EECS2030 Fall 2019	Name: (Last, First)	
Advanced OOP		
Exam Practice Written Questions	Student ID	
Solution		

1 Written Exercises

- 1. Consider the following classes of functions:
 - *O*(*n*)
 - O(log(n))
 - $O(n^2)$
 - O(1)
 - $O(2^n)$
 - $O(n^3)$
 - $O(n \cdot log(n))$

Say each of the above functions maps from input size n to the *approximated* algorithm running time. Sort, from left to right, the above classes of functions from the cheapest to the most expensive. **Caution:** You will lose **all** marks if the order is not completely correct.

Solution: $O(1) \quad O(log(n)) \quad O(n) \quad O(n \cdot log(n)) \quad O(n^2) \quad O(n^3) \quad O(2^n)$

of 10 marks]

ſ

- 2. Consider the following statements:
 - (A) 3n + 7 is $O(n \cdot log(n))$
 - (**B**) 3n + 7 is O(n)
 - (C) 3n + 7 is O(1)
 - (**D**) 3n + 7 is $O(2^n)$
 - (E) 3n + 7 is O(log(n))
 - (**F**) 3n + 7 is $O(n^2)$
 - (a) Which of the above statement or statements are *correct*?

Solution: Statements A B D F

of 10 marks]

(b) Among the above statement or statements that are *correct*, which one is the most *accurate*?

Solution: Statement B

of 5 marks]

(c) Justify your answer to the previous question. That is, clearly explain why it is more *accurate* than all other *correct* statements.

Solution: The highest power of n in 3n + 7 is one. So Statement B is the most accurate by saying that 3n + 7 is O(n). The class O(n) is strictly contained by $O(n \cdot log(n))$, which is strictly contained by $O(n^2)$, which is strictly contained by $O(2^n)$.

of 10 marks]

- 3. In order to prove that $f(n) = 4n^3 5n^2 + 59 + n^4 + 9n$ is $O(n^4)$, you need to choose values for two constants: constant c as a factor for n^4 and constant n_0 as some starting value of n.
 - (a) Write down the precise condition for which c and n_0 must satisfy in order for the proof to succeed. **Hint:** Your answer should involve n^4 , f(n), c, and n_0 .

Solution:		
$c \cdot n^4$	$\geq f(n)$	for $n \ge n_0$

(b) Give values of c and n_0 that will complete the proof.

Solution: Choose c = 78 and $n_0 = 1$.

of 5 marks]

[

[

of 5 marks]

4. Consider the following Java program:

```
1
  void prog(int[] a, int n)
2
    for (int i = 0; i < n; i++) {
3
      for (int j = i; j < n; j++) {
        for (int k = j; k > 0; k--) {
4
5
         System.out.println(i * j + k);
6
        }
7
      }
8
    }
```

Determine the **most accurate** asymptotic upper bound of the above program, using the big-Oh notation. You **must** show in detail how you determine the bound. Without a convincing derivation process, you will only receive partial marks.

Solution:

 Line 5 is a primitive operation that requires some constant running time: O(1 overall running time can be determined by the number of times this print state this can be determined by changes of the loop counters i, j, and k. From Line 2, we know that the body of the <u>outer loop</u> will run n times. From Line 3, we know that: 1st iteration of outer-most loop where i = 0, body of the middle loop runs 	1). Therefore, the ement is executed: with:		
* $j = 0$: the inner loop does not run	[0 iteration]		
* $j = 1$: the inner loop runs with $k = 1$	[1 iteration]		
* $j = 2$: the inner loop runs with $k = 2, 1$	[2 iterations]		
* $j = 3$: the inner loop runs with $k = 3, 2, 1$	[3 iterations]		
* $j = n - 1$: the inner loop runs with $k = n - 1, n - 2, \dots, 1$	[n-1 iterations]		
Subtotal # of iterations when $i = 0$: $\frac{(0+(n-1))\times(n-0)}{2}$			
- 2nd iteration of outer-most loop where $i = 1$, body of the middle loop runs with:			
* $j = 1$: the inner loop runs with $k = 1$	[1 iteration]		
* $j = 2$: the inner loop runs with $k = 2, 1$	[2 iterations]		
* $j = 3$: the inner loop runs with $k = 3, 2, 1$	[3 iterations]		
	r		
* $j = n - 1$: the inner loop runs with $k = n - 1, n - 2, \dots, 1$	[n-1] iterations $]$		
Subtotal # of iterations when $i = 1$: $\left \frac{(1+(n-1))\times(n-1)}{2} \right $			
- 3rd iteration of outer-most loop where $i = 2$, body of the middle loop runs	with:		
* $j = 2$: the inner loop runs with $k = 2, 1$	[2 iterations]		
* $j = 3$: the inner loop runs with $k = 3, 2, 1$	[3 iterations]		
* $j = n - 1$: the inner loop runs with $k = n - 1, n - 2, \dots, 1$	[n-1 iterations]		
Subtotal # of iterations when $i = 2$: $2 = \frac{(2+(n-1))\times(n-2)}{2}$			
- n^{th} iteration of outer-most loop where $i = n - 1$, body of the middle loop r * $j = n - 1$: the inner loop runs with $k = n - 1, n - 2, \dots, 1$	cuns with: $[n-1 \text{ iterations }]$		
Subtotal # of iterations when $i = 2$: $\left \frac{((n-1)+(n-1))\times(n-(n-1))}{2} \right $			
• Adding the above subtotal numbers of iterations:			
0			
$\sum_{i=0}^{n-1} \frac{(i+(n-1)) \times (n-1)}{2} = \sum_{i=0}^{n-1} \underbrace{\frac{n^2 + (i-2) \cdot n + 1}{2}}_{T}$			
• To obtain the asymptotic upper bound, we drop multiplicative constants and low	ver terms:		

$$O(\sum_{i=0}^{n-1}n^2) = O(n \cdot n^2) = O(n^3)$$

• Therefore, the running time of the above algorithm is $O(n^3)$.

of 15 marks]

[

5. Consider the following Java code:

```
1
   boolean isSorted(int[] a) {
 \mathbf{2}
     return isSortedHelper(a, 0, a.length - 1);
 3
   }
   boolean isSortedHelper(int[] a, int from, int to) {
 4
 5
     if (from > to) {
 6
       return true;
 7
     }
 8
     else if(from == to) {
 9
       return true;
10
     }
11
     else {
       return a[from] <= a[from + 1]</pre>
12
         && isSortedHelper(a, from + 1, to);
13
14
     }
   }
15
```

Prove, via mathematical induction, that the method **isSorted** method above correctly returns **true** if the array **a** is sorted in a non-descending order; and **false** otherwise.

Solution:

We first prove that the recursive helper method isSortedHelper (Line 4 – Line 15) is correct (i.e., is the subarray {a[from], a[from + 1],..., a[to]} sorted).

- 1. Base Cases
 - (a) **Concept**: In an empty array, there is no witness (i.e., adjacent numbers that are not sorted) ∴ result is **true**.
 - (b) Link to Code: Lines 5 7 (or just Line 6) of the above code does this.
 (c) Concept: In an array of size 1, the only one element is automatically sorted.
 - (d) Link to Code: Lines 8 10 (or just Line 9) of the above code does this.

2. Inductive Cases

- (a) Inductive Hypothesis (I.H.): The recursive call isSortedHelper(a, from + 1, to) returns true if a[from + 1], a[from + 2], ..., a[to] are sorted in a non-descending order; false otherwise.
- (b) Concept: isSortedHelper(a, from, to) should return true if:
 - 1) $a[from] \leq a[from + 1];$ and
 - 2) the subarray {a[from + 1],...,a[to]} is sorted.
- (c) Link to I.H.: By I.H., condition 2) is satisfied.
- (d) Link to Code: Line 12 in the above code does condition 1).
- ∴ Lines 12 Line 13 perform a correct combination. 3. Given that the recursive helper method isSortedHelper (Line 4 – Line 4) is correct, we

now argue that the method isSorted (Line 1 – Line 3) is correct.

- (a) **Concept**: isSorted(a) is correct by invoking isSortedHelper(a, 0, a.length 1), examining the entire array.
- (b) Link to Code: Line 2 of the above code does this.

of 20 marks]