\qquad
Advanced OOP
Exam Practice Written Questions
Student ID

1 Written Exercises

1. Consider the following classes of functions:

- $O(n)$
- $O(\log (n))$
- $O\left(n^{2}\right)$
- $O(1)$
- $O\left(2^{n}\right)$
- $O\left(n^{3}\right)$
- $O(n \cdot \log (n))$

Say each of the above functions maps from input size n to the approximated algorithm running time. Sort, from left to right, the above classes of functions from the cheapest to the most expensive. Caution: You will lose all marks if the order is not completely correct.

Solution: $O(1) \quad O(\log (n)) \quad O(n) \quad O(n \cdot \log (n)) \quad O\left(n^{2}\right) \quad O\left(n^{3}\right) \quad O\left(2^{n}\right)$
2. Consider the following statements:
(A) $3 n+7$ is $O(n \cdot \log (n))$
(B) $3 n+7$ is $O(n)$
(C) $3 n+7$ is $O(1)$
(D) $3 n+7$ is $O\left(2^{n}\right)$
(E) $3 n+7$ is $O(\log (n))$
(F) $3 n+7$ is $O\left(n^{2}\right)$
(a) Which of the above statement or statements are correct?

Solution: Statements A B D F

(b) Among the above statement or statements that are correct, which one is the most accurate?

Solution: Statement B
[of 5 marks]
(c) Justify your answer to the previous question. That is, clearly explain why it is more accurate than all other correct statements.

Solution: The highest power of n in $3 n+7$ is one. So Statement B is the most accurate by saying that $3 n+7$ is $O(n)$. The class $O(n)$ is strictly contained by $O(n \cdot \log (n))$, which is strictly contained by $O\left(n^{2}\right)$, which is strictly contained by $O\left(2^{n}\right)$.
3. In order to prove that $f(n)=4 n^{3}-5 n^{2}+59+n^{4}+9 n$ is $O\left(n^{4}\right)$, you need to choose values for two constants: constant c as a factor for n^{4} and constant n_{0} as some starting value of n.
(a) Write down the precise condition for which c and n_{0} must satisfy in order for the proof to succeed. Hint: Your answer should involve $n^{4}, f(n), c$, and n_{0}.

Solution:

$$
c \cdot n^{4} \geq f(n) \quad \text { for } n \geq n_{0}
$$

(b) Give values of c and n_{0} that will complete the proof.

Solution: Choose $c=78$ and $n_{0}=1$.
4. Consider the following Java program:

```
void prog(int[] a, int n)
    for (int i = 0; i < n; i++) {
        for (int j = i; j< n; j++) {
            for (int k=j;k>0; k--) {
                System.out.println(i * j + k);
            }
        }
    }
```

Determine the most accurate asymptotic upper bound of the above program, using the big-Oh notation. You must show in detail how you determine the bound. Without a convincing derivation process, you will only receive partial marks.

Solution:

- Line 5 is a primitive operation that requires some constant running time: $O(1)$. Therefore, the overall running time can be determined by the number of times this print statement is executed: this can be determined by changes of the loop counters i, j, and k.
- From Line 2, we know that the body of the outer loop will run n times.
- From Line 3, we know that:
- 1st iteration of outer-most loop where $i=0$, body of the middle loop runs with:
* $j=0$: the inner loop does not run
[0 iteration]
* $j=1$: the inner loop runs with $k=1$
* $j=2$: the inner loop runs with $k=2,1$
* $j=3$: the inner loop runs with $k=3,2,1$
[1 iteration
[2 iterations
...
* $j=n-1$: the inner loop runs with $k=n-1, n-2, \ldots, 1 \quad[n-1$ iterations]

Subtotal \# of iterations when $i=0: \frac{(0+(n-1)) \times(n-0)}{2}$

- 2nd iteration of outer-most loop where $i=1$, body of the middle loop runs with:
* $j=1$: the inner loop runs with $k=1$
[1 iteration]
* $j=2$: the inner loop runs with $k=2,1$
* $j=3$: the inner loop runs with $k=3,2,1$
[2 iterations]
[3 iterations]
* $j=n-1$: the inner loop runs with $k=n-1, n-2, \ldots, 1 \quad[n-1$ iterations]

Subtotal \# of iterations when $i=1: \frac{(1+(n-1)) \times(n-1)}{2}$

- 3rd iteration of outer-most loop where $i=2$, body of the middle loop runs with:
* $j=2$: the inner loop runs with $k=2,1$
[2 iterations]
* $j=3$: the inner loop runs with $k=3,2,1$
[3 iterations]
* $j=n-1$: the inner loop runs with $k=n-1, n-2, \ldots, 1 \quad[n-1$ iterations]

Subtotal \# of iterations when $i=2: \frac{(2+(n-1)) \times(n-2)}{2}$

- $n^{\text {th }}$ iteration of outer-most loop where $i=n-1$, body of the middle loop runs with:
* $j=n-1$: the inner loop runs with $k=n-1, n-2, \ldots, 1 \quad[n-1$ iterations $]$

Subtotal \# of iterations when $i=2: \frac{((n-1)+(n-1)) \times(n-(n-1))}{2}$

- Adding the above subtotal numbers of iterations:

$$
\sum_{i=0}^{n-1} \frac{(i+(n-1)) \times(n-1)}{2}=\sum_{i=0}^{n-1} \underbrace{\frac{n^{2}+(i-2) \cdot n+1}{2}}_{T}
$$

- To obtain the asymptotic upper bound, we drop multiplicative constants and lower terms:

$$
O\left(\sum_{i=0}^{n-1} n^{2}\right)=O\left(n \cdot n^{2}\right)=O\left(n^{3}\right)
$$

- Therefore, the running time of the above algorithm is $O\left(n^{3}\right)$.

5. Consider the following Java code:
```
boolean isSorted(int[] a) {
    return isSortedHelper(a, 0, a.length - 1);
}
boolean isSortedHelper(int[] a, int from, int to) {
    if (from > to) {
        return true;
    }
    else if(from == to) {
        return true;
    }
    else {
        return a[from] <= a[from + 1]
            && isSortedHelper(a, from + 1, to);
    }
}
```

Prove, via mathematical induction, that the method isSorted method above correctly returns true if the array a is sorted in a non-descending order; and false otherwise.

Solution:

We first prove that the recursive helper method isSortedHelper (Line 4 - Line 15) is correct (i.e., is the subarray $\{\mathrm{a}[\mathrm{from}]$, $\mathrm{a}[$ from +1$], \ldots, \mathrm{a}[\mathrm{to}]\}$ sorted).

1. Base Cases
(a) Concept: In an empty array, there is no witness (i.e., adjacent numbers that are not sorted) \therefore result is true.
(b) Link to Code:

Lines 5-7 (or just Line 6) of the above code does this.
(c) Concept: In an array of size 1 , the only one element is automatically sorted.
(d) Link to Code: Lines $\mathbf{8 - 1 0}$ (or just Line 9) of the above code does this.
2. Inductive Cases
(a) Inductive Hypothesis (I.H.): The recursive call isSortedHelper(a, from + 1, to) returns true if a[from +1], a[from +2$], \ldots, \mathrm{a}[\mathrm{to}]$ are sorted in a non-descending order; false otherwise.
(b) Concept: isSortedHelper(a, from, to) should return true if:

1) $a[$ from $] \leq a[f r o m+1] ;$ and
2) the subarray $\{\mathrm{a}[$ from +1$], \ldots, \mathrm{a}[\mathrm{to}]\}$ is sorted.
(c) Link to I.H.: By I.H., condition 2) is satisfied.
(d) Link to Code: Line 12 in the above code does condition 1).
\therefore Lines 12 - Line 13 perform a correct combination.
3. Given that the recursive helper method isSortedHelper (Line 4 - Line 4) is correct, we now argue that the method isSorted (Line 1 - Line 3) is correct.
(a) Concept: isSorted(a) is correct by invoking isSortedHelper(a, 0, a.length - 1), examining the entire array.
(b) Link to Code:

Line 2 of the above code does this.

