
EECS2030 Fall 2019 Name: (Last, First)
Advanced OOP
Exam Practice Written Questions
Solution

Student ID

1 Written Exercises

1. Consider the following classes of functions:

• O(n)
• O(log(n))
• O(n2)
• O(1)
• O(2n)
• O(n3)
• O(n · log(n))

Say each of the above functions maps from input size n to the approximated algorithm running
time. Sort, from left to right, the above classes of functions from the cheapest to the most expensive.
Caution: You will lose all marks if the order is not completely correct.

Solution: O(1) O(log(n)) O(n) O(n · log(n)) O(n2) O(n3) O(2n)

[of 10 marks]

2. Consider the following statements:

(A) 3n + 7 is O(n · log(n))
(B) 3n + 7 is O(n)
(C) 3n + 7 is O(1)
(D) 3n + 7 is O(2n)
(E) 3n + 7 is O(log(n))
(F) 3n + 7 is O(n2)

(a) Which of the above statement or statements are correct?

Solution: Statements A B D F

[of 10 marks]

(b) Among the above statement or statements that are correct, which one is the most accurate?

Solution: Statement B

[of 5 marks]

(c) Justify your answer to the previous question. That is, clearly explain why it is more accurate
than all other correct statements.

Solution: The highest power of n in 3n + 7 is one. So Statement B is the most accurate
by saying that 3n + 7 is O(n). The class O(n) is strictly contained by O(n · log(n)), which
is strictly contained by O(n2), which is strictly contained by O(2n).

[of 10 marks]

1

3. In order to prove that f(n) = 4n3 − 5n2 + 59 + n4 + 9n is O(n4), you need to choose values for two
constants: constant c as a factor for n4 and constant n0 as some starting value of n.

(a) Write down the precise condition for which c and n0 must satisfy in order for the proof to
succeed. Hint: Your answer should involve n4, f(n), c, and n0.

Solution:
c · n4 ≥ f(n) for n ≥ n0

[of 5 marks]

(b) Give values of c and n0 that will complete the proof.

Solution: Choose c = 78 and n0 = 1.

[of 5 marks]

2

4. Consider the following Java program:

1 void prog(int[] a, int n)
2 for (int i = 0; i < n; i++) {

3 for (int j = i; j < n; j++) {

4 for (int k = j; k > 0; k--) {

5 System.out.println(i * j + k);

6 }

7 }

8 }

Determine the most accurate asymptotic upper bound of the above program, using the big-Oh
notation. You must show in detail how you determine the bound. Without a convincing derivation
process, you will only receive partial marks.

Solution:

• Line 5 is a primitive operation that requires some constant running time: O(1). Therefore, the
overall running time can be determined by the number of times this print statement is executed:
this can be determined by changes of the loop counters i, j, and k.

• From Line 2, we know that the body of the outer loop will run n times.
• From Line 3, we know that:

– 1st iteration of outer-most loop where i = 0, body of the middle loop runs with:
∗ j = 0: the inner loop does not run [0 iteration]
∗ j = 1: the inner loop runs with k = 1 [1 iteration]
∗ j = 2: the inner loop runs with k = 2, 1 [2 iterations]
∗ j = 3: the inner loop runs with k = 3, 2, 1 [3 iterations]

. . .
∗ j = n− 1: the inner loop runs with k = n− 1, n− 2, . . . , 1 [n− 1 iterations]

Subtotal # of iterations when i = 0: (0+(n−1))×(n−0)
2

– 2nd iteration of outer-most loop where i = 1, body of the middle loop runs with:
∗ j = 1: the inner loop runs with k = 1 [1 iteration]
∗ j = 2: the inner loop runs with k = 2, 1 [2 iterations]
∗ j = 3: the inner loop runs with k = 3, 2, 1 [3 iterations]

. . .
∗ j = n− 1: the inner loop runs with k = n− 1, n− 2, . . . , 1 [n− 1 iterations]

Subtotal # of iterations when i = 1: (1+(n−1))×(n−1)
2

– 3rd iteration of outer-most loop where i = 2, body of the middle loop runs with:
∗ j = 2: the inner loop runs with k = 2, 1 [2 iterations]
∗ j = 3: the inner loop runs with k = 3, 2, 1 [3 iterations]

. . .
∗ j = n− 1: the inner loop runs with k = n− 1, n− 2, . . . , 1 [n− 1 iterations]

Subtotal # of iterations when i = 2: (2+(n−1))×(n−2)
2

. . .
– nth iteration of outer-most loop where i = n− 1, body of the middle loop runs with:

∗ j = n− 1: the inner loop runs with k = n− 1, n− 2, . . . , 1 [n− 1 iterations]

Subtotal # of iterations when i = 2: ((n−1)+(n−1))×(n−(n−1))
2

• Adding the above subtotal numbers of iterations:

n−1∑
i=0

(i + (n− 1))× (n− 1)

2
=

n−1∑
i=0

n2 + (i− 2) · n + 1

2︸ ︷︷ ︸
T

• To obtain the asymptotic upper bound, we drop multiplicative constants and lower terms:

3

O(

n−1∑
i=0

n2) = O(n · n2) = O(n3)

• Therefore, the running time of the above algorithm is O(n3).

[of 15 marks]

4

5. Consider the following Java code:

1 boolean isSorted(int[] a) {
2 return isSortedHelper(a, 0, a.length - 1);

3 }
4 boolean isSortedHelper(int[] a, int from, int to) {
5 if (from > to) {

6 return true;

7 }

8 else if(from == to) {

9 return true;

10 }

11 else {

12 return a[from] <= a[from + 1]

13 && isSortedHelper(a, from + 1, to);

14 }

15 }

Prove, via mathematical induction, that the method isSorted method above correctly returns true
if the array a is sorted in a non-descending order; and false otherwise.

Solution:

We first prove that the recursive helper method isSortedHelper (Line 4 – Line 15) is
correct (i.e., is the subarray {a[from], a[from + 1],. . . , a[to]} sorted).

1. Base Cases
(a) Concept: In an empty array, there is no witness (i.e., adjacent numbers that are not

sorted) ∴ result is true.
(b) Link to Code: Lines 5 – 7 (or just Line 6) of the above code does this.
(c) Concept: In an array of size 1, the only one element is automatically sorted.
(d) Link to Code: Lines 8 – 10 (or just Line 9) of the above code does this.

2. Inductive Cases
(a) Inductive Hypothesis (I.H.): The recursive call isSortedHelper(a, from + 1, to) re-

turns true if a[from + 1], a[from + 2], . . . , a[to] are sorted in a non-descending order;
false otherwise.

(b) Concept: isSortedHelper(a, from, to) should return true if:

1) a[from] ≤ a[from + 1]; and
2) the subarray {a[from + 1],. . . , a[to]} is sorted.

(c) Link to I.H.: By I.H., condition 2) is satisfied.
(d) Link to Code: Line 12 in the above code does condition 1).

∴ Lines 12 – Line 13 perform a correct combination.
3. Given that the recursive helper method isSortedHelper (Line 4 – Line 4) is correct, we

now argue that the method isSorted (Line 1 – Line 3) is correct.
(a) Concept: isSorted(a) is correct by invoking isSortedHelper(a, 0, a.length - 1) , examin-

ing the entire array.
(b) Link to Code: Line 2 of the above code does this.

[of 20 marks]

5

	Written Exercises

