
Aggregation and Composition

EECS2030 B: Advanced
Object Oriented Programming

Fall 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Aggregation vs. Composition: Terminology
Container object: an object that contains others.
Containee object: an object that is contained within another.

● e.g., Each course has a faculty member as its instructor.
○ Container : Course Containee: Faculty.

● e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
○ Container : Student, Faculty Containees: Course.

e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
⇒ Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
⇒ Containees may exist independently without their containers.

● e.g., In a file system, each directory contains a list of files.
○ Container : Directory Containees: File.

e.g., Each file has exactly one parent directory.
⇒ A containee may be owned by only one container .
e.g., Deleting a directory also deletes the files it contains.
⇒ Containees may co-exist with their containers.

2 of 25

Aggregation: Independent Containees
Shared by Containers (1.1)

Course Faculty
prof
1

class Course {
String title;
Faculty prof;
Course(String title) {
this.title = title;

}
void setProf(Faculty prof) {
this.prof = prof;

}
Faculty getProf() {
return this.prof;

}
}

class Faculty {
String name;
Faculty(String name) {
this.name = name;

}
void setName(String name) {
this.name = name;

}
String getName() {
return this.name;

}
}

3 of 25

Aggregation: Independent Containees
Shared by Containers (1.2)
@Test
public void testAggregation1() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf(prof);
eecs3311.setProf(prof);
assertTrue(eecs2030.getProf() == eecs3311.getProf());
/* aliasing */
prof.setName("Jeff");
assertTrue(eecs2030.getProf() == eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);
assertTrue(eecs2030.getProf() != eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));
assertTrue(eecs3311.getProf().getName().equals("Jonathan"));

}

4 of 25

Aggregation: Independent Containees
Shared by Containers (2.1)

Student
courses

*
Course Faculty

teaching
* prof

1

class Student {
String id; ArrayList<Course> cs; /* courses */
Student(String id) { this.id = id; cs = new ArrayList<>(); }
void addCourse(Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }

}

class Course { String title; Faculty prof; }

class Faculty {
String name; ArrayList<Course> te; /* teaching */
Faculty(String name) { this.name = name; te = new ArrayList<>(); }
void addTeaching(Course c) { te.add(c); }
ArrayList<Course> getTE() { return te; }

}

5 of 25

Aggregation: Independent Containees
Shared by Containers (2.2)
@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030);
p.addTeaching(eecs3311);
s.addCourse(eecs2030);
s.addCourse(eecs3311);

assertTrue(eecs2030.getProf() == s.getCS().get(0).getProf());
assertTrue(s.getCS().get(0).getProf()

== s.getCS().get(1).getProf());
assertTrue(eecs3311 == s.getCS().get(1));
assertTrue(s.getCS().get(1) == p.getTE().get(1));

}

6 of 25

The Dot Notation (3.1)
In real life, the relationships among classes are sophisticated.

Student
courses

*
Course Faculty

teaching
* prof

1

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class Student:
○ Writing cs denotes the list of registered courses.
○ Writing cs[i] (where i is a valid index) navigates to the class
Course, which changes the context to class Course.

7 of 25

The Dot Notation (3.2)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Student {
. . . /* attributes */
/* Get the student’s id */
String getID() { return this.id; }
/* Get the title of the ith course */
String getCourseTitle(int i) {
return this.cs.get(i).title;

}
/* Get the instructor’s name of the ith course */
String getInstructorName(int i) {
return this.cs.get(i).prof.name;

}
}

8 of 25

The Dot Notation (3.3)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Course {
. . . /* attributes */
/* Get the course’s title */
String getTitle() { return this.title; }
/* Get the instructor’s name */
String getInstructorName() {
return this.prof.name;

}
/* Get title of ith teaching course of the instructor */
String getCourseTitleOfInstructor(int i) {
return this.prof.te.get(i).title;

}
}

9 of 25

The Dot Notation (3.4)

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Faculty {
. . . /* attributes */
/* Get the instructor’s name */
String getName() {
return this.name;

}
/* Get the title of ith teaching course */
String getCourseTitle(int i) {
return this.te.get(i).title;

}
}

10 of 25

Composition: Dependent Containees
Owned by Containers (1.1)

Directory File
files
*

parent
1

Assumption: Files are not shared among directories.

class File {
String name;
File(String name) {
this.name = name;

}
}

class Directory {
String name;
File[] files;
int nof; /* num of files */
Directory(String name) {
this.name = name;
files = new File[100];

}
void addFile(String fileName) {
files[nof] = new File(fileName);
nof ++;

}
}

11 of 25

Composition: Dependent Containees
Owned by Containers (1.2.1)

1 @Test
2 public void testComposition() {
3 Directory d1 = new Directory("D");
4 d1.addFile("f1.txt");
5 d1.addFile("f2.txt");
6 d1.addFile("f3.txt");
7 assertTrue(
8 d1.files[0].name.equals("f1.txt"));
9 }

● L4: 1st File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L5: 2nd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

12 of 25

Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name
“D”

“f1.txt” “f2.txt” “f3.txt”

13 of 25

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.
A copy constructor is a constructor which initializes attributes
from the argument object other.

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */

}
}

Hints:
● The implementation should be consistent with the effect of

copying and pasting a directory.
● Separate copies of files are created.
14 of 25

Composition: Dependent Containees
Owned by Containers (1.4.1)

Version 1: Shallow Copy by copying all attributes using =.
class Directory {
Directory(Directory other) {
/* value copying for primitive type */
nof = other.nof;
/* address copying for reference type */
name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [NO]
@Test
void testShallowCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files == d2.files); /* violation of composition */
d2.files[0].changeName("f11.txt");
assertFalse(d1.files[0].name.equals("f1.txt")); }

15 of 25

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f11.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name

d2.filesd2

d2.files[0] d2.files[1] d2.files[2]

d2.name

16 of 25

Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < nof; i ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf); } }

void addFile(File f) { . . . } }

@Test
void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files != d2.files); /* composition preserved */
d2.files[0].changeName("f11.txt");
assertTrue(d1.files[0].name.equals("f1.txt")); }

17 of 25

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f1.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name
d2.files

d2

d2.files[0] d2.files[1] d2.files[2]

0 1 2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

“D”

File

name

File

name

File

name

“f11.txt” “f2.txt” “f3.txt”

nof

d2.name

18 of 25

Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < nof; i ++) {
File src = other.files[i];
this.addFile(src); } }

void addFile(File f) { . . . } }

@Test
void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files != d2.files); /* composition preserved */
d2.files[0].changeName("f11.txt");
assertTrue(d1.files[0] == d2.files[0]); /* composition violated! */ }

19 of 25

Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;
int nof;
File[] getFiles() {
/* Your Task */

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

20 of 25

Aggregation vs. Composition (1)

Terminology:
○ Container object: an object that contains others.
○ Containee object: an object that is contained within another.

Aggregation :
○ Containees (e.g., Course) may be shared among containers

(e.g., Student, Faculty).
○ Containees exist independently without their containers.
○ When a container is destroyed, its containees still exist.

Composition :
○ Containers (e.g, Directory, Department) own exclusive

access to their containees (e.g., File, Faculty).
○ Containees cannot exist without their containers.
○ Destroying a container destroys its containeees cascadingly .

21 of 25

Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:
○ Each workstation owns CPU, monitor, keyword. [compositions]
○ All workstations share the same network. [aggregations]

22 of 25

Index (1)
Aggregation vs. Composition: Terminology
Aggregation: Independent Containees
Shared by Containers (1.1)
Aggregation: Independent Containees
Shared by Containers (1.2)
Aggregation: Independent Containees
Shared by Containers (2.1)
Aggregation: Independent Containees
Shared by Containers (2.2)
The Dot Notation (3.1)
The Dot Notation (3.2)
The Dot Notation (3.3)
The Dot Notation (3.4)
Composition: Dependent Containees
Owned by Containers (1.1)

23 of 25

Index (2)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
Composition: Dependent Containees
Owned by Containers (1.3)
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)
Composition: Dependent Containees
Owned by Containers (1.5.1)
Composition: Dependent Containees
Owned by Containers (1.5.2)

24 of 25

Index (3)
Composition: Dependent Containees
Owned by Containers (1.5.3)

Composition: Dependent Containees
Owned by Containers (1.6)

Aggregation vs. Composition (1)

Aggregation vs. Composition (2)

25 of 25

	Aggregation vs. Composition: Terminology
	Aggregation: Independent Containees Shared by Containers (1.1)
	Aggregation: Independent Containees Shared by Containers (1.2)
	Aggregation: Independent Containees Shared by Containers (2.1)
	Aggregation: Independent Containees Shared by Containers (2.2)
	The Dot Notation (3.1)
	The Dot Notation (3.2)
	The Dot Notation (3.3)
	The Dot Notation (3.4)
	Composition: Dependent Containees Owned by Containers (1.1)
	Composition: Dependent Containees Owned by Containers (1.2.1)
	Composition: Dependent Containees Owned by Containers (1.2.2)
	Composition: Dependent Containees Owned by Containers (1.3)
	Composition: Dependent Containees Owned by Containers (1.4.1)
	Composition: Dependent Containees Owned by Containers (1.4.2)
	Composition: Dependent Containees Owned by Containers (1.5.1)
	Composition: Dependent Containees Owned by Containers (1.5.2)
	Composition: Dependent Containees Owned by Containers (1.5.3)
	Composition: Dependent Containees Owned by Containers (1.6)
	Aggregation vs. Composition (1)
	Aggregation vs. Composition (2)

