Recursion

EECS2030 B: Advanced
Object Oriented Programming Fall 2019

CHEN-WEI WANG

Beyond this lecture ...

- Fantastic resources for sharpening your recursive skills for the exam:
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
- The best approach to learning about recursion is via a functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

Recursion: Principle

- Recursion is useful in expressing solutions to problems that can be recursively defined:
- Base Cases: Small problem instances immediately solvable.
- Recursive Cases:
- Large problem instances not immediately solvable.
- Solve by reusing solution(s) to strictly smaller problem instances.
- Similar idea learnt in high school: [mathematical induction]
- Recursion can be easily expressed programmatically in Java:

```
m (i) {
    if(i == ...) { /* base case: do something directly */ }
    else {
        m(j);/* recursive call with strictly smaller value */
    }
}
```

- In the body of a method m, there might be a call or calls to m itself.
- Each such self-call is said to be a recursive call.
${ }_{\circ}^{\circ}$ In Inside the execution of $m(i)$, a recursive call $m(j)$ must be that $j<i$.

Tracing Method Calls via a Stack

- When a method is called, it is activated (and becomes active) and pushed onto the stack.
- When the body of a method makes a (helper) method call, that (helper) method is activated (and becomes active) and pushed onto the stack.
\Rightarrow The stack contains activation records of all active methods.
- Top of stack denotes the current point of execution.
- Remaining parts of stack are (temporarily) suspended.
- When entire body of a method is executed, stack is popped.
\Rightarrow The current point of execution is returned to the new top of stack (which was suspended and just became active).
- Execution terminates when the stack becomes empty .

Recursion: Factorial (1)

- Recall the formal definition of calculating the n factorial:

$$
n!=\left\{\begin{array}{lr}
1 & \text { if } n=0 \\
n \cdot(n-1) \cdot(n-2) \cdots \cdot 3 \cdot 2 \cdot 1 & \text { if } n \geq 1
\end{array}\right.
$$

- How do you define the same problem recursively?

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { if } n \geq 1\end{cases}
$$

- To solve n !, we combine n and the solution to $(n-1)$!.

```
int factorial (int n) {
    int result;
    if(n == 0) { /* base case */ result = 1; }
    else { /* recursive case */
        result = n * factorial (n - 1);
    }
    return result;
}
```


Common Errors of Recursive Methods

- Missing Base Case(s).

```
int factorial (int n)
    return n * factorial (n - 1);
}
```

Base case(s) are meant as points of stopping growing the runtime stack.

- Recursive Calls on Non-Smaller Problem Instances.

```
int factorial (int n) {
    if(n == 0) { / * base case */ return 1; }
    else { /* recursive case */ return n * factorial (n); }
}
```

Recursive calls on strictly smaller problem instances are meant for moving gradually towards the base case(s).

- In both cases, a StackOverflowException will be thrown. 6 of 52

Recursion: Factorial (2)

Recursion: Factorial (3)

- When running factorial(5), a recursive call factorial(4) is made. Call to factorial(5) suspended until factorial(4) returns a value.
- When running factorial(4), a recursive call factorial(3) is made. Call to factorial(4) suspended until factorial(3) returns a value.
- factorial(0) returns 1 back to suspended call factorial(1).
- factorial(1) receives 1 from factorial(0), multiplies 1 to it, and returns 1 back to the suspended call factorial(2).
- factorial(2) receives 1 from factorial(1), multiplies 2 to it, and returns 2 back to the suspended call factorial(3).
- factorial(3) receives 2 from factorial(1), multiplies 3 to it, and returns 6 back to the suspended call factorial(4).
- factorial(4) receives 6 from factorial(3), multiplies 4 to it, and returns 24 back to the suspended call factorial(5).
- factorial(5) receives 24 from factorial(4), multiplies 5 to it, and returns 120 as the result.

Recursion: Factorial (4)

- When the execution of a method (e.g., factorial(5)) leads to a nested method call (e.g., factorial(4)):
- The execution of the current method (i.e., factorial(5)) is suspended, and a structure known as an activation record or activation frame is created to store information about the progress of that method (e.g., values of parameters and local variables).
- The nested methods (e.g., factorial(4)) may call other nested methods (factorial(3)).
- When all nested methods complete, the activation frame of the latest suspended method is re-activated, then continue its execution.
- What kind of data structure does this activation-suspension process correspond to?
[LIFO Stack]

Recursion: Fibonacci (1)

Recall the formal definition of calculating the $n_{t h}$ number in a Fibonacci series (denoted as F_{n}), which is already itself recursive:

$$
F_{n}= \begin{cases}1 & \text { if } n=1 \\ 1 & \text { if } n=2 \\ F_{n-1}+F_{n-2} & \text { if } n>2\end{cases}
$$

```
int fib (int n) {
    int result;
    if(n == 1) { /* base case */ result = 1; }
    else if(n == 2) { /* base case */ result = 1; }
    else { /* recursive case */
        result = fib (n-1) + fib (n - 2);
    }
    return result;
}
```



```
        {fib(5) = fib(4) + fib(3); push(fib(5)); suspended: \langlefib(5)\rangle; active: fib(4)}
        fib(4) + fib(3)
    = {fib(4) = fib(3) + fib(2); suspended: {fib(4), fib(5)\rangle; active: fib(3)}
        (fib(3) +fib(2)) +fib(3)
    = {fib(3)= fib(2)}+\textrm{fib}(1); suspended: \langlefib(3), fib(4), fib(5)\rangle; active: fib(2)
        (( fib(2) + fib(1)) +fib(2)) + fib(3)
    = {fib(2) returns 1; suspended: {fib(3), fib(4), fib(5)\rangle; active: fib(1)}
        ((1+fib(1) ) +fib(2))+fib(3)
    = {fib(1) returns 1; suspended: {fib(3), fib(4), fib(5)\rangle; active: fib(3)}
        ((1+1) + fib(2))+fib(3)
    = {fib(3) returns 1 + 1; pop(); suspended: \langlefib(4), fib(5)\rangle; active: fib(2)}
        (2+fib(2) ) +fib(3)
    = {fib(2) returns 1; suspended: {fib(4), fib(5)\rangle; active: fib(4)}
    (2+1) +fib(3)
    = {fib(4) returns 2 + 1; pop(); suspended: {fib(5)\rangle; active: fib(3)}
    3+fib(3)
    = {fib(3) = fib(2) + fib(1); suspended: \langlefib(3),fib(5)\rangle; active: fib(2)}
    3+(fib(2) +fib(1))
    = {fib(2) returns 1; suspended: {fib(3), fib(5)\rangle; active: fib(1)}
    3+(1+fib(1) )
    = {fib(1) returns 1; suspended: {fib(3), fib(5)\rangle; active: fib(3)}
    3+(1+1)
    = {fib(3) returns 1 + 1; pop() ; suspended: \langlefib(5)\rangle; active: fib(5)}
    3+2
    = {fib(5) returns 3 + 2; suspended: \langle\rangle}
```


Java Library: String

```
public class StringTester {
    public static void main(String[] args) {
        String s = "abcd";
        System.out.println(s.isEmpty()) ; /* false */
        /* Characters in index range [0, 0) */
        String t0 = s.substring(0, 0);
        System.out.println(t0); /* "'" */
    /* Characters in index range [0, 4) */
    String tl = s.substring(0, 4);
    System.out.println(tI); / * "abcd" */
    /* Characters in index range [1, 3) */
    String t2 = s.substring(1, 3);
    System.out.println(t2); /* "bc" */
    String t3 = s.substring(0, 2) + s.substring(2, 4);
    System.out.println(s.equals(t3)); /* true */
    for(int i = 0; i < s.length(); i ++) {
        System.out.print(s.charAt (i));
    }
    System.out.println();
    }
}
```


Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards and backwards. Write a method that takes a string and determines whether or not it is a palindrome.

```
System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false
```

Base Case 1: Empty string \longrightarrow Return true immediately. Base Case 2: String of length $1 \longrightarrow$ Return true immediately. Recursive Case: String of length $\geq 2 \longrightarrow$

- 1st and last characters match, and
- the rest (i.e., middle) of the string is a palindrome.

Recursion: Palindrome (2)

```
boolean isPalindrome (String word) {
    if(word.length() == 0 || word.length() == 1) {
        /* base case */
        return true;
    }
    else
        /* recursive case */
        char firstChar = word.charAt(0);
        char lastChar = word.charAt(word.length() - 1);
        String middle = word.substring(1, word.length() - 1);
        return
            firstChar == lastChar
            /* See the API of java.lang.String.substring. */
            && isPalindrome (middle);
    }
}
```


Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a method that takes a string and returns its reverse.

```
System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf("ab")); "ba"
System.out.println(reverseOf("abc")); "cba"
System.out.println(reverseof("abcd")); "dcba"
```

Base Case 1: Empty string \longrightarrow Return empty string.
Base Case 2: String of length $1 \longrightarrow$ Return that string.
Recursive Case: String of length $\geq 2 \longrightarrow$

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character) Return the concatenation of 2) and 1).

Recursion: Reverse of a String (2)

```
String reverseOf (String s) {
    if(s.isEmpty()) { / * base case 1 */
        return "";
    }
    else if(s.length() == 1) { / * base case 2 */
        return s;
    }
    else { /* recursive case */
        String tail = s.substring(1, s.length());
        String reverseOfTail = reverseOf (tail);
        char head = s.charAt (0);
        return reverseOfTail + head;
    }
}
```


Recursion: Number of Occurrences (1)

Problem: Write a method that takes a string s and a character c, then count the number of occurrences of c in s.

```
System.out.println(occurrencesOf("", 'a'));
System.out.println(occurrencesOf("a", 'a'));
System.out.println(occurrencesOf("b", 'a'));
System.out.println(occurrencesOf("baaba", 'a'));
System.out.println(occurrencesOf("baaba", 'b'));
System.out.println(occurrencesOf("baaba", 'c'));
```

Base Case: Empty string \longrightarrow Return 0 .
Recursive Case: String of length $\geq 1 \longrightarrow$

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first character)
If head is equal to c, return $1+2$).
If head is not equal to c, return $0+2$).

Recursion: Number of Occurrences (2)

```
int occurrencesOf (String s, char c) {
    if(s.isEmpty()) {
        /* Base Case */
        return 0;
    }
    else {
        /* Recursive Case */
        char head = s.charAt (0);
        String tail = s.substring(1, s.length());
        if(head == c) {
            return 1 + occurrencesOf (tail, c);
            }
            else {
                return 0 + occurrencesOf (tail, c);
            }
    }
}
```


Making Recursive Calls on an Array

- Recursive calls denote solutions to smaller sub-problems.
- Naively, explicitly create a new, smaller array:

```
void m(int[] a) {
    if(a.length == 0) { /* base case */ }
    else if(a.length == 1) { /* base case */ }
    else {
        int[] sub = new int[a.length - 1];
        for(int i = 1; i < a.length; i ++) { sub[0] = a[i - 1]; }
        m(sub) } }
```

- For efficiency, we pass the reference of the same array and specify the range of indices to be considered:

```
void m(int[] a, int from, int to) {
    if(from > to) { /* base case */ }
    else if(from == to) { /* base case */ }
    else {m(a, from + 1, to) } }
```

- m(a, 0, a.length - 1)
[Initial call; entire array]
- m(a, 1, a.length - 1) [1st r.c. on array of size a.length - 1]

Recursion: All Positive (1)

Problem: Determine if an array of integers are all positive.

```
System.out.println(allPositive({}));
System.out.println(allPositive({1, 2, 3, 4, 5}));
System.out.println(allPositive({1, 2, -3, 4, 5}));
```

```
* false */
```

Base Case: Empty array \longrightarrow Return true immediately.
The base case is true \because we can not find a counter-example (i.e., a number not positive) from an empty array.

Recursive Case: Non-Empty array \longrightarrow

- 1st element positive, and
- the rest of the array is all positive .

Exercise: Write a method boolean somePostive (int []
a) which recursively returns true if there is some positive number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]
\because No witness (i.e., a positive number) from an empty array

Recursion: All Positive (2)

```
boolean allPositive(int[] a) {
    return allPositiveHelper (a, 0, a.length - 1);
}
boolean allPositiveHelper (int[] a, int from, int to) {
    if (from > to) { /* base case 1: empty range */
        return true;
    }
    else if(from == to) { /* base case 2: range of one element */
        return a[from] > 0;
    }
    else { /* recursive case */
        return a[from] > 0 && allPositiveHelper (a, from + I, to);
    }
}
```


Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a non-descending order.

```
System.out.println(isSorted({})); true
System.out.println(isSorted({1, 2, 2, 3, 4})); true
System.out.println(isSorted({1, 2, 2, 1, 3})); false
```

Base Case: Empty array \longrightarrow Return true immediately.
The base case is true \because we can not find a counter-example (i.e., a pair of adjacent numbers that are not sorted in a non-descending order) from an empty array.
Recursive Case: Non-Empty array \longrightarrow

- 1st and 2nd elements are sorted in a non-descending order, and
- the rest of the array, starting from the 2nd element, are sorted in a non-descending positive .

Recursion: Is an Array Sorted? (2)

```
boolean isSorted(int[] a) {
    return isSortedHelper (a, 0, a.length - 1);
}
boolean isSortedHelper (int[] a, int from, int to) {
    if (from > to) { /* base case 1: empty range */
        return true;
    }
    else if(from == to) { / * base case 2: range of one element */
        return true;
    }
    else {
        return a[from] <= a[from + 1]
            && isSortedHelper (a, from + 1, to);
    }
}
```


Recursive Methods: Correctness Proofs

```
boolean allPositive(int[] a) { return allPosH (a, 0, a.length - 1);|}
boolean allPosH (int[] a, int from, int to) {
    if (from > to) { return true; }
    else if(from == to) { return a[from] > 0; }
    else { return a[from] > 0 && allPosH (a, from + 1, to); } }
```

- Via mathematical induction, prove that allPosh is correct: Base Cases
- In an empty array, there is no non-positive number \therefore result is true. [L3]
- In an array of size 1, the only one elements determines the result. [L4] Inductive Cases
- Inductive Hypothesis: allPosH (a, from + 1, to) returns true if a[from + 1], a[from + 2], ..., a[to] are all positive; false otherwise.
- allPosH (a, from, to) should return true if: 1) a[from] is positive; and 2) a[from +1], $a[f r o m+2], \ldots, a[t o]$ are all positive.
- By I.H. , result is $a[$ from $]>0 \wedge$ allPosH (a, from +1 , to).
- allpositive (a) is correct by invoking
allposH (a, 0, a.length - 1), examining the entire array.

Recursion: Binary Search (1)

- Searching Problem

Input: A number a and a sorted list of n numbers
$\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$
Output: Whether or not a exists in the input list

- An Efficient Recursive Solution

Base Case: Empty list \longrightarrow False.
Recursive Case: List of size $\geq 1 \longrightarrow$

- Compare the middle element against a.
- All elements to the left of middle are $\leq a$
- All elements to the right of middle are $\geq a$
- If the middlle element is equal to $a \longrightarrow$ True.
- If the middle element is not equal to a :
- If $a<$ middle, recursively find a on the left half.
- If $a>$ middle, recursively find a on the right half.

Recursion: Binary Search (2)

```
boolean binarySearch(int[] sorted, int key) {
    return binarysearchHelper (sorted, 0, sorted.length - 1, key);
}
boolean binarySearchHelper (int[] sorted, int from, int to, int key)
    if (from > to) { / * base case 1: empty range */
        return false; }
    else if(from == to) { /* base case 2: range of one element */
        return sorted[from] == key; }
    else {
        int middle = (from + to) / 2;
        int middleValue = sorted[middle];
        if(key < middleValue) {
            return binarySearchHelper (sorted, from, middle - 1, key);
        }
        else if (key > middleValue) {
            return binarySearchHelper (sorted, middle + 1, to, key);
        }
        else { return true; }
    }
}
```

26 of 52

Running Time: Binary Search (1)

We use $T(n)$ to denote the running time function of a binary search, where n is the size of the input array.

$$
\left\{\begin{array}{l}
T(0)=1 \\
T(1)=1 \\
T(n)=T\left(\frac{n}{2}\right)+1 \text { where } n \geq 2
\end{array}\right.
$$

To solve this recurrence relation, we study the pattern of $T(n)$ and observe how it reaches the base case(s).

Running Time: Binary Search (2)

Without loss of generality, assume $n=2^{i}$ for some non-negative i.

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+1 \\
& =(\underbrace{T\left(\frac{n}{4}\right)+1}_{T\left(\frac{n}{2}\right)})+\underbrace{1}_{1 \text { time }} \\
& =(\underbrace{\left(T\left(\frac{n}{8}\right)+1\right.}_{T\left(\frac{n}{4}\right)})+\underbrace{1)+1}_{2 \text { times }} \\
& =\ldots \\
& =(((\underbrace{1}_{T\left(\frac{n}{2 \log n}\right)=T(1)})+\underbrace{1) \ldots)+1}_{\log n \text { times }}
\end{aligned}
$$

$\therefore T(n)$ is $O(\log n)$

Tower of Hanoi: Specification

- Given: A tower of 8 disks, initially stacked in decreasing size on one of 3 pegs

- Rules:
- Move only one disk at a time
- Never move a larger disk onto a smaller one
- Problem: Transfer the entire tower to one of the other pegs.

Tower of Hanoi: A Recursive Solution

The general, recursive solution requires 3 steps:

1. Transfer the $n-1$ smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the $n-1$ disks back onto the largest disk.

Tower of Hanoi in Java (1)

```
void towerOfHanoi(String[] disks)
    tohHelper (disks, 0, disks.length - 1, 1, 3);
}
void tohHelper(String[] disks, int from, int to, int ori, int des){
    if(from > to) { }
    else if(from == to) {
        print("move " + disks[to] + " from " + ori + " to " + des);
    }
    else {
        int intermediate = 6 - ori - des;
            tohHelper (disks, from, to - 1, ori, intermediate);
        print("move " + disks[to] + " from " + ori + " to " + des);
        tohHelper (disks, from, to - 1, intermediate, des);
    }
}
```

- tohHelper(disks, from, to, ori, des) moves disks $\{$ disks[from], disks[from + 1],..., disks[to]\} from peg ori to peg des.
- Peg id's are 1,2 , and $3 \Rightarrow$ The intermediate one is 6 - ori - des.

Tower of Hanoi in Java (2)

Say $d s$ (disks) is $\{A, B, C\}$, where $A<B<C$.

Running Time: Tower of Hanoi (1)

- Generalize the problem by considering n disks.
- Let $T(n)$ denote the number of moves required to to transfer n disks from one to another under the rules.
- Recall the general solution pattern:

1. Transfer the $n-1$ smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the $n-1$ disks back onto the largest disk.

- We end up with the following recurrence relation that allows us to compute T_{n} for any n we like:

$$
\left\{\begin{array}{l}
T(1)=1 \\
T(n)=2 \times T(n-1)+1 \quad \text { where } n>0
\end{array}\right.
$$

- To solve this recurrence relation, we study the pattern of $T(n)$ and observe how it reaches the base case(s).

Running Time: Tower of Hanoi (2)

$$
\begin{aligned}
T(n) & =2 \times T(n-1)+1 \\
& =2 \times(\underbrace{2 \times T(n-2)+1}_{T(n-1)})+1 \\
& =2 \times(\underbrace{2 \times \underbrace{2 \times 1}_{T(n-3)})+1}_{T(n-2)})+1 \\
& =\ldots
\end{aligned}
$$

$$
\begin{aligned}
& =2 \times(2 \times(2 \times(\underbrace{\cdots(2)}_{T(n-3)}+\overbrace{2 \times(2 \times T(1)+1}^{T})+\ldots)+1)+1)+1 \\
& =2^{n-1}+(n-1)
\end{aligned}
$$

$\therefore T(n)$ is $O\left(2^{n}\right)$

Recursion: Merge Sort

- Sorting Problem

Input: A list of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output: A permutation (reordering) $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ of the input list such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$

- Recursive Solution

Base Case 1: Empty list \longrightarrow Automatically sorted.
Base Case 2: List of size $1 \longrightarrow$ Automatically sorted.
Recursive Case: List of size $\geq 2 \longrightarrow$

- Split the list into two (unsorted) halves: L and R;
- Recursively sort L and R : sorted L and sortedR;
- Return the merge of sortedL and sortedR.

Recursion: Merge Sort in Java (1)

```
/* Assumption: L and R are both already sorted. */
private List<Integer> merge(List<Integer> L, List<Integer> R) {
    List<Integer> merge = new ArrayList<>();
    if(L.isEmpty()||R.isEmpty()) { merge.addAll(L); merge.addAll(R);
    else {
        int i = 0;
        int j = 0;
        while(i < L.size() && j < R.size()) {
            if(L.get(i) <= R.get(j) ) { merge.add(L.get(i)); i ++; }
            else { merge.add(R.get(j)); j ++; }
        }
        /* If i >= L.size(), then this for loop is skipped. */
        for(int k = i; k < L.size(); k ++) { merge.add(L.get(k)); }
        /* If j >= R.size(), then this for loop is skipped. */
        for(int k = j; k < R.size(); k ++) { merge.add(R.get(k)); }
    }
    return merge;
}
```

 RT(merge)?

Recursion: Merge Sort in Java (2)

```
public List<Integer> sort (List<Integer> list) {
    List<Integer> sortedList;
    if(list.size() == 0) { sortedList = new ArrayList<>(); }
    else if(list.size() == 1) {
        sortedList = new ArrayList<>();
    sortedList.add(list.get(0));
    }
    else {
        int middle = list.size() / 2;
        List<Integer> left = list.subList(0, middle);
        List<Integer> right = list.subList(middle, list.size());
        List<Integer> sortedLeft = sort (left);
        List<Integer> sortedRight = sort (right);
        sortedList = merge (sortedLeft, sortedRight);
    }
    return sortedList;
}
```

RT(sort) $=R T$ (merge) $\times \#$ splits until size 0 or 1

Recursion: Merge Sort Example (1)

(1) Start with input list of size 8

(2) Split and recur on L of size 4

(3) Split and recur on L of size 2

(4) Split and recur on L of size 1, return

39 of 52

Recursion: Merge Sort Example (2)

(5) Recur on R of size 1 and return

(6) Merge sorted L and R of sizes 1

(8) Recur on R of size 2

Recursion: Merge Sort Example (3)

(9) Split and recur on L of size 1, return

(11) Merge sorted L and R of sizes 1, return

(10) Recur on R of size 1, return

(12) Merge sorted L and R of sizes 2

Recursion: Merge Sort Example (4)

(13) Recur on R of size 4

(14) Return a sorted list of size 4

(15) Merge sorted L and R of sizes 4

(16) Return a sorted list of size 8

Recursion: Merge Sort Example (5)

(1) Recursion trees of unsorted lists

(2) Recursion trees of sorted lists

Recursion: Merge Sort Running Time (1)

Base Case 1: Empty list \longrightarrow Automatically sorted.
Base Case 2: List of size $1 \longrightarrow$ Automatically sorted.
Recursive Case: List of size $\geq 2 \longrightarrow$

- Split the list into two (unsorted) halves: L and R;
- Recursively sort L and R : sorted L and sortedR; How many times to split until L and R have size 0 or 1? [$O(\log n)$]
- Return the merge of sortedL and sortedR.

```
    RT
=(RT each RC)}\times(#RCS
=(RT merging sortedL and sortedR) }\times\mathrm{ (# splits until bases)
=n\cdotlog}
```


Recursion: Merge Sort Running Time (2)

Recursion: Merge Sort Running Time (3)

We use $T(n)$ to denote the running time function of a merge sort, where n is the size of the input list.

$$
\left\{\begin{array}{l}
T(0)=1 \\
T(1)=1 \\
T(n)=2 \cdot T\left(\frac{n}{2}\right)+n \text { where } n \geq 2
\end{array}\right.
$$

To solve this recurrence relation, we study the pattern of $T(n)$ and observe how it reaches the base case(s).

Recursion: Merge Sort Running Time (4)

Without loss of generality, assume $n=2^{i}$ for some non-negative i.

$$
\begin{aligned}
T(n) & =\underbrace{2 \times T\left(\frac{n}{2}\right)+n}_{2 \text { terms }} \\
& =\underbrace{2 \times(2 \times T\left(\frac{n}{4}\right)+\underbrace{\left.\frac{n}{2}\right)+n}_{\text {terms }}}_{2 \text { terms }} \\
& =\underbrace{2 \times\left(2 \times\left(2 \times T\left(\frac{n}{8}\right)+\frac{n}{4}\right)+\frac{n}{2}\right)+n}_{3 \text { terms }} \\
& =\cdots \underbrace{2 \times(2 \times(2 \times \cdots \times(2 \times T\left(\frac{n}{2^{\log n}}\right)+\underbrace{\frac{n}{\operatorname{logn}} \text { terms }}_{2^{\log n-1}}}_{\operatorname{logn} \text { terms }} \\
& =\underbrace{\left.2 \times \frac{n}{2}\right)+n}_{2^{\operatorname{logn}}+\left(2 \cdot \frac{n}{2}+2^{2} \cdot \frac{n}{4}+\cdots+2^{\log n-1} \cdot \frac{n}{2^{\log n-1}}+n\right)}
\end{aligned}
$$

$\therefore T(n)$ is $O(n \cdot \log n)$

Beyond this lecture ...

- Notes on Recursion:
http://www.eecs.yorku.ca/~jackie/teaching/ lectures/2019/F/EECS2030/slides/EECS2030_F19 Notes_Recursion.pdf
- APl for String: https://docs.oracle.com/javase/8/docs/api/ java/lang/String.html
- Fantastic resources for sharpening your recursive skills for the exam:
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
- The best approach to learning about recursion is via a functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/ 48 of 52

Index (1)

Beyond this lecture...
Recursion: Principle
Tracing Method Calls via a Stack
Recursion: Factorial (1)
Common Errors of Recursive Methods
Recursion: Factorial (2)
Recursion: Factorial (3)
Recursion: Factorial (4)
Recursion: Fibonacci (1)
Recursion: Fibonacci (2)
Java Library: String
Recursion: Palindrome (1)
Recursion: Palindrome (2)
Recursion: Reverse of a String (1)
450102

Index（2）

Recursion：Reverse of a String（2）
Recursion：Number of Occurrences（1）
Recursion：Number of Occurrences（2）
Making Recursive Calls on an Array
Recursion：All Positive（1）
Recursion：All Positive（2）
Recursion：Is an Array Sorted？（1）
Recursion：Is an Array Sorted？（2）
Recursive Methods：Correctness Proofs
Recursion：Binary Search（1）
Recursion：Binary Search（2）
Running Time：Binary Search（1）
Running Time：Binary Search（2）
Tower of Hanoi：Specification
500リース

Index (3)

Tower of Hanoi: A Recursive Solution
Tower of Hanoi in Java (1)
Tower of Hanoi in Java (2)
Tower of Hanoi in Java (3)
Running Time: Tower of Hanoi (1)
Running Time: Tower of Hanoi (2)
Recursion: Merge Sort
Recursion: Merge Sort in Java (1)
Recursion: Merge Sort in Java (2)
Recursion: Merge Sort Example (1)
Recursion: Merge Sort Example (2)
Recursion: Merge Sort Example (3)
Recursion: Merge Sort Example (4)
Recursion: Merge Sort Example (5)

Index (4)

Recursion: Merge Sort Running Time (2)

Recursion: Merge Sort Running Time (3)

Recursion: Merge Sort Running Time (4)

Beyond this lecture ...

