is valid depends on o’s static type.

¢ In the signature of a method n, if the type of a parameter is
class ¢, then we may call method m by passing objects whose

static types are C’s descendants.

e

/|

Polymorphism: Method Call Arguments (2.1)ssono

In the studentManagementSystemTester:

Student sl = new Student();

Student s2 = new ResidentStudent () ;

Student s3 = new NonResidentStudent () ;

ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent () ;
StudentManagementSystem sms = new StudentManagementSystem();

sms.addRS (s1) ; X
sms.addRS (s2) ; X
sms.addRS (s3); x
sms.addRS(rs);

sms.addRS (nrs) ;

sms.addStudent (s
sms.addStudent (s
sms.addStudent (s
sms.addStudent (rs) ;
sms.addStudent (nrs) ;

/|

Polymorphism: Method Call Arguments (2.2)ssono

In the studentManagementSystemTester:

Student s = new Student ("Stella");

/* s’ ST: Student; s’ DT: Student =/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS(s); X

AW

o L4 compiles with a cast: [sms.addrs ((ResidentStudent) s) |
e lalid cast-. (ResidentStudent) is a descendant of s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) is now a
descendant class of addRs’s parameter rs’ ST (ResidentStudent).
o But, there willbe a ClassCastException atruntime!
-+ s’ DT (Student) is not a descendant of ResidentStudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.

e

/|

Polymorphism: Method Call Arguments (2.3)ssono

In the studentManagementSystemTester:

Student s = new NonResidentStudent ("Nancy");

/* s’ ST: Student; s’ DT: NonResidentStudent x+/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS(s); X

AW

o L4 compiles with a cast: [sms.addrs ((ResidentStudent) s) |
e Valid cast-- (ResidentStudent) is a descendant of s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) is now a
descendant class of addRs’s parameter rs’ ST (ResidentStudent).
o But, there willbe a ClassCastException atruntime!
s’ DT (NonResidentStudent) hOt descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}
The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

e

/|

Polymorphism: Method Call Arguments (2.4)ssono:

In the StudentManagementSystemTester:

Student s = new ResidentStudent ("Rachael");

/+* s’ ST: Student; s’ DT: ResidentStudent x/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); X

AW =

o L4 compiles with a cast: [sms.addrs ((ResidentStudent) s) |
e Valid cast-.r (ResidentStudent) is adescendantof s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) isS now a
descendant class of addRs’s parameter rs’ ST (ResidentStudent).
o And, there willbe no ClassCastException atruntime!
.+ s’ DT (ResidentStudent) is descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to frue, meaning it is
safe to cast.

e

/|

Polymorphism: Method Call Arguments (2.5)ssono

A WND =

In the studentManagementSystemTester:

NonResidentStudent nrs =

/ -
/*x ST:

Studen tManagementSystem sms =

sms.addRS (nrs) ;

new NonRe51dentSt udent () ;

new StudentManagementSystem ();
X

Will L4 with a cast compile?

sms.addRS ((ResidentStudent) nrs)

NO -- (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).

/|

Why Inheritance: LASSONDE
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?

class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent (Student s)
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i1 < numberOfStudents; 1 ++) {
students|[1i].register(c)

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)

/|

LASSONDE
et

O©CoONOOUOLAWND =

ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate (1.5);

NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;
nrs.setDiscountRate(0.5);

sms.addStudent (rs); /+
sms.addStudent (nrs); /* 1 3 e

Course eecs2030 = new Course ("EECS2030", 500.0);
sms.registerAll (eecs2030);

for(int i = 0; i1 < sms.numberOfStudents; 1 ++) {

/'

getTuition will be called x*

‘ System.out.println(sms.students[1i]. getTuition());

StudentManagementSystem sms = new StudentManagementSystem() ;

Polymorphism and Dynamic Binding: P sous
A Polymorphic Collection of Students (2)

At runtime, attribute is a polymorphic array:

e Static type of each item is as declared: Student

e Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

99

StudentManagementSystem 0 1 2 3 4 5 6 7
(’ ss e [nun | nun | nun | nun | nun | nun [nun | nun]

sms

“EECS52030”

Polymorphism: Return Values (1)

/|

SSONDE

|

1 |class StudentManagementSystem {

2 Student[] ss; int c;

3 void addStudent (Student s) { ss[ec] = s; c++; }
4 Student getStudent (int i) {

5 Student s = null;

6 if(i <0 || 1 >= ¢) |

7 throw new IllegalArgumentException("Invalid index.");
8 }

9 else {

10 s = ssl[i];

11 }

12 return s;

13 } o}

L4: student is static type of get Student’s return value.

L10: ss[i]’s ST (student) is descendant of s’ ST (student).

Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of Student.

e

ks

Polymorphism: Return Values (2)

SSONDE

ONO OO~ WN =

10
11

12
13

14
15
16
17

Course eecs2030 = new Course("EECS2030", 500);
ResidentStudent rs = new ResidentStudent ("Rachael");

rs.setPremiumRate(1.5); rs.register(eecs2030);
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;
nrs.setDiscountRate(0.5); nrs.register(eecs2030);
StudentManagementSystem sms = new StudentManagementSystem();
sms.addStudent (rs); sms.addStudent (nrs);

Student s = sms.getStudent(0) P /% type of s? x/

[—
static return type: Student

print (s instanceof NonResidentStudent)' /+ false */
‘print(s.getTuition()) sion in ResidentStudent called:750*/
ResidentStudent rs2 = sms. getStudent(O) X
sl = sms.getStudent(1) e type of s? #/
—

static return type: Student

print (s instanceof Student && s instanceof NonResidentStudent); /xtr
print (s instanceof ReSLdentStudent), /% false */
‘print(s.getTuition ()) +*Version in NonResidentStudent

’NonRe51dentStudent nrs2 = sms.getStudent (1l); X

print (s instanceof Student && s instanceof ResidentStudent);/+truex)

ex/

e

|

Polymorphism: Return Values (3)

At runtime, attribute is a polymorphic array:
e Static type of each item is as declared: Student

e Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
(ss s [[rur | own [nur | oun | eun | nun | oun | aun |

sms c
sms. getStudent (0)

(—’ ResidentStudent (—>
“Rachael”

rs

sms.getStudent (1)

NonResidentStudent

0 1 0o 1 8 9

numberOfCourses I8}

numberOfCourses [RSE
registeredCourses

registeredCourses

premiumRate discountRate

Course

title “EECS2030"
eecs2030
fee

e

SSONDE

Static Type vs. Dynamic Type: LASSONDE
When to consider which?

e Whether or not Java code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Java code being executed at runtime (e.g.,

which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

e

N
Summary: Type Checking Rules

SSONDE

|

I CODE | ConDITION TO BE TYPE CORRECT

X =y Is y's ST a descendant of x's ST?
Is method m defined in x’s ST?

x.m(y) Is y’'s ST a descendant of m’s parameter's ST?
Is method m defined in x’s ST?
z = x.m(y) Is y’'s ST a descendant of m’'s parameter's ST?
Is ST of m’s return value a descendant of z's ST?
(C) y Is ¢ an ancestor or a descendant of y's ST?
x= () y Is ¢ an ancestor or a descendant of y's ST?

Is ¢ a descendant of x’s ST?

Is ¢ an ancestor or a descendant of y's ST?
x.m((C) vy) Is method m defined in x’s ST?

Is ¢ a descendant of m’s parameter’s ST?

Evenif| (c) y|compiles OK, there will be a runtime
ClassCastException if C is not an ancestor of y's DT!

e

ks

R
Root of the Java Class Hierarchy "'éésésom

o Every class is a child/sub class of the Object class.
o The oObject class is the parent/super class of every class.

e Implicitly:
e There are two useful accessor methods that every class

inherits from the object class:
o boolean equals (Object other)
Indicates whether some other object is “equal to” this one.
e The default definition inherited from Object
{

}

boolean equals (Object other)
(this == other);

return

o String toString()
Returns a string representation of the object.
» Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and
toString.
Z8.0t02
e

/|

|

Overriding and Dynamic Binding (1)

SSONDE

Object is the common parent/super class of every class.

o Every class inherits the default version of equals
o Say a reference variable v has dynamic type D:
e Case 1 D overrides equals
= v.equals (...) invokes the overridden version in D
e Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
= v.equals (...) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
= v.equals (...) invokes default version inherited from Object.

o Same principle applies to the tostring method, and all
overridden methods in general.

290199

/|

}

}

_
C equals?
e

Overriding and Dynamic Binding (2.1) LassonDE
. boolean equals (Object obj) {
Object return this == obj;
} class A {
Y W /*equals not overriddenx*/
class B extends A {
A
class C extends B {
I W / 1s not over
1 |Object cl1 = new C();
2 |Object c2 = new C();
3 |println(cl.equals(c2));
L3 calls which version of
[Object]

/|

™

-

ASSONDE

Overriding and Dynamic Binding (2.2)

Object

boolean equals (Object obj) {
return this == obj;
}

boolean equals (Object obj) {
/* overridden version */
}

class A {

/+equals not

}

class B extends A {

5 Not oV

}
class C extends B {
boolean equals(object ob7j)
/* overridder version ‘,,/

}

{

}

Object clI = new C();
Object c2 = new C();
printin(cl.equals(c2));

L3 calls which version of
equals? [c]

/|

|

SSONDE

Overriding and Dynamic Binding (2.3)

boolean equals (Object obj) {
Object return this == obj; class 4 {
} /*equals not over
I }
| class B extends A {
" boolean equals (Object obj) {
/* overridden version */
A }
}
I W class C extends B {
ls not overriddenx*/
— }
boolean equals (Object obj) {
B /* overridden version */
} 1 |Object cl1 = new C();
— 2 |Object c2 = new C();
3 |printin(cl.equals(c2));
L3 calls which version of
c equals? [B]

Behaviour of Inherited tostring Method (1):ssone

Point pl = new Point(2, 4);
System.out.println(pl);

Point@677327b6

e Implicitly, the toSt ring method is called inside the print1ln
method.

» By default, the address stored in p1 gets printed.

e We need to redefine / override the tostring method,
inherited from the ob ject class, in the Point class.

83.0199

|

Behaviour of Inherited tostring Method (2):ssone

class Point {

double x;
double y;
public String toString() {
return " (" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the t oSt ring method:

Point pl = new Point(2, 4);
System.out.println(pl);

Behaviour of Inherited tostring Method (3):ssone

Exercise: Override the equals and toSt ring methods for
the ResidentStudent and NonResidentStudent classes.

Index (1) ;ASSONDE

Why Inheritance: A Motivating Example

No Inheritance: Testing Student Classes

No Inheritance:

Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)

No Inheritance:

A Collecti f Vari Kinds of Stud

lnheri Archi

Inheritance: The student Parent/Super Class

Inheritance:
e

N
Index (2) _;ASSONDE
Inheritance:

Ii) Child/Sub CI
Inherit Architect Revisited
Using Inheritance for Code Reuse
Visualizing Parent/Child Objects (1)
Visualizing Parent/Child Objects (2)
Testing the Two Student Sub-Classes

Inheritance Architecture: Static Types & Expectations
Polymorphism: Intuition (1)

Polymorphism: Intuition (2)

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

Dynamic Binding: Intuition (2)

I! ! il Linheri Archi
e

Index (3) _;HASSONDE
Multi-Level Inheritance Hierarchy:
Smart Phones

Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse

Static Types Determine Expectations
Substitutions via Assignments

Rul f Substituti

Reference Variable: Dynamic Type

Visualizing Static Type vs. Dynamic Type
Beference Variable:

Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)

Polymorphism and Dynamic Binding (1)
Polymorphism and Dynamic Binding (2.1

Index (4) ;ASSONDE

Polymorphism and Dynamic Binding (2.2
Polymorphism and Dynamic Binding (3.1
Polymorphism and Dynamic Binding (3.2
Polymorphism and Dynamic Binding (3.3
Reference Type Casting: Motivation (1.1)
Reference Type Casting: Motivation (1.2)
Reference Type Casting: Motivation (2.1)
Reference Type Casting: Motivation (2.2)
Type Cast: Named or Anonymous

Notes on Type Cast (1)

Reference Type Casting: Danger (1)
Reference Type Casting: Danger (2)

Notes on Type Cast (2.1)

Notes on Type Cast (2.2)
e

Index (5) _;HASSONDE
Notes on Type Cast (2.3)

Required Reading:

Static Types, Dynamic Types, Casts

Compilable Cast vs. Exception-Free Cast
Reference Type Casting: Runtime Check (1)

Reference Type Casting: Runtime Check (2)
Notes on the instanceof Operator (1)
Notes on the instanceof Operator (2)

Static Type and Polymorphism (1.1)
Static Type and Polymorphism (1.2)
Static Type and Polymorphism (1.3)

Static Type and Polymorphism (1.4)
Static Type and Polymorphism (2)

Pol¥morghism: Method Call Arguments (1)

Index (6) _;HASSONDE
Polymorphism: Method Call Arguments (2.1)

Polymorphism: Method Call Arguments (2.2)

Polymorphism: Method Call Arguments (2.3)

Polymorphism: Method Call Arguments (2.4)

Polymorphism: Method Call Arguments (2.5)
Why Inheritance:

A Polymorphic Collection of Students

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)

Polymorphism: Return Values (1)

Polymorphism: Return Values (2)

Pol¥morghism: Return Values (3)

Index (7) _;ASSONDE
Static Type vs. Dynamic Type:
Wi j i hich?

Summary: Type Checking Rules
Root of the Java Class Hierarchy
Overriding and Dynamic Binding (1)

Overriding and Dynamic Binding (2.1)

Overriding and Dynamic Binding (2.2

Overriding and Dynamic Binding (2.3)

Behaviour of Inherited tostring Method (1)

Behaviour of Inherited toSt ring Method (2)

Behaviour of Inherited tostring Method (3)

920199

	Why Inheritance: A Motivating Example
	No Inheritance: ResidentStudent Class
	No Inheritance: NonResidentClass
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Inheritance Architecture
	Inheritance: The Student Parent/Super Class
	Inheritance: The ResidentStudent Child/Sub Class
	Inheritance: The NonResidentStudent Child/Sub Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Visualizing Parent/Child Objects (1)
	Visualizing Parent/Child Objects (2)
	Testing the Two Student Sub-Classes
	Inheritance Architecture: Static Types & Expectations
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture
	Multi-Level Inheritance Hierarchy: Smart Phones
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Static Types Determine Expectations
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Dynamic Type
	Visualizing Static Type vs. Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Polymorphism and Dynamic Binding (3.1)
	Polymorphism and Dynamic Binding (3.2)
	Polymorphism and Dynamic Binding (3.3)
	Reference Type Casting: Motivation (1.1)
	Reference Type Casting: Motivation (1.2)
	Reference Type Casting: Motivation (2.1)
	Reference Type Casting: Motivation (2.2)
	Type Cast: Named or Anonymous
	Notes on Type Cast (1)
	Reference Type Casting: Danger (1)
	Reference Type Casting: Danger (2)
	Notes on Type Cast (2.1)
	Notes on Type Cast (2.2)
	Notes on Type Cast (2.3)
	Required Reading: Static Types, Dynamic Types, Casts
	Compilable Cast vs. Exception-Free Cast
	Reference Type Casting: Runtime Check (1)
	Reference Type Casting: Runtime Check (2)
	Notes on the instanceof Operator (1)
	Notes on the instanceof Operator (2)
	Static Type and Polymorphism (1.1)
	Static Type and Polymorphism (1.2)
	Static Type and Polymorphism (1.3)
	Static Type and Polymorphism (1.4)
	Static Type and Polymorphism (2)
	Polymorphism: Method Call Arguments (1)
	Polymorphism: Method Call Arguments (2.1)
	Polymorphism: Method Call Arguments (2.2)
	Polymorphism: Method Call Arguments (2.3)
	Polymorphism: Method Call Arguments (2.4)
	Polymorphism: Method Call Arguments (2.5)
	Why Inheritance: A Polymorphic Collection of Students
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (1)
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (2)
	Polymorphism: Return Values (1)
	Polymorphism: Return Values (2)
	Polymorphism: Return Values (3)
	Static Type vs. Dynamic Type: When to consider which?
	Summary: Type Checking Rules
	Root of the Java Class Hierarchy
	Overriding and Dynamic Binding (1)
	Overriding and Dynamic Binding (2.1)
	Overriding and Dynamic Binding (2.2)
	Overriding and Dynamic Binding (2.3)
	Behaviour of Inherited toString Method (1)
	Behaviour of Inherited toString Method (2)
	Behaviour of Inherited toString Method (3)

