Aggregation and Composition

EECS2030 B: Advanced
Object Oriented Programming

YORKQI

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Aggregation vs. Composition: Terminology :ssove

Container object: an object that contains others.
Containee object: an object that is contained within another.
¢ e.g., Each course has a faculty member as its instructor.
o Container: Course Containee: Faculty.
e e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
o Container: Student, Faculty Containees: Course.
e.g., eecs2030 taken by jim (student) and taught by t om (faculty).
= Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
= Containees may exist independently without their containers.
* e.g., In afile system, each directory contains a list of files.
o Container: Directory Containees: File.
e.g., Each file has exactly one parent directory.
= A containee may be owned by only one container.
e.g., Deleting a directory also deletes the files it contains.
= Containees may co-exist with their containers.

e

/|

Aggregation: Independent Containees
Shared by Containers (1.1)
prof
Course © 1 Faculty
1 Course {
cSatsr:sing title; clsats:inl;aiua_lfiey’ t
Faculty prof; Faculty(str;ng name) {
Course(String title) { .
this.titleg= title; this.name = name;

}
} : .
d N. St
void setProf(Faculty prof) { voli) setName (String name) {
. this.name = name;
this.prof = prof;)
} .
Strin tN.
Faculty getProf() { ing ge _ame() {
. return this.name;
return this.prof; }
) }
}

30125

/|

Aggregation: Independent Containees
Shared by Containers (1.2)

@Test

public void testAggregationl() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf (prof) ;
eecs3311.setProf(prof);
assertTrue(eecs2030 getProf () == eecs3311.getProf());

/+ aliasing */
prof.setName ("Jeff");
assertTrue (eecs2030.getProf () == eecs3311.getProf());

assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);

assertTrue (eecs2030.getProf () '= eecs3311.getProf());
assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));
assertTrue (eecs3311.getProf () .getName () .equals ("Jonathan"));

e

Aggregation: Independent Containees

LASSONDE
et

Shared by Containers (2.1)
teaching
Student 760”5? Course * prof Faculty
1
class Student |
String id; ArrayList<Course> cs; /* 5 */
Student (String 1id) { this.id = id; cs new ArrayList<>(); }
void addCourse(Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }
}
class Course { String title; Faculty prof; }
class Faculty {
String name; ArrayList<Course> te; /+ teaching =/
Faculty(String name) { this.name = name; new ArrayList<>(); }
void addTeaching(Course c) { te.add(c); }
ArrayList<Course> getTE() { return te; }
}

~ 5of25

/|

Aggregation: Independent Containees
Shared by Containers (2.2)
@Test

public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student ("Jim");
Course eecs2030 = new Course ("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
.addTeaching(eecs2030) ;
.addTeaching(eecs3311);
.addCourse (eecs2030) ;
.addCourse (eecs3311) ;

nw un '

assertTrue (eecs2030.getProf() == s.getCS().get(0).getProf());
assertTrue (s.getCS() .get (0) .getProf ()
== s.getCS () .get(l) .getProf());
assertTrue (eecs3311 == s.getCS().get(1l));
assertTrue (s.getCS() .get (1) == p.getTE() .get(l));

fof25

/|

The Dot Notation (3.1)

In real life, the relationships among classes are sophisticated.

|

SSONDE

teaching
courses
Student Course * prof Faculty

*

class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cs; Faculty prof; ArrayList<Course> te;

} } }

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class student:

o Writing cs denotes the list of registered courses.
o Writing es[i] (where i is a valid index) navigates to the class

Course, which changes the context to class Course.
Zat25

-
The Dot Notation (3.2) féésésonos

class Course {
String title;
Faculty prof;
} }

|

class Faculty {
String name;
ArrayList<Course> te;

class Student {
String id;
ArrayList<Course> cs;
}

class Student {

/* attributes x*/

/* Get the *x/
String getI
/* Get t

String getCourseTitle(int 1) {
return this.cs.get (i) .title;

student’s id
({ return this.id; }

. PR S e
tle of the ith course */

}

/* Get the instruc of the ith course */
String getInstructorName (int 1) {
return this.cs.get (i) .prof.name;

tor’s

—

N
The Dot Notation (3.3) féésésonos

class Course {
String title;
Faculty prof;
} }

|

class Faculty {
String name;
ArrayList<Course> te;

class Student {
String id;
ArrayList<Course> cs;
}

class Course {
/* attributes #*/
/% Get the course’s title #*/

String getTitle() { return this.title; }

/* Get the instructor’s name =*/
String getInstructorName () {
return this.prof.name;
}
/* Get title of ith teaching course of the instructor =*/
String getCourseTitleOfInstructor(int 1) {
le;

return this.prof.te.get (i) .tit

—

SSONDE

The Dot Notation (3.4) A
class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cs; Faculty prof; ArrayList<Course> te;
} } }

class Faculty {

/* attributes
/* Get instruct
String getName () {

return this. name;

*/
or’s name */

the

course */

}

/+ Get the title of ith ng

String getCourseTitle(int 1)
i).title;

return this.te.get (1

}
e

teachi
{

/|

Composition: Dependent Containees
i
Owned by Containers (1.1)
. parent files .
Directory \ File
1 *
Assumption: Files are not shared among directories.
class Directory {
String name;
File[] files;
, int nof; /% num of files «/
class File { Directory(String name) {
String name; .
File(String name) { this.name = name;
. files = new File[100];
this.name = name; }
} } void addFile(String fileName) {
files[nof] = new File(fileName);

e

nof ++;
}
}

/|

Composition: Dependent Containees
Owned by Containers (1.2.1)

v D
f1.txt
f2.txt

f3.txt

O©CoO~NOOAWN =

@Test

public void testComposition() {

}

Directory dl =
dl.addrFile("f1l.
dl.addFile("f2.
dl.addFile("£3.
assertTrue (

dl.files[0].name.equals ("fl.txt"))

new Directory("D");
txt");
txt");
txt");

e L4: 1st File objectis created and owned exclusively by d1.
No other directories are sharing this File object with d1.

e L5: 2nd File objectis created and owned exclusively by d1.
No other directories are sharing this File object with d1.

e L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

120125

Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

nof

Directory wpn ‘
[1 2 3 4 5 6 7 99
dl.files
/ ‘ ‘ ‘ ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null | null ‘
d1 |
dlAfilW/U/\d{les[Z](

“f1.txt” “f2.txt” “f3.txt”

/|

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.

A copy constructor is a constructor which initializes attributes
from the argument object other.

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */
}
}

Hints:
* The implementation should be consistent with the effect of
copying and pasting a directory.

e Separate copies of files are created.
140125

/|

Composition: Dependent Containees
Owned by Containers (1.4.1)
Version 1: Shallow Copy by copying all attributes using =.

class Directory {
Directory (Directory other) {
/+* value copying for primitive type x*/
other.nof;

eSS copy

other.name; files

Is a shallow copy satisfactory to support composition?

name

i.e., Does it still forbid sharing to occur? [NO]
@Test
void testShallowCopyConstructor() {

Directory dl = new Directory("D");

dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue (dl.files == d2.files); /+ violation of composition +{
d2.files[0].changeName ("f11.txt");

assertFalse (dl.files[0] .name.equals ("fl.txt")); }
laoton

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testshallowCopyConstructor
terminates:

/ Directory
nof

Directory l
0 1 2 3 4 5 6 7 99
dl.files
‘ ‘ s ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘
di
di.files[0] dl.files[1], dl.files[2]
dz.files[0] dz.files[1] dz.files[2]

d2.files

“f11.txt” “f2.txt” “f3.txt”

/|

Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy |class Directory {
Directory(String name) {
this.name = new String (name);
files = new File[100]; }
Directory(Directory other) {
this (other.name);
for(int i = 0; 1 < nof; 1 ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf); } }

class File {
File(File other) {
this.name =
new String(other.name);

void addFile(File f) { ... } }
@Test
void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue (dl.files != d2.files); /+ composition preserved */
d2.files[0].changeName ("f11l.txt");
assertTrue (dl.files[0] .name.equals ("fl.txt")); }

/|

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

nof
o 1
Directory d2. name
[1 2 3 6 -
d2.files
/ I I [nun | nun | oot] nun | pun | nun | nun]
dz

| File | File | File
[name [name [[name

“f11.txt” “f2.txt” “f3.txt”

“p* nof

Directory l
name 0 1 2 3 4 5 6 7 - 99
dl.files
files I I [nun | nun | nun | nun | pun | nun | nun]
d1 nof
dl.files(0] dl.files[1], a1, files(2]
| File | File | File
[name [name [name

“f1.txt” “f2.txt” “f3.txt”

/|

Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class Directory {

Directory(String name) ({
class File { this.name = new String (name);
File(File other) { files = new File[100]; }
this.name Directory(Directory other) {
new String(other.name); this (other.name);
} for(int i = 0; i < nof; 1 ++) {
} File src = other.files[i];
this.addFile(srec); } }
void addFile(File f) { ... } }
@Test
void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue(dl.files != d2.files); /+ composition preserved x/
d2.files[0].changeName ("f11.txt");
assertTrue(dl.files[0] == d2.files[0]); /* composition violated| x/
19.0t25

/|

Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;

int nof;
File[] getFiles() {
/* Your Task x/

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

e

/|

|

Aggregation vs. Composition (1)

SSONDE

Terminology:

o Container object: an object that contains others.
o Containee object: an object that is contained within another.

Aggregation :
o Containees (e.g., Course) may be shared among containers
(e.g., Student, Faculty).

o Containees exist independently without their containers.
o When a container is destroyed, its containees still exist.

Composition :

o Containers (e.g, Directory, Department) own exclusive
access to their containees (e.g., File, Faculty).

o Containees cannot exist without their containers.

o Destroying a container destroys its containeees cascadingly.

210t25

Aggregation vs. Composition (2) LassonDE

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:

o Each workstation owns CPU, monitor, keyword. [compositions]
o All workstations share the same network. [aggregations]

KEYBOARD k | |KEYBOARDI * | |[KEYBOARDI1

MONITORI n MONITOR?2 7 MONITOR3

Index (1) _;HASSONDE
Aggregation vs. Composition: Terminology

Aggregation: Independent Containees
Shared by Containers (1.1)

Aggregation: Independent Containees
Shared by Containers (1.2)

Aggreqgation: Independent Containees

Shared by Containers (2.1)

Aggregation: Independent Containees
Shared by Containers (2.2)
The Dot Notation (3.1)

The Dot Notation (3.2)

The Dot Notation (3.3)
The Dot Notation (3.4)
Composition: Dependent Containees

Owned by Containers (1.1)
e

-
Index (2) é\ssonos

Composition: Dependent Containees
Owned by Containers (1.2.1)

Composition: Dependent Containees
Owned by Containers (1.2.2)

Composition: Dependent Containees
Owned by Containers (1.3)
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)
Composition: Dependent Containees
Owned by Containers (1.5.1)

Composition: Dependent Containees

Owned by Containers (1.5.2)
e

Index (3) ;ASSONDE

Composition: Dependent Containees
Owned by Containers (1.5.3)

Composition: Dependent Containees

Owned by Containers (1.6)

Aggreqation vs. Composition (1)

Aggregation vs. Composition (2)

	Aggregation vs. Composition: Terminology
	Aggregation: Independent Containees Shared by Containers (1.1)
	Aggregation: Independent Containees Shared by Containers (1.2)
	Aggregation: Independent Containees Shared by Containers (2.1)
	Aggregation: Independent Containees Shared by Containers (2.2)
	The Dot Notation (3.1)
	The Dot Notation (3.2)
	The Dot Notation (3.3)
	The Dot Notation (3.4)
	Composition: Dependent Containees Owned by Containers (1.1)
	Composition: Dependent Containees Owned by Containers (1.2.1)
	Composition: Dependent Containees Owned by Containers (1.2.2)
	Composition: Dependent Containees Owned by Containers (1.3)
	Composition: Dependent Containees Owned by Containers (1.4.1)
	Composition: Dependent Containees Owned by Containers (1.4.2)
	Composition: Dependent Containees Owned by Containers (1.5.1)
	Composition: Dependent Containees Owned by Containers (1.5.2)
	Composition: Dependent Containees Owned by Containers (1.5.3)
	Composition: Dependent Containees Owned by Containers (1.6)
	Aggregation vs. Composition (1)
	Aggregation vs. Composition (2)

