Contents

EECS2030 Fall 2019
Additional Notes
Static Types, Expectations, Dynamic Types, and Type Casts

CHEN-WEI WANG

1 Inheritance Hierarchy

2 Static Types Define Expected Usages

3 Dynamic Types

4 Temporarily Changing the Static Type via a Cast

4.1 Does a Cast Compile?

4.2 Does a (Compilable) Cast Cause a ClassCastException at Runtime?

1 Inheritance Hierarchy

Consider the following definitions of Java classes

class A { class B extends A { class C extends A { class D extends C {
int a; int b; int c; int d;
AQ {1} BO {} cO {1 DO {}
} 3 } }
which form the class hierarchy as shown in Figure 1:
A |1nt a
int b|] B C |1int c
A
D [int d

Figure 1: Class Inheritance Hierarchy

2 Static Types Define Expected Usages

Consider the following line of Java code, declaring class C as the type of a reference variable oc:

C oc;

After the above declaration, we say that C is the static type of variable oc. The static type of
variable oc constrains that, at runtime, oc stores the address of some C object. Consequently,
only attributes and methods that are defined and inherited in class C are expected to be called
via oc as the context object:

® 0C.a
® 0C.C

Recall that a class only inherits code (i.e., attributes and methods) from its ancestor classes.
Therefore, it is not expected to call oc.b (. class B is not an ancestor class of C), and not
expected to call oc.d (. class D is actually a child class of C).

From the inheritance hierarchy in Figure 1 (page 1), we have the following expectations for
variables of the various types:

| DECLARATION [[EXPECTATIONS |

] A oa; H oa.a \
ob.a
B ob; ob.b
C oc: oc.a
oc.cC
od.a
D od; od.c
od.d

Figure 2: Declarations of Static Types and Expectations

3 Dynamic Types

Because a reference variable’s static type defines its expected usages at runtime, that variable’s
dynamic type must be consistent with the expectations. As an example, the following
assignments are not valid:

C ocl
C oc2

new AQ);
new BQ);

Both of the above assignments are not valid:

e For Line 1, if we allowed ocl to point to an A object (which only possesses the attribute
a), then one of the expectations of oc, which is oc.c (see Figure 2), would not be met.

e Similarly, for Line 2, if we allowed oc2 to point to a B object (which possesses attributes
a and b), then one of the expectations of oc, which is oc.c (see Figure 2), would not be
met.

Instead, the following assignments are valid:

C oc3
C oc4

new CQ);
new DQ);

In the above assignments, the expectations of static type C can be met by dynamic types C and
D, which are both descendant classes of C.

4 Temporarily Changing the Static Type via a Cast

Always remember:
e To judge if a line of Java code compiles or not, you only need to consider the static types
of the variables involved (Section 4.1).

e To judge if a line of compilable Java code causes an exception at runtime, you need to
then consider the dynamic types of the variable involved (Section 4.2).

4.1 Does a Cast Compile?

Principles:

— Casting a reference variable temporarily changes its static type, and thus changes the
expectations of that variable.

— A reference variable may be cast to any class that is either a descendant or an ancestor
class of that variable’s declared static type.

— Casting a reference variable to a descendant class of its widens that variable’s expec-
tations (*. a class’ descendant class contains at least as many attributes and methods
as does that class).

— Symmetrically, casting a reference variable to a ancestor class of its narrows that
variable’s expectations.

For example, given a variable oc whose declared static type is C, the following casts are
compilable:

1. @) oc
Since D is a descendant class of oc’s static type (C), performing this cast widens the
expectations: we can now expect ((D) oc).d, whereas oc.d cannot be expected.

2. (O oc
Since C is both a descendant and an ancestor class of oc’s static type (C), performing
this cast results in the same expectations: ((C) oc).a and ((C) oc).c.

3. (A) oc
Since A is an ancestor class of oc’s static type (C), performing this cast narrows
the expectations: we can no longer expect ((A) oc).c, but only ((A) oc).a can be
expected.

On the other hand, the following cast does not compile:

— (B) oc
This cast does not compile because B is neither a descendant nor an ancestor class of
oc’s static type (C).

The above example is summarized in Figure 3.

Up-Casting to
Ancestor Classes

e m——-— - narrows expectations.
4 =<
/ , 7’
l A |1nt af¢
\ ~ -~

\/\ - \ \\\ Static Type of oc is C

: \ :
int b B /1 C |int c?
Il A \
/ !
‘\ D int d /
\ o ——_
~Se__-" Down-Casting to

Descendants Classes
widens expectations.

Figure 3: Compilable Casts Given oc’s Static Type is C

4.2 Does a (Compilable) Cast Cause a ClassCastException at Runtime?

Consider the following line of Java code

A oa = new CQ;

which declares variable oa’s static type as A and initializes its dynamic type as C. According
to the principle in Section 4.1, we know that the following casts (where each class being cast
into is either a descendant class or an ancestor class of oa’s static type, i.e., A) are compilable:

e (A) oa
e (B) oa
e (O) oa
e (D) oa

However, a cast being compilable does not mean that it will not result in error at
runtime. To determine if there will be a runtime error or not, we need to also consider oa’s
dynamic type (i.e., C):

e (A) oa

You can use a C object as if it were an A object. This is because A only expects a, whereas
C provides a and c.

e (B) oa

You cannot use a C object as if it were a B object. This is because B expects both a and
b, but attribute b is not declare in class C.

e (O oa

You can use a C object as if it were a C object. This is because C has the same expectations
as itself.

e (D) oa

You cannot use a C object as if it were a D object. This is because D expects both a, c,
and d, but attribute d is not declare in class C.

The above example is summarized in Figure 4.

/ ’

Static Type of oais A _~ A |int a!

- ~
- / \ \
/ \

\int b| B C |int ¢ ', Dynamic Type of oais C

Down-Casting to
Descendants Classes of
oa’s Dynamic Type
causes ClassCastException
because the widened expectation
(e.g., in D) cannot be met.

Figure 4: Compilable but Exceptional Casts Given oa’s Static Type is A and Dynamic Types is C

Again, at runtime there is a ClassCastException when the dynamic type cannot meet
the expectations of the reference variable, determined by either its declared static type or

temporary static type resulted from a .

	Inheritance Hierarchy
	Static Types Define Expected Usages
	Dynamic Types
	Temporarily Changing the Static Type via a Cast
	Does a Cast Compile?
	Does a (Compilable) Cast Cause a ClassCastException at Runtime?

