Elementary Programming

EECS1022:
Programming for Mobile Computing
Winter 2018

Chen-Wei Wang

Learning Outcomes

- Learn ingredients of elementary programming:
- data types [numbers, characters, strings]
- literal values
- constants
- variables
- operators
[arithmetic, relational]
- expressions
- input and output
- Given a problem:
- First, plan how you would solve it mathematically.
- Then, Implement your solution by writing a Java program.

Tester vs. Controller

- For effective illustrations, code examples will mostly be written in the form of a tester (i.e., a Java class with a main method).

```
public class MyClass {
    public static void main(String[] args) {
        /* Your programming solution is defined here. */
    }
}
```

- The main method is treated by Java as the starting point of executing your program.
- The execution starts with the first line in the main method, proceed line by line, from top to bottom, until there are no more lines to execute, then it terminates.
- When developing an Android app, the controller (e.g., the BMIActivity Java class) should look similar to the tester.

Compile Time vs. Run Time

- These terms refer to two stages of developing your program.
- Compile time : when editing programs in Android Studio.
- There are two kinds of compile-time errors :
- Syntax errors: your program does not conform to Java's grammar.
- e.g., missing the semicolon, curly braces, or round parentheses
- Java syntax is defined in the Java language specification.
- Type errors: your program manipulates data in an inconsistent way e.g., "York" * 23 [\because multiplication is only for numbers]
- Run time is when you executing/running the Tester or app.
- Exceptions: your program crashes and terminates abnormally
- e.g., ArithmeticException (e.g., 10 / 0), ArrayIndexOutOfBoundException, NullPointerException.
- Logical errors: your program terminates normally but does not behave as expected
e.g., calculating the BMI using a wrong formula

Compile Time Errors vs. Run Time Errors

At the end of a computer lab test, if your submitted program:

- Cannot compile
\Rightarrow Your program cannot even be run
\Rightarrow Zero!

What you should do :

Practice writing as many programs as possible.

- Compiles, but run with exceptions or unexpected outputs.
\Rightarrow Not necessarily zero, but likely low marks!

What you should do :

Truly understand the logic/rationale beyond programs.

Literals (1)

A literal is a constant value that appears directly in a program.

1. Character Literals

- A single character enclosed within a pair of single quotes
- e.g., 'a', '1', '*', '(', ' '
- It is invalid to write an empty character: '

2. String Literals

- A (possibly empty) sequence of characters enclosed within a pair of double quotes

3. Integer Literals

- A non-empty sequence of numerical digits
- e.g., 0, -123, 123, 23943

4. Floating-Point Literals

- Specified using a combination of an integral part and a fractional part, separated by a decimal point, or using the scientific notation
- e.g., $0.3334,12.0,34.298,1.23456 \mathrm{E}+2$ (for 1.23456×10^{2}), $1.23456 \mathrm{E}-2$ (for 1.23456×10^{-2})
6 of 30

Literals (2)

Q. Outputs of System.out.println('a') versus

System.out.println(''a'')?
[SAME]
Q. Result of comparison ' a^{\prime} ' == ' a '?
[TYPE ERROR]

- Literal ' 'a'' is a string (i.e., character sequence) that consists of a single character.
- Literal 'a' is a single character.
\therefore You cannot compare a character sequence with a character.

Escape Sequences

An escape sequence denotes a single character.

- Specified as a backslash (
) followed by a single character
- e.g., \t, \n, \', \",

- Does not mean literally, but means specially to Java compiler - \t means a tab
- \n means a new line
-
 means a back slash
- \' means a single quote
- \" means a double quote
- May use an escape sequence in a character or string literal:

[INVALID; need to escape ']
[VALID]
[VALID; no need to escape "]
[INVALID; need to escape "]
[VALID]
[VALID; no need to escape ']
[VALID]

Operations

An operation refers to the process of applying an operator to its operand(s).

1. Numerical Operations
e.g., 1.1 + 0.34
e.g., 13 / 4
e.g., 13.0 / 4
e.g., 13 \% 4
e.g., -45
e.g., -1 * 45
2. Relational Operations
e.g., $3<=4$
e.g., 5 < 3
e.g., $56==34$
3. String Concatenations
e.g., ''York'' + '' '' + ''University'' is equivalent to ''York University''
9 of 30
[results are numbers]
[quotient: 3]
[precision: 3.25]
[remainder: 1]
[results are true or false]
[true]
[false]
[false]
[results are strings]

9

Java Data Types

A (data) type denotes a set of related runtime values.

1. Integer Type

byte	8 bits	$\left.-128, \ldots,-1,0,1, \ldots, 2^{\prime}-1\right]$
short	16 bits	$\left[-2^{15}, 2^{15}-1\right]$
int	32 bits	$\left[-2^{31}, 2^{31}-1\right]$
long	64 bits	$\left[-2^{63}, 2^{63}-1\right]$

2. Floating-Point Number Type

float	32 bits
double	64 bits

3. Character Type
char: the set of single characters
4. String Type

String: the set of all possible character sequences
Declaring a variable v to be of type T constrains v to store only those values defined in T.
10 of 30

Identifiers \& Naming Conventions

- Identifiers are names for identifying Java elements: classes, methods, constants, and variables.
- An identifier:
- Is an arbitrarily long sequence of characters: letters, digits, underscores (_), and dollar signs (\$).
- Must start with a letter, an underscore, or a dollar sign.
- Must not start with a digit.
- Cannot clash with reserved words (e.g., class, if, for, int).
- Valid ids: \$2, Welcome, name, _name, YORK_University
- Invalid ids: 2name, +YORK, Toronto@Canada
- More conventions:
- Class names are compound words, all capitalized:
e.g., Tester, HelloWorld, TicTacToe, MagicCardGame
- Variable and method names are like class names, except 1st word is all lower cases: e.g, main, firstName, averageOfClass
- Constant names are underscore-separated upper cases:

Named Constants vs. Variables

A named constant or a variable:

- Is an identifier that refers to a placeholder
- Must be declared with its type (of stored value) before use:

```
final double PI = 3.14159; / * a named constant */
double radius; /* an uninitialized variable */
```

- Can only store a value that is compatible with its declared type However, a named constant and a variable are different in that:
- A named constant must be initialized, and cannot change its stored value.
- A variable may change its stored value as needed.

Expressions (1)

An expression is a composition of operations.
An expression may be:

- Type Correct: for each constituent operation, types of the operands are compatible with the corresponding operator.

```
e.g., (1 + 2) * (23 % 5)
e.g., '`Hello '' + '`world''
```

- Not Type Correct
e.g., ' ${ }^{\prime} 6^{\prime \prime}$ \% ${ }^{\prime}{ }^{\prime} 4^{\prime}$
e.g., ('`YORK '' + '`University'') * (46 \% 4)
- ' 'YORK' ' and ' 'University'' are both strings
\therefore LHS of $*$ is type correct and is of type String
- 46 and 4 are both integers
\therefore RHS of $\%$ is type correct and is of type int
- Types of LHS and RHS of * are not compatible
\therefore Overall the expression (i.e., a multiplication) is not type correct

Assignments

An assignment designates a value for a variable, or initializes a named constant.

That is, an assignment replaces the old value stored in a placeholder with a new value.
An assignment is done using the assignment operator (=).
An assignment operator has two operands:

- The left operand is called the assignment target which must be a variable name
- The right operand is called the assignment source which must be an expression whose type is compatible with the declared type of assignment target
e.g., This is a valid assignment:
String name1 = '`Heeyeon'';
e.g., This is an invalid assignment:

```
String name1 = (1 + 2) * (23 % 5);
```


Multiple Executions of Same Print Statement

Executing the same print statement multiple times may or may not output different messages to the console.
e.g., Print statements involving literals or named constants only:

```
final double PI = 3.14; /* a named double constant */
System.out.println("Pi is " + PI); /* str. lit. and num. const.
System.out.println("Pi is " + PI);
```

e.g., Print statements involving variables:

```
String msg = "Counter value is "; /* a string variable */
int counter = 1; /* an integer variable */
System.out.println(msg + counter);
System.out.println(msg + counter);
counter = 2; /* re-assignment changes variable's stored value */
System.out.println(msg + counter);
```


Case Study 1: Compute the Area of a Circle

Problem: declare two variables radius and area, initialize radius as 20 , compute the value of area accordingly, and print out the value of area.

```
public class ComputeArea {
    public static void main(String[] args) {
        double radius; /* Declare radius */
    double area; /* Declare area */
    /* Assign a radius */
    radius = 20; /* assign value to radius */
    /* Compute area */
    area = radius * radius * 3.14159;
    /* Display results */
    System.out.print("The area of circle with radius ");
    System.out.println(radius + " is " + area);
    }
}
```

It would be more flexible if we can let the user specify the inputs via keyboard!

Input and Output

Reading input from the console enables user interaction.

```
import java.util.Scanner;
public class ComputeAreaWithConsoleInput {
    public static void main(String[] args) {
        /* Create a Scanner object */
        Scanner input = new Scanner(System.in);
        /* Prompt the user to enter a radius */
        System.out.print("Enter a number for radius: ");
        double radius = input.nextDouble();
        /* Compute area */
        final double PI = 3.14169; /* a named constant for \pi */
        double area = PI * radius * radius; / * area = \pir 2 */
        /* Display result */
        System.out.println(
        "Area for circle of radius " + radius + " is " + area);
    }
}
```

There are two equivalent ways to reading user inputs:

- Via a physical keyboard
- Via a GUI component (e.g., a text view)

Useful Methods for Scanner

- nextInt() which reads an integer value from the keyboard
- nextDouble() which reads a double value from the keyboard
- nextLine() which reads a string value from the keyboard

Variables: Common Mistakes (1)

Mistake: The same variable is declared more than once.

```
int counter = 1;
int counter = 2;
```

Fix 1: Assign the new value to the same variable.

```
int counter = 1;
counter = 2;
```

Fix 2: Declare a new variable (with a different name).

```
int counter = 1;
int counter2 = 2;
```

Which fix to adopt depends on what you need!

Variables: Common Mistakes (2)

Mistake: A variable is used before it is declared.

```
System.out.println("Counter value is " + counter);
int counter = 1;
counter = 2;
System.out.println("Counter value is " + counter);
```

Fix: Move a variable's declaration before its very first usage.

```
int counter = 1;
System.out.println("Counter value is " + counter);
counter = 2;
System.out.println("Counter value is " + counter);
```

Remember, Java programs are always executed, line by line, from top to bottom .

Case Study 2: Display Time

Problem: prompt the user for an integer value of seconds, divide that value into minutes and remaining seconds, and print the results. For example, given an input 200, output "200 seconds is 3 minutes and 20 seconds".

```
import java.util.Scanner;
public class DisplayTime {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        /* Prompt the user for input */
        System.out.print("Enter an integer for seconds: ");
        int seconds = input.nextInt();
        int minutes = seconds / 60; /* minutes */
        int remainingSeconds = seconds % 60; /* seconds */
        System.out.print(seconds + " seconds is ");
        System.out.print(" minutes and ");
        System.out.println(remainingSeconds + " seconds");
    }
}
```


Assignment Sources May Come From...

In tar = src, the assignment source src may come from:

- A literal or a variable

```
int i = 23; /* RHS is a literal */
int j = i; /* RHS is a variable */
```

- An expression involving literals and variables

```
int i = 23;
int j = i * 2 /* RHS is a complex expression */;
```

- An input from the keyboard

```
Scanner input = new Scanner(System.in);
int i = input.nextInt(); /* RHS is from a keyboard input */
int j = i * 2;
```

- An input from some GUI component, or some method call

```
String textWeight = getInputOfTextField(R.id.inputWeight);
double weight = Double.parseDouble(textWeight);
```


Numerical Type Conversion: Coercion

- Implicit and automatic type conversion
- Java automatically converts an integer value to a real number when necessary (which adds a fractional part).

```
double value1 = 3 * 4.5; /* 3 coerced to 3.0 */
double value2 = 7 + 2; /* result of + coerced to 9.0 */
```

- However, does the following work?

```
int valuel=3*4.5;
```

- RHS evaluates to 13.5 due to coercion.
- LHS declares a variable for storing integers (with no fractional parts).
\therefore Not compatible
[compile-time error]
\Rightarrow Need a way to "truncate" the fractional part!

Numerical Type Conversion: Casting

- Explicit and manual type conversion
- Usage 1: To assign a real number to an integer variable, you need to use explicit casting (which throws off the fractional part).

```
int value3 = (int) 3.1415926;
```

- Usage 2: You may also use explicit casting to force precision.

```
- System.out.println(1 / 2);
```

\because When both operands are integers, division evaluates to quotient.

$$
\cdot s
$$

```
System.out.println( ((double) 1) / 2 );
```

System.out.println(1 / ((double) 2));
System.out.println(((double) 1) / ((double) 2));
\because Either or both of the integers operands are cast to double type

$$
\bullet
$$

$$
\text { System.out.println((double) } 1 / 2) \text {; }
$$

\because Casting has higher precedence than arithmetic operation.

```
System.out.println((double) (1 / 2));
```

\because Order of evaluating division is forced, via parentheses, to occur first.

Numerical Type Conversion: Exercise

Consider the following Java code:

```
double d1 = 3.1415926;
System.out.println("d1 is " + dl);
double d2 = d1;
System.out.println("d2 is " + d2);
int il = (int) dl;
System.out.println("i1 is " + il);
d2 = i1 * 5;
System.out.println("d2 is " + d2);
```

Write the exact output to the console.

```
d1 is 3.1415926
d2 is 3.1415926
i1 is 3
d2 is 15.0
```


Expressions (2.1)

Consider the following Java code, is each line type-correct? Why and Why Not?

```
double d1 = 23;
int il = 23.6;
String sl = ' ';
char cl = " ";
```

- L1: Yes
- L2: No
- L3: No
- L4: No
[coercion]
[cast assignment source, i.e., (int) 23.6]
[cannot assign char to string]
[cannot assign string to char]

Expressions (2.2)

Consider the following Java code, is each line type-correct? Why and Why Not?

```
int il = (int) 23.6;
double dI = il * 3;
String sl = "La ";
String s2 = s1 + "La Land";
i1 = (s2 * d1) + (i1 + d1);
```

- L1: YES
[proper cast]
- L2: YES
- L3: YES
- L4: YES
- L5: No [string \times number is undefined]

Augmented Assignments

- You very often want to increment or decrement the value of a variable by some amount.

```
balance = balance + deposit;
balance = balance - withdraw;
```

- Java supports special operators for these:

```
balance += deposit;
balance -= withdraw;
```

- Java supports operators for incrementing or decrementing by 1 :

```
i ++; j --;
```

- Confusingly, these increment/decrement assignment operators can be used in assignments:

```
int i = 0; int j = 0; int k = 0;
k = i ++; /* k is assigned to i's old value */
k = ++ j; /* k is assigned to j's new value */
```


Beyond this lecture...

- Create a tester in Android Studio.
- Try out the examples give in the slides.
- See https://docs.oracle.com/javase/tutorial/ java/nutsandbolts/datatypes.html for more information about data types in Java.

Index (1)

Learning Outcomes
Tester vs. Controller
Compile Time vs. Run Time
Compile Time Errors vs. Run Time Errors
Literals (1)
Literals (2)
Escape Sequence
Operations
Java Data Types
Identifiers and Naming Conventions in Java
Named Constants vs. Variables
Expressions (1)
Assignments
Multiple Executions of Same Print Statement
300150

Index (2)

Case Study 1: Compute the Area of a Circle
Input and Output
Useful Methods for Scanner
Variables: Common Mistakes (1)
Variables: Common Mistakes (2)
Case Study 2: Display Time
Assignment Sources May Come From...
Numerical Type Conversion: Coercion
Numerical Type Conversion: Casting
Numerical Type Conversion: Exercise
Expressions (2.1)
Expressions (2.2)
Augmented Assignments
Beyond this lecture...
310130

Selections

EECS1022:
Programming for Mobile Computing
Winter 2018

CHEN-WEI WANG

Learning Outcomes

- The Boolean Data Type
- if Statement
- Compound vs. Primitive Statement
- Common Errors and Pitfalls
- Logical Operations

Motivating Examples (1.1)

```
import java.util.Scanner;
public class ComputeArea {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        final double PI = 3.14;
        System.out.println("Enter the radius of a circle:");
        double radiusFromUser = input.nextDouble();
        double area = radiusFromUser * radiusFromUser * PI;
        System.out.print("Circle with radius " + radiusFromUser);
        System.out.println(" has an area of " + area);
    }
}
```

- When the above Java class is run as a Java Application, Line 4 is executed first, followed by executing Line 5, ... , and ended with executing Line 10.
- In Line 7, the radius value comes from the user. Any problems?

Motivating Examples (1.2)

- If the user enters a positive radius value as expected:

```
Enter the radius of a circle:
```

3
Circle with radius 3.0 has an area of 28.26

- However, if the user enters a negative radius value:

```
Enter the radius of a circle:
-3
Circle with radius -3.0 has an area of 28.26
```

In this case, the area should not have been calculated!

- We need a mechanism to take selective actions:

Act differently in response to valid and invalid input values.

Motivating Examples (2.1)

Problem: Take an integer value from the user, then output a message indicating if the number is negative, zero, or positive.

- Here is an example run of the program:

```
Enter a number:
5
You just entered a positive number.
```

- Here is another example run of the program:

```
Enter a number:
-5
You just entered a negative number.
```

- Your solution program must accommodate all possibilities!

Motivating Examples (2.2)

- So far, you only learned about writing programs that are executed line by line, top to bottom.
- In general, we need a mechanism to allow the program to:
- Check a list of conditions; and
- Branch its execution accordingly.
- e.g., To solve the above problem, we have 3 possible branches:

1. If the user input is negative, then we execute the first branch that prints You just entered a negative number.
2. If the user input is zero, then we execute the second branch that prints You just entered zero.
3. If the user input is positive, then we execute the third branch that prints You just entered a positive number.

The boolean Data Type

- A (data) type denotes a set of related runtime values.
- We need a data type whose values suggest either a condition holds, or it does not hold, so that we can take selective actions.
- The Java boolean type consists of 2 literal values: true, false
- All relational expressions have the boolean type.

Math Symbol	Java Operator	Example $(r$ is 5)	Result
\leq	$<=$	$r<=5$	true
\geq	$>=$	$r>=5$	true
$=$	$==$	$r==5$	true
$<$	$<$	$r<5$	false
$>$	$>$	$r>5$	false
\neq	$!=$	$r!=5$	false

Note. You may do the following rewritings:

$\circ \mathrm{x}<=\mathrm{y}$	$\mathrm{x}>\mathrm{y}$	$\mathrm{x} \quad!=\mathrm{y}$	$\mathrm{x}==\mathrm{y}$
$\underset{\text { 7of } 53}{\circ}!(\mathrm{x}>\mathrm{y})$	$!(\mathrm{x}<=\mathrm{y})$	$!(\mathrm{x}==\mathrm{y})$	$!(\mathrm{x} \quad!=\mathrm{y})$

Syntax of if Statement

```
if ( BooleanExpression ( ) { /* Mandatory */
    Statement1.1; Statement2.1;
}
else if ( BooleanExpression2 ) { /* Optional */
    Statement2.1; Statement2.2;
}
... /* as many else-if branches as you like */
else if ( BooleanExpressionn ) { /* Optional */
    Statement n.1; Statement n.2;
}
else { /* Optional */
    /* when all previous branching conditions are false */
    Statement1; Statement2;
}
```


Semantics of if Statement (1.1)

start of if-statement

Semantics of if Statement (1.2)

Consider a single if statement as consisting of:

- An if branch
- A (possibly empty) list of else if branches
- An optional el se branch

At runtime :

- Branches of the if statement are executed from top to bottom.
- We only evaluate the condition of a branch if those conditions of its preceding branches evaluate to false.
- The first branch whose condition evaluates to true gets its body (i.e., code wrapped within \{ and \}) executed.
- After this execution, all later branches are ignored.

Semantics of if Statement (2.1)

Only first satisfying branch executed; later branches ignored.

```
int i = 5;
if(i< 0) {
    System.out.println("i is negative");
}
else if(i < 10) {
    System.out.println("i is less than than 10");
}
else if(i == 10) {
    System.out.println("i is equal to 10");
}
else {
    System.out.println("i is greater than 10");
}
```

i is less than 10

Semantics of if Statement (2.2)

No satisfying branches, and no else part, then nothing is executed.

```
int i = 12;
if(i< 0) {
    System.out.println("i is negative");
}
else if(i < 10) {
    System.out.println("i is less than than 10");
}
else if(i == 10) {
    System.out.println("i is equal to 10");
}
```


Semantics of if Statement (2.3)

No satisfying branches, then el se part, if there, is executed.

```
int i = 12;
if(i< 0) {
    System.out.println("i is negative");
}
else if(i < 10) {
    System.out.println("i is less than than 10");
}
else if(i == 10) {
    System.out.println("i is equal to 10");
}
else {
    System.out.println("i is greater than 10");
}
```

i is greater than 10

Case Study: Error Handling of Input Radius (ats

Problem: Prompt the user for the radius value of a circle. Print an error message if input number is negative; otherwise, print the calculated area.

```
public class ComputeArea {
    public static void main(String[] args) {
    System.out.println("Enter a radius value:");
    Scanner input = new Scanner(System.in);
    double radius = input.nextDouble();
    final double PI = 3.14159;
    if (radius < 0) { /* condition of invalid inputs */
        System.out.println("Error: Negative radius value!");
    }
    else { /* implicit: ! (radius < 0), or radius >= 0 */
        double area = radius * radius * PI;
        System.out.println("Area is " + area);
    }
    }
}
```

14 of 53

Case Study: Error Handling of Input Radius (2\$p№E

The same problem can be solved by checking the condition of valid inputs first.

```
public class ComputeArea2 {
    public static void main(String[] args) {
        System.out.println("Enter a radius value:");
        Scanner input = new Scanner(System.in);
        double radius = input.nextDouble();
        final double PI = 3.14159;
        if (radius >= 0) { /* condition of valid inputs */
        double area = radius * radius * PI;
        System.out.println("Area is " + area);
    }
    else { /* implicit: ! (radius >= 0), or radius < 0 */
        System.out.println("Error: Negative radius value!");
    }
    }
}
```


One if Stmt vs. Multiple if Stmts (1)

```
int i = 5;
if(i >= 3) {System.out.println("i is >= 3");}
else if(i <= 8) {System.out.println("i is <= 8");}
```

```
i is >= 3
```

```
int i = 5;
if(i >= 3) {System.out.println("i is >= 3");}
if(i <= 8) {System.out.println("i is <= 8");}
```

i is $>=3$
i is $<=8$
Two versions behave differently because the two conditions $i>=3$ and i <= 8 may be satisfied simultaneously.

One if Stmt vs. Multiple if Stmts (2)

```
int i = 2;
if(i <= 3) {System.out.println("i is <= 3");}
else if(i >= 8) {System.out.println("i is >= 8");}
```

$$
\text { i is }<=3
$$

```
int i = 2;
if(i <= 3) {System.out.println("i is <= 3");}
if(i >= 8) {System.out.println("i is >= 8");}
```

i is $<=3$
Two versions behave the same because the two conditions $i<=3$ and $i>=8$ cannot be satisfied simultaneously.

Two-Way if Statement without else Part

```
if (radius >= 0) {
    area = radius * radius * PI;
    System.out.println("Area for the circle of is " + area);
}
```

An if statement with the missing else part is equivalent to an if statement with an el se part that does nothing.

```
if (radius >= 0) {
    area = radius * radius * PI;
    System.out.println("Area for the circle of is " + area);
}
else {
    /* Do nothing. */
}
```


Multi-Way if Statement with else Part

```
if (score >= 80.0) {
    System.out.println("A"); }
else { /* score < 80.0 */
    if (score >= 70.0) {
        System.out.println("B"); }
    else { /* score < 70.0 */
        if (score >= 60.0) {
                System.out.println("C"); }
            else { /* score < 60.0 */
                System.out.println("F");
            }
    }
}
```

```
if (score >= 80.0) {
    System.out.println("A");
}
else if (score >= 70.0) {
    System.out.println("B");
}
else if (score >= 60.0) {
    System.out.println("C");
}
else {
    System.out.println("F");
}
```

Exercise: Draw the corresponding flow charts for both programs.
Convince yourself that they are equivalent.

Multi-Way if Statement without else Part

```
String lettGrade = "F";
if (score >= 80.0) {
    letterGrade = "A";
}
else if (score >= 70.0) {
    letterGrade = "B";
}
else if (score >= 60.0) {
    letterGrade = "C";
}
```

In this case, since we already assign an initial, default value " F " to variable letterGrade, so when all the branch conditions evaluate to false, then the default value is kept.

Compare the above example with the example in slide 43 .

Primitive Statement vs. Compound Statements.

- A statement is a block of Java code that modifies value(s) of some variable(s).
- An assignment (=) statement is a primitive statement: It only modifies its left-hand-side (LHS) variable.
- An if statement is a compound statement:

Each of its branches may modify more than one variables via other statements (e.g., assignments, if statements).

Compound if Statement: Example

```
int }x=\mathrm{ input.nextInt();
int }y=0
if ( }x>=0\mathrm{ ) {
    System.out.println("x is positive");
    if (x > 10) { y = x * 2; }
    else if (x<10) { y = x % 2; }
    else { Y = X * X; }
}
else { / * x < 0 */
    System.out.println("x is negative");
    if(x<-5) { y = - x; }
}
```

Exercise: Draw a flow chart for the above compound statement.

Logical Operators

- Logical operators are used to create compound Boolean expressions.
- Similar to arithmetic operators for creating compound number expressions.
- Logical operators can combine Boolean expressions that are built using the relational operators.
e.g., $1<=x$ \&\& $x<=10$
e.g., $\mathrm{x}<1| | \mathrm{x}>10$
- We consider three logical operators:
Java Operator Description Meaning

Logical Negation

- Logical negation is a unary operator (i.e., one operand being a Boolean expression).
- The result is the "negated" value of its operand.

Operand op	!op
true	false
false	true

```
double radius = input.nextDouble();
boolean isPositive = radius > 0;
if (!isPositive) {/* not the case that isPositive is true */
    System.out.println("Error: negative radius value.");
}
else {
    System.out.println("Area is " + radius * radius * PI);
}
```


Logical Conjunction

- Logical conjunction is a binary operator (i.e., two operands, each being a Boolean expression).
- The conjunction is true only when both operands are true.
- If one of the operands is false, their conjunction is false.

Left Operand op1	Right Operand op2	$\mathrm{op} 1 \& \& \mathrm{op} 2$
true	true	true
true	false	false
false	true	false
false	false	false

```
double age = input.nextInt();
boolean isOldEnough = age >= 45;
boolean isNotTooOld = age < 65
if (!isOldENough) { /* young */ }
else if (isOldEnough && isNotTooOld) { /* middle-aged */ }
else { /* senior */ }
```


Logical Disjunction

- Logical disjunction is a binary operator (i.e., two operands, each being a Boolean expression).
- The disjunction is false only when both operands are false.
- If one of the operands is true, their disjunction is true.
Left Operand op1 Right Operand op2 op1 || op2

Logical Laws (1)

- The negation of a strict inequality is a non-strict inequality.

Relation	Negation	Equivalence	
$i>j$	$!(i \quad>$	$j)$	i

- e.g.,

```
if(i > j) {
    /* Action 1 */
    }
else { /* implicit: !(i > j), equivalent to i <= j */
    /* Action 2 */
    }
```

- Action 1 is executed when $i>j$
- Action 2 is executed when $i<=j$.

Logical Laws (2.1)

Say we have two Boolean expressions B_{1} and B_{2} :

- What does ! ($B_{1} \& \& B_{2}$) mean?

It is not the case that both B_{1} and B_{2} are true.

- What does ! $B_{1} \quad / /!B_{2}$ mean?

It is either B_{1} is false, B_{2} is false, or both are false.

- Both expressions are equivalent!
[proved by the truth table]

B_{1}	B_{2}	$!\left(B_{1}\right.$ \& \&	B_{2})	! B_{1}	11	! B_{2}
true	true	false			false	
true	false	true			true	
false	true	true			true	
false	false	true			true	

Logical Laws (2.2)

```
if(0 <= i && i <= 10) { /* Action 1 */ }
else { /* Action 2 */ }
```

- When is Action 2 executed?

```
i < 0 || i > 10
```

```
if(i < O && false) { /* Action 1 */ }
else { /* Action 2 */ }
```

- When is Action 1 executed?
- When is Action 2 executed?

```
if(i < 0 && i > 10) { /* Action 1 */ }
else { /* Action 2 */ }
```

- When is Action 1 executed?
false
- When is Action 2 executed?

Lesson: Be careful not to write branching conditions that use $\& \&$ but always evaluate to false. 29 of 53

Logical Laws (3.1)

Say we have two Boolean expressions B_{1} and B_{2} :

- What does ! ($B_{1} / \mid B_{2}$) mean?

It is not the case that either B_{1} is true, B_{2} is true, or both are true.

- What does ! $B_{1} \& \&!B_{2}$ mean?

Both B_{1} and B_{2} are false.

- Both expressions are equivalent! [proved by the truth table]

B_{1}	B_{2}	! ($B_{1} 111$	B_{2})	$!B_{1}$	\& \&	$!B_{2}$
true	true	false			false	
true	false	false			false	
false	true	false			false	
false	false	true			true	

Logical Laws (3.2)

```
if(i < 0 || i > 10) { /* Action 1 */ }
else { /* Action 2 */ }
```

- When is Action 2 executed?

```
if(i < 0 || true) { /* Action 1 */ }
else { /* Action 2 */ }
```

- When is Action 1 executed?
- When is Action 2 executed?

```
if(i< < | | i >= 10) { /* Action 1 */ }
else { /* Action 2 */ }
```

- When is Action 1 executed?
- When is Action 2 executed? i >= 10 \&\& i < 10 (i.e., false)

Lesson: Be careful not to write branching conditions that use / / but always evaluate to true.

Logical Operators: Short-Circuit Evaluation

- Both Boolean operators \&\& and || evaluate from left to right.
- Operator \&\& continues to evaluate only when operands so far evaluate to true.

```
if (x != 0 && y / x > 2) {
    /* do something */
}
else {
    /* print error */ }
```

- Operator || continues to evaluate only when operands so far evaluate to false.

```
if (x == 0 || y / x <= 2) {
    /* print error */
}
else {
    /* do something */ }
```


Operator Precedence

- Operators with higher precedence are evaluated before those with lower precedence.
e.g., 2 + 3 * 5
- For the three logical operators, negation (!) has the highest precedence, then conjunction (\&\&), then disjunction (।।). e.g., false || true \&\& false means - true \|\| (true \&\& false), rather than - (true || true) \&\& false
- When unsure, use parentheses to force the precedence.

Operator Associativity

- When operators with the same precedence are grouped together, we evaluate them from left to right.
e.g., $1+2-3$ means
($(1+2)-3)$
e.g., false || true || false means
((false || true) || false)

Common Error 1: Missing Braces (1)

Confusingly, braces can be omitted if the block contains a single statement.

```
final double PI = 3.1415926;
Scanner input = new Scanner(System.in);
double radius = input.nextDouble();
if (radius >= 0)
    System.out.println("Area is " + radius * radius * PI);
```

In the above code, it is as if we wrote:

```
final double PI = 3.1415926;
Scanner input = new Scanner(System.in);
double radius = input.nextDouble();
if (radius >= 0) {
    System.out.println("Area is " + radius * radius * PI);
}
```


Common Error 1: Missing Braces (2)

Your program will misbehave when a block is supposed to execute multiple statements, but you forget to enclose them within braces.

```
final double PI = 3.1415926;
Scanner input = new Scanner(System.in);
double radius = input.nextDouble();
double area = 0;
if (radius >= 0)
    area = radius * radius * PI;
    System.out.println("Area is " + area);
```

This program will mistakenly print "Area is 0.0 " when a negative number is input by the user, why? Fix?

```
if (radius >= 0) {
    area = radius * radius * PI;
    System.out.println("Area is " + area);
}
```


Common Error 2: Misplaced Semicolon

Semicolon (;) in Java marks the end of a statement (e.g., assignment, if statement).

```
if (radius >= 0); {
    area = radius * radius * PI;
    System.out.println("Area is " + area);
}
```

This program will calculate and output the area even when the input radius is negative, why? Fix?

```
if (radius >= 0) {
    area = radius * radius * PI;
    System.out.println("Area is " + area);
}
```


Overlapping Boolean Conditions (1)

Two or more conditions overlap if they can evaluate to true simultaneously.
e.g., Say marks is declared as an integer variable:

- marks >= 80 and marks >= 70 overlap. [why?]
- Values $80,81,82, \ldots$ make both conditions true
- marks >= 80 has fewer satisfying values than marks >= 70
- We say marks >= 80 is more specific than marks >= 70
- Or, we say marks >= 70 is more general than marks >= 80
- marks <= 65 and marks <= 75 overlap. [why?]
- Values $65,64,63, \ldots$ make both conditions true
- marks <= 65 has fewer satisfying values than marks <= 75
- We say marks <= 65 is more specific than marks <= 75
- Or, we say marks <= 75 is more general than marks <= 65

Overlapping Boolean Conditions (2)

Say we have two overlapping conditions $\mathrm{x}>=5$ and $\mathrm{x}>=0$:

- What values make both conditions true?
- Which condition is more genera/?
- If we have a single if statement, then having this order

```
if(x >= 5) { System.out.println("x >= 5"); }
else if(x >= 0) { System.out.println("x >= 0"); }
```

is different from having this order

```
if(x >= 0) { System.out.println("x >= 0"); }
else if(x >= 5) { System.out.println("x >= 5"); }
```

- Say x is 5 , then we have
- What output from the first program?
- What output from the second program? [$\mathrm{x}>=0$, not specific enough!]
- The cause of the " not-specific-enough" problem of the second program is that we did not check the more specific condition (x >= 5) before checking the more general condition ($x>=0$).

Common Error 3: Independent if Statements with Overlapping Conditions

```
if (marks >= 80) {
    System.out.println("A");
}
if (marks >= 70) {
    System.out.println("B");
}
if (marks >= 60) {
    System.out.println("C");
}
else {
    System.out.println("F");
}
/* Consider marks = 84 */
```

```
if (marks >= 80) {
    System.out.println("A");
}
else if (marks >= 70) {
    System.out.println("B");
}
else if (marks >= 60) {
    System.out.println("C");
}
else
    System.out.println("F");
}
/* Consider marks = 84 */
```

- Conditions in a list of if statements are checked independently .
- In a single if statement, only the first satisfying branch is executed.

Common Error 4: if-elseif Statement with hassonos Most General Condition First (1)

```
if (gpa >= 2.5) {
    graduateWith = "Pass";
}
else if (gpa >= 3.5) {
    graduateWith = "Credit";
}
else if (gpa >= 4) {
    graduateWith = "Distinction";
}
else if (gpa >= 4.5) {
    graduateWith = "High Distinction" ;
}
```

The above program will:

- Not award a "High Distinction" to gpa == 4.8.
- Why?

Common Error 4: if-elseif Statement with hssonos Most General Condition First (2)

- Always "sort" the branching conditions s.t. the more specific conditions are checked before the more general conditions.

```
if (gpa >= 4.5) {
    graduateWith = "High Distinction" ;
}
else if (gpa >= 4) {
    graduateWith = "Distinction";
}
else if (gpa >= 3.5) {
    graduateWith = "Credit";
}
else if (gpa >= 2.5) {
    graduateWith = "Pass";
}
else { graduateWith = "Fail"; }
```


Common Error 5: Variable Not Properly Re-Assigned

```
String graduateWith = "";
if (gpa >= 4.5) {
    graduateWith = "High Distinction" ; }
else if (gpa >= 4) {
    graduateWith = "Distinction"; }
else if (gpa >= 3.5) {
    graduateWith = "Credit"; }
else if (gpa >= 2.5) {
    graduateWith = "Pass"; }
```

The above program will award "" to gpa == 1.5. Why?
Possible Fix 1: Change the initial value in Line 1 to "Fail".
Possible Fix 2: Add an else branch after Line 9:

```
else { graduateWith = "fail" }
```

Compare this example with the example in slide 20.

Common Errors 6: Ambiguous else (1)

```
if (x >= 0)
    if (x > 100) {
        System.out.println("x is larger than 100");
    }
else
    System.out.println("x is negative");
}
```

- When x is 20, this program considers it as negative. Why?
\because else clause matches the most recent unmatched if clause.
\therefore The above is as if we wrote:

```
if (x >= 0) {
    if (x > 100) {
        System.out.println("x is larger than 100");
    }
    else {
        System.out.println("x is negative");
    }
}
```


Common Errors 6: Ambiguous else (2)

- Fix?

Use pairs of curly braces $(\})$ to force what you really mean to specify!

```
if (x >= 0) {
    if (x > 100) {
        System.out.println("x is larger than 100");
    }
}
else {
    System.out.println("x is negative");
}
```


Common Pitfall 1: Updating Boolean Variablessones

```
boolean isEven;
if (number % 2 == 0) {
    isEven = true;
}
else {
    isEven = false;
}
```

Correct, but simplifiable: boolean isEven $=($ number $\% 2==0)$; Similarly, how would you simply the following?

```
if (isEven == false) {
    System.out.println("Odd Number");
}
else {
    System.out.println("Even Number");
}
```

Simplify isEven == false to !isEven

Common Pitfall 2: Repeated Code (1)

```
if (status == 1) { /* single filing mechanism for tax */
    if (income <= 8350) {
        double part1 = income * 0.10;
        double tax = partl;
        System.out.println("Tax amount: " + tax); }
    else if (income <= 33950) {
        double part1 = 8350 * 0.1;
        double part2 = (income - 8350) * 0.15;
        double tax = part1 + part2;
        System.out.println("Tax amount: " + tax); }
    else {
        double part1 = 8350 * 0.1;
        double part2 = (33950 - 8350) * 0.15;
        double part 3 = (income - 33950) * 0.25;
        double tax = part 1 + part2 + part 3;
        System.out.println("Tax amount: " + tax); }
}
```

This code is correct, but it smells due to lots of code repetition!

Common Pitfall 2: Repeated Code (2)

```
if (status == 1) { /* single filing mechanism for tax */
    double part1 = 0;
    double part2 = 0;
    double part3 = 0;
    double tax = 0;
    if (income <= 8350) {
        part1 = income * 0.10; }
    else if (income <= 33950) {
        part1 = 8350 * 0.1;
        part2 = (income - 8350) * 0.15; }
    else {
        part1 = 8350 * 0.1;
        part2 = (33950 - 8350) * 0.15;
        part3 = (income - 33950) * 0.25;
    }
    tax = part1 + part2 + part3;
    System.out.println("Tax amount: " + tax);
}
```


Scope of Variables (1)

When you declare a variable, there is a limited scope where the variable can be used.

- If the variable is declared directly under the main method, then all lines of code (including branches of if statements) may either re-assign a new value to it or use its value.

```
public static void main(String[] args) {
    int i = input.nextInt();
    System.out.println("i is " + i);
    if (i > 0) {
        i = i * 3; /* both use and re-assignment, why? */
    }
    else {
        i = i * -3; /* both use and re-assignment, why? */
    }
    System.out.println("3 * |i| is " + i);
}
```


Scope of Variables (2.1)

- If the variable is declared under an if branch, an else if branch, or an el se branch, then only lines of code appearing within that branch (i.e., its body) may either re-assign a new value to it or use its value.

```
public static void main(String[] args) {
    int i = input.nextInt();
    if (i > 0) {
        int j = i * 3; /* a new variable j */
        if (j > 10) { ... }
    }
    else {
        int j = i * -3; /* a new variable also called j */
        if (j< 10) { ... }
    }
}
```


Scope of Variables (2.2)

- A variable declared under an if branch, an else if branch, or an else branch, cannot be re-assigned or used outside its scope.

```
public static void main(String[] args) {
    int i = input.nextInt();
    if (i > 0) {
        int j = i * 3; /* a new variable j */
        if (j > 10) { ... }
    }
    else {
        int k = i * -3; /* a new variable also called j */
        if ( j < k) { ... } x
    }
}
```


Scope of Variables (2.3)

- A variable declared under an if branch, an else if branch, or an else branch, cannot be re-assigned or used outside its scope.

```
public static void main(String[] args) {
    int i = input.nextInt();
    if (i > 0) {
        int j = i * 3; /* a new variable j */
        if (j > 10) { ... }
    }
    else {
        int j = i * -3; /* a new variable also called j */
        if (j < 10) { ... }
    }
    System.out.println("j is " + j); x
}
```


Index (1)

Learning Outcomes
Motivating Examples (1.1)
Motivating Examples (1.2)
Motivating Examples (2.1)
Motivating Examples (2.2)
The boolean Data Type
Syntax of if Statement
Semantics of if Statement (1.1)
Semantics of if Statement (1.2)
Semantics of if Statement (2.1)
Semantics of if Statement (2.2)
Semantics of if Statement (2.3)
Case Study: Error Handing of Input Radius (1)
Case Study: Error Handing of Input Radius (2)
000150

Index (2)

One if Stmt vs. Multiple if Stmts (1)
One if Stmt vs. Multiple if Stmts (2)
Two-Way if Statement without else Part
Multi-Way if Statement with else Part
Multi-Way if Statement without else Part
Primitive Statement vs. Compound Statement
Compound if Statement: Example
Logical Operators
Logical Operators: Negation
Logical Operators: Conjunction
Logical Operators: Disjunction
Logical Operators: Laws (1)
Logical Operators: Laws (2.1)
Logical Operators: Laws (2.2)
540150

Index (3)

Logical Operators: Laws (3.1)
Logical Operators: Laws (3.2)
Logical Operators: Short-Circuit Evaluation
Operator Precedence
Operator Associativity
Common Error 1: Missing Braces (1)
Common Error 1: Missing Braces (2)
Common Error 2: Misplaced Semicolon
Overlapping Boolean Conditions (1)
Overlapping Boolean Conditions (2)
Common Error 3: Independent if Statements with
Overlapping Conditions
Common Error 4: if-el seif Statement with Most General
Condition First (1)
5コロ150

Index (4)

Common Error 4: if-elseif Statement with Most General
Condition First (2)
Common Error 5:
Variable Not Properly Re-Assigned
Common Error 6: Ambiguous else (1)
Common Error 6: Ambiguous else (2)
Common Pitfall 1: Updating Boolean Variable
Common Pitfall 2: Repeated Code (1)
Common Pitfall 2: Repeated Code (2)
Scope of Variables (1)
Scope of Variables (2.1)
Scope of Variables (2.2)
Scope of Variables (2.3)
56 of 53

Classes and Objects

EECS1022:
Programming for Mobile Computing
Winter 2018

CHEN-WEI WANG

Separation of Concerns: Model vs. Controller/Tester

- So far we have developed:
- Model: A single Java class (e.g., Person).
- Another Java class that "manipulates" the model class (by creating instances and calling methods):
- Controller (e.g., BMIActivity): effects seen at connected tablet
- Tester (e.g., PersonTester): effects seen at console
- In Java:
- We may define more than one model classes
- Each class may contain more than one methods
- object-oriented programming in Java:
- Use classes to define templates
- Use objects to instantiate classes
- At runtime, create objects and call methods on objects, to simulate interactions between real-life entities.

Object Orientation: Observe, Model, and Execute

Real World: Entities

Compile-Time: Classes (definitions of templates)

Run-Time: Objects

- Study this tutorial video that walks you through the idea of object orientation.
- We observe how real-world entities behave.
- We model the common attributes and behaviour of a set of entities in a single class.
- We execute the program by creating instances of classes, which interact in a way analogous to that of real-world entities.

Object-Oriented Programming (OOP)

- In real life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.
- Entities:
- Possess attributes;
- Exhibit bebaviour; and
- Interact with each other.
- Goals: Solve problems programmatically by
- Classifying entities of interest Entities in the same class share common attributes and bebaviour.
- Manipulating data that represent these entities

Each entity is represented by specific values.

OO Thinking: Templates vs. Instances (1.1)

A person is a being, such as a human, that has certain attributes and behaviour constituting personhood: a person ages and grows on their heights and weights.

- A template called Person defines the common
- attributes (e.g., age, weight, height)
[nouns]
- behaviour (e.g., get older, gain weight) [\approx verbs]

OO Thinking: Templates vs. Instances (1.2)

- Persons share these common attributes and behaviour.
- Each person possesses an age, a weight, and a height.
- Each person's age, weight, and height might be distinct e.g., jim is 50 -years old, 1.8 -meters tall and $80-\mathrm{kg}$ heavy e.g., jonathan is 65 -years old, 1.73 -meters tall and 90 -kg heavy
- Each person, depending on the specific values of their attributes, might exhibit distinct behaviour:
- When jim gets older, he becomes 51
- When jonathan gets older, he becomes 66.
- jim's BMI is based on his own height and weight
- jonathan's BMI is based on his own height and weight

OO Thinking: Templates vs. Instances (2.1)

Points on a two-dimensional plane are identified by their signed distances from the X - and Y -axises. A point may move arbitrarily towards any direction on the plane. Given two points, we are often interested in knowing the distance between them.

- A template called Point defines the common
- attributes (e.g., x, y)
[\approx nouns]
- behaviour (e.g., move up, get distance from)
[\approx verbs]

OO Thinking: Templates vs. Instances (2.2)

- Points share these common attributes and behaviour.
- Each point possesses an x-coordinate and a y-coordinate.
- Each point's location might be distinct
e.g., p1 is located at $(3,4)$
e.g., p2 is located at $(-4,-3)$
- Each point, depending on the specific values of their attributes (i.e., locations), might exhibit distinct behaviour:
- When p1 moves up for 1 unit, it will end up being at $(3,5)$
- When p2 moves up for 1 unit, it will end up being at $(-4,-2)$
- Then, p1's distance from origin:
- Then, p2's distance from origin:

$$
\begin{array}{r}
{\left[\sqrt{3^{2}+5^{2}}\right]} \\
{\left[\sqrt{(-4)^{2}+(-2)^{2}}\right]}
\end{array}
$$

00 Thinking: Templates vs. Instances (3)

- A template defines what's shared by a set of related entities.
- Common attributes (age in Person, x in Point)
- Common behaviour (get older for Person, move up for Point)
- Each template may be instantiated into multiple instances.
- Person instances: jim and jonathan
- Point instances: p1 and p2
- Each instance may have specific values for the attributes.
- Each Person instance has an age:
jim is 50 -years old, jonathan is 65 -years old
- Each Point instance has a location: p 1 is at $(3,4), \mathrm{p} 2$ is at $(-3,-4)$
- Therefore, instances of the same template may exhibit distinct behaviour.
- Each Person instance can get older: jim getting older from 50 to 51; jonathan getting older from 65 to 66.
- Each point instance can move up: p1 moving up from $(3,3)$ results in $(3,4)$; p1 moving up from $(-3,-4)$ results in $(-3,-3)$.

OOP: Classes \approx Templates

In Java, you use a class to define a template that enumerates attributes that are common to a set of entities of interest.

```
public class Person {
    int age;
    String nationality;
    double weight;
    double height;
}
```

```
public class Point {
    double x;
    double y;
}
```


OOP:

- Within class Point, you define constructors, specifying how instances of the Point template may be created.

```
public class Point {
... /* attributes: x, Y */
Point(double newX, double newY) {
    X = newX;
    Y=newY; } }
```

- In the corresponding tester class, each call to the Point constructor creates an instance of the Point template.

```
public class PointTester {
    public static void main(String[] args) {
    Point p1 = new Point (2, 4);
    println(p1.x + " " + p1.y);
    Point p2 = new Point (-4, -3);
        println(p2.x + " " + p2.y); } }
```


OOP:

Define Constructors for Creating Objects (1.2)

```
Point pl = new Point(2, 4);
```

1. RHS (Source) of Assignment: new Point (2, 4) creates a new Point object in memory.

Point	
\mathbf{x}	2.0
\mathbf{y}	4.0

2. LHS (Target) of Assignment: Point p1 declares a variable that is meant to store the address of some Point object.
3. Assignment: Executing = stores new object's address in p 1 .

OOP:

- Within class Person, you define constructors, specifying how instances of the Person template may be created.

```
public class Person {
... /* attributes: age, nationality, weight, height */
Person(int newAge, String newNationality) {
    age = newAge;
    nationality = newNationality; } }
```

- In the corresponding tester class, each call to the Person constructor creates an instance of the Person template.

```
public class PersonTester {
    public static void main(String[] args) {
    Person jim = new Person (50, "British");
    println(jim.nationlaity + " " + jim.age);
    Person jonathan = new Person (60, "Canadian");
    println(jonathan.nationlaity + " " + jonathan.age); }
```


OOP:

Define Constructors for Creating Objects (2.2)

```
Person jim = new Person(50, "British");
```

1. RHS (Source) of Assignment: new Person (50, "British") creates a new Person object in memory.

Person	
age	50
nationality	"British"
weight	0.0
height	0.0

2. LHS (Target) of Assignment: Point jim declares a variable that is meant to store the address of some Person object.
3. Assignment: Executing = stores new object's address in jim.

Visualizing Objects at Runtime (1)

- To trace a program with sophisticated manipulations of objects, it's critical for you to visualize how objects are:
- Created using constructors
Person jim = new Person(50, "British", 80, 1.8);
- Inquired using accessor methods

$$
\text { double bmi }=\text { jim.getBMI(); }
$$

- Modified using mutator methods
jim.gainWeightBy(10);
- To visualize an object:
- Draw a rectangle box to represent contents of that object:
- Title indicates the name of class from which the object is instantiated.
- Left column enumerates names of attributes of the instantiated class.
- Right column fills in values of the corresponding attributes.
- Draw arrow(s) for variable(s) that store the object's address.

Visualizing Objects at Runtime (2.1)

After calling a constructor to create an object:

```
Person jim = new Person(50, "British", 80, 1.8);
```


Person

age

nationality
weight
height

50
"British"
80
1.8

Visualizing Objects at Runtime (2.2)

After calling an accessor to inquire about context object jim:

```
double bmi = jim.getBMI();
```

- Contents of the object pointed to by jim remain intact.
- Retuned value $\frac{80}{(1.8)^{2}}$ of jim. getBMI () stored in variable bmi.

Visualizing Objects at Runtime (2.3)

After calling a mutator to modify the state of context object jim:

```
jim.gainWeightBy(10);
```

- Contents of the object pointed to by jim change.
- Address of the object remains unchanged. \Rightarrow jim points to the same object!

Person	
jim	age
nationality	50
weight	"British"
height	1.8

Visualizing Objects at Runtime (2.4)

After calling the same accessor to inquire the modified state of context object jim:

```
bmi = p.getBMI();
```

- Contents of the object pointed to by jim remain intact.
- Retuned value $\frac{90}{(1.8)^{2}}$ of jim. getBMI () stored in variable bmi.

The this Reference (1)

- Each class may be instantiated to multiple objects at runtime.

```
class Point {
    double x; double y;
    void moveUp(double units) { y += units; }
}
```

- Each time when we call a method of some class, using the dot notation, there is a specific target/context object.

1

```
Point p1 = new Point(2, 3);
Point p2 = new Point(4, 6);
p1.moveUp(3.5);
p2.moveUp(4.7);
```

- p1 and p2 are called the call targets or context objects
- Lines 3 and 4 apply the same definition of the moveUp method.
- But how does Java distinguish the change to p1.y versus the change to $\mathrm{p} 2 . \mathrm{y}$?

The this Reference (2)

- In the method definition, each attribute has an implicit this which refers to the context object in a call to that method.

```
class Point {
    double x;
    double y;
    Point(double newX, double newY) {
        this.x = newX;
        this.y = newY;
    }
    void moveUp(double units) {
        this.y = this.y + units;
    }
}
```

- Each time when the class definition is used to create a new Point object, the this reference is substituted by the name of the new object.

The this Reference (3)

- After we create p1 as an instance of Point

```
Point pl = new Point (2, 3);
```

- When invoking p1.moveUp (3.5), a version of moveUp that is specific to p1 will be used:

```
class Point {
    double x;
    double Y;
    Point(double newX, double newY) {
        pl.x = newX;
        p1.y = newY;
    }
    void moveUp(double units) {
        pl.y = pl.y + units;
    }
}

\section*{The this Reference (4)}
- After we create p2 as an instance of Point
```

Point p2 = new Point (4, 6);

```
- When invoking p2.moveUp (4.7), a version of moveUp that is specific to p2 will be used:
```

class Point {
double x;
double Y;
Point(double newX, double newY) {
p2.x = newX;
p2.y = newY;
}
void moveUp(double units) {
p2.y=p2.y + units;
}
}

The this Reference (5)

The this reference can be used to disambiguate when the names of input parameters clash with the names of class attributes.

```
class Point {
    double x;
    double y;
    Point(double x, double y) {
        this.x = x;
        this.y = y;
    }
    void setX(double x) {
        this.x = x;
    }
    void setY(double y) {
        this.y = y;
    }
}

\section*{The this Reference (6.1): Common Error}

The following code fragment compiles but is problematic:
```

class Person {
String name;
int age;
Person(String name, int age) {
name = name;
age = age;
}
void setAge(int age) {
age = age;
}
}

```

Why? Fix?

\section*{The this Reference (6.2): Common Error}

Always remember to use this when input parameter names clash with class attribute names.
```

class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;
}
void setAge(int age) {
this.age = age;
}
}

```

\section*{OOP: Methods (1.1)}
- A method is a named block of code, reusable via its name.

- The Signature of a method consists of:
- Return type
- Name of method
- Zero or more parameter names
- The corresponding parameter types
[ \(R T\) (which can be void)]
\(\left[T_{1}, T_{2}, \ldots, T_{n}\right]\)
- A call to method \(m\) has the form: \(m\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)

Types of argument values \(a_{1}, a_{2}, \ldots, a_{n}\) must match the the corresponding parameter types \(T_{1}, T_{2}, \ldots, T_{n}\).

\section*{OOP: Methods (1.2)}
- In the body of the method, you may
- Declare and use new local variables

Scope of local variables is only within that method.
- Use or change values of attributes.
- Use values of parameters, if any.
```

class Person {
String nationality;
void changeNationality(String newNationality)
nationality = newNationality; } }

```
- Call a method, with a context object, by passing arguments.
```

class PersonTester {
public static void main(String[] args) {
Person jim = new Person(50, "British");
Person jonathan = new Person(60, "Canadian");
jim.changeNationality("Korean");
jonathan.changeNationality("Korean"); } }

```

\section*{OOP: Methods (2)}
- Each class C defines a list of methods.
- A method \(m\) is a named block of code.
- We reuse the code of method \(m\) by calling it on an object obj of class C.

For each method call obj.m(...):
- ob \(j\) is the context object of type C
- m is a method defined in class C
- We intend to apply the code effect of method \(m\) to object obj.
e.g., jim.getOlder() vs. jonathan.getOlder()
e.g., p1.moveUp (3) vs. p2.moveUp (3)
- All objects of class C share the same definition of method m .
- However:
\(\because\) Each object may have distinct attribute values.
\(\therefore\) Applying the same definition of method \(m\) has distinct effects.

\section*{OOP: Methods (3)}
1. Constructor
- Same name as the class. No return type. Initializes attributes.
- Called with the new keyword.
- e.g., Person jim = new Person(50, "British");
2. Mutator
- Changes (re-assigns) attributes
- void return type
- Cannot be used when a value is expected
- e.g., double h = jim.setHeight(78.5) is illegal!
3. Accessor
- Uses attributes for computations (without changing their values)
- Any return type other than void
- An explicit return statement (typically at the end of the method) returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI();
e.g., println(p1.getDistanceFromOrigin());

\section*{OOP: The Dot Notation (1)}
- A binary operator:
- LHS an object
- RHS an attribute or a method
- Given a variable of some reference type that is not null:
- We use a dot to retrieve any of its attributes .

Analogous to 's in English
e.g., jim.nationality means jim's nationality
- We use a dot to invoke any of its mutator methods, in order to change values of its attributes.
e.g., jim.changeNationality("CAN") changes the nationality attribute of jim
- We use a dot to invoke any of its accessor methods, in order to use the result of some computation on its attribute values.
e.g., jim. getBMI () computes and returns the BMI calculated based on jim's weight and height
- Return value of an accessor method must be stored in a variable.

\section*{OOP: Method Calls}

1 Point \(\mathrm{p} 1=\) new \(\operatorname{Point}(3,4)\);
2 Point p2 = new Point (-6, -8);
3 System.out.println(p1.getDistanceFromOrigin());
4 System.out.println(p2. getDistanceFromOrigin());
p1. moveUp (2) ;
p2. moveUp (2) ;
7 System.out.println(p1. getDistanceFromOrigin());
8 System.out.println(p2. getDistanceFromOrigin());
- Lines 1 and 2 create two different instances of Point
- Lines 3 and 4: invoking the same accessor method on two different instances returns distinct values
- Lines 5 and 6: invoking the same mutator method on two different instances results in independent changes
- Lines 3 and 7: invoking the same accessor method on the same instance may return distinct values, why?

\section*{OOP: Class Constructors (1)}
- The purpose of defining a class is to be able to create instances out of it.
- To instantiate a class, we use one of its constructors .
- A constructor
- declares input parameters
- uses input parameters to initialize some or all of its attributes

\section*{OOP: Class Constructors (2)}
```

public class Person {
int age;
String nationality;
double weight;
double height;
Person(int initAge, String initNat) {
age = initAge;
nationality = initNat;
}
Person (double initW, double initH) {
weight = initW;
height = initH;
}
Person(int initAge, String initNat,
double initW, double initH) {
... /* initialize all attributes using the parameters */
}
}

```

\section*{OOP: Class Constructors (3)}
```

public class Point {
double x;
double y;
Point(double initX, double initY) {
x = initX;
y = initY;
}
Point(char axis, double distance) {
if (axis == 'x') { x = distance; }
else if (axis == ' y') { y = distance; }
else { System.out.println("Error: invalid axis.") }
}
}

```

\section*{OOP: Class Constructors (4)}
- For each class, you may define one or more constructors:
- Names of all constructors must match the class name.
- No return types need to be specified for constructors.
- Each constructor must have a distinct list of input parameter types.
- Each parameter that is used to initialize an attribute must have a matching type.
- The body of each constructor specifies how some or all attributes may be initialized.

\section*{OOP: Object Creation (1)}
```

Point pl = new Point(2, 4);
System.out.println(pl);

```
Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:
```

System.out.println("(" + pl.x + ", " + pl.y + ")");

```
\[
(2.0,4.0)
\]

\section*{OOP: Object Creation (2)}

A constructor may only initialize some attributes and leave others uninitialized.
```

public class PersonTester {
public static void main(String[] args) {
/* initialize age and nationality only */
Person jim = new Person(50, "BRI");
/* initialize age and nationality only */
Person jonathan = new Person(65, "CAN");
/* initialize weight and height only */
Person alan = new Person(75, 1.80);
/* initialize all attributes of a person */
Person mark = new Person(40, "CAN", 69, 1.78);
}
}

```

\section*{OOP: Object Creation (3)}


Person alan \(=\) new \(\operatorname{Person}(75,1.80)\)


\section*{OOP: Object Creation (4)}

A constructor may only initialize some attributes and leave others uninitialized.
```

public class PointTester {
public static void main(String[] args) {
Point pl = new Point(3, 4);
Point p2 = new Point(-3 -2);
Point p3 = new Point(' ' '', 5);
Point p4 = new Point(' y', -7);
}
}

```

\section*{OOP: Object Creation (5)}


Point p4 = new Point( ' \(y^{\prime}\), -7)


\section*{OOP: Object Creation (6)}
- When using the constructor, pass valid argument values:
- The type of each argument value must match the corresponding parameter type.
- e.g., Person(50, "BRI") matches

Person(int initAge, String initNationality)
- e.g., Point \((3,4)\) matches

Point (double initX, double inity)
- When creating an instance, uninitialized attributes implicitly get assigned the default values.
- Set uninitialized attributes properly later using mutator methods
```

Person jim = new Person(50, "British");
jim.setWeight(85);
jim.setHeight(1.81);

```

\section*{OOP: Mutator Methods}
- These methods change values of attributes.
- We call such methods mutators (with void return type).
```

public class Person {
void gainWeight(double units) {
weight = weight + units;
}
}

```
```

public class Point {
void moveUp() {
y=y+1;
}
}

```

\section*{OOP: Accessor Methods}
- These methods return the result of computation based on attribute values.
- We call such methods accessors (with non-void return type).
```

public class Person {
double getBMI() {
double bmi = height / (weight * weight);
return bmi;
}
}

```
```

public class Point {
double getDistanceFromOrigin() {
double dist = Math.sqrt(x*x + y*y);
return dist;
}

OOP: Use of Mutator vs. Accessor Methods

- Calls to mutator methods cannot be used as values.
- e.g., System.out.println(jim.setWeight(78.5));
- e.g., double w = jim.setWeight(78.5);
- e.g., jim.setWeight (78.5);
- Calls to accessor methods should be used as values.
- e.g., jim.getBMI ();
- e.g., System.out.println(jim.getBMI());
- e.g., double w = jim.getBMI();

OOP: Method Parameters

- Principle 1: A constructor needs an input parameter for every attribute that you wish to initialize.
e.g., Person (double w, double h) vs.

Person(String fName, String lName)

- Principle 2: A mutator method needs an input parameter for every attribute that you wish to modify. e.g., In Point, void moveToXAxis() vs. void moveUpBy (double unit)
- Principle 3: An accessor method needs input parameters if the attributes alone are not sufficient for the intended computation to complete.
e.g., In Point, double getDistFromOrigin() vs.
double getDistFrom(Point other)
46 of 87

OOP: Object Alias (1)

```
int i = 3;
int j = i; System.out.println(i == j);
int k = 3; System.out.println(k == i && k == j);
```

- Line 2 copies the number stored in i to j.
- After Line 4, i, j, k refer to three separate integer placeholder, which happen to store the same value 3 .

1

```
Point pl = new Point(2, 3);
Point p2 = p1; System.out.println(p1 == p2); /* true */
Point p3 = new Point(2, 3);
Systme.out.println(p3 == p1 || p3 == p2); /* false */
Systme.out.println(p3.x == pl.x && p3.y == pl.y); /* tru\ell
Systme.out.println (p3.x == p2.x && p3.y == p2.y); /* true
```

- Line 2 copies the address stored in p1 to p2.
- Both p1 and p2 refer to the same object in memory!
- p3, whose contents are same as p1 and p2, refer to a different object in memory.

OO Program Programming: Object Alias (2.1) Ssonos

Problem: Consider assignments to primitive variables:

```
int il \(=1\);
int \(i 2=2\);
int i3 \(=3\);
int[] numbers1 \(=\) \{i1, i2, i3\};
int[] numbers2 \(=\) new int[numbersl.length];
for(int \(i=0 ; i<n u m b e r s l . l e n g t h ; i++)\) \{
    numbers2[i] = numbers1[i];
\}
numbers1[0] = 4;
System. out. println(numbers1[0]);
System. out.println(numbers2[0]);
```


00 Program Programming: Object Alias (2.2) ssonocs

Problem: Consider assignments to reference variables:

```
1 Person alan = new Person("Alan");
2 Person mark = new Person("Mark");
Person tom = new Person("Tom");
Person jim = new Person("Jim");
Person[] persons1 = {alan, mark, tom};
Person[] persons2 = new Person[personsl.length];
for(int i = 0; i < personsl.length; i ++) {
    persons2[i] = personsl[i]; }
personsl[0].setAge(70);
System.out.println(jim.age);
System.out.println(alan.age);
System.out.println(persons2[0].age);
personsl[0] = jim;
personsl[0].setAge(75);
System.out.println(jim.age);
System.out.println(alan.age);
17 49 S%%stem.out.println(persons2[0].age);
```


Java Data Types (1)

A (data) type denotes a set of related runtime values.

1. Primitive Types

- Integer Type
- int [set of 32-bit integers]
- long [set of 64-bit integers]
- Floating-Point Number Type
- double
[set of 64-bit FP numbers]
- Character Type
- char
[set of single characters]
- Boolean Type
- boolean
[set of true and false]

2. Reference Type: Complex Type with Attributes and Methods

- String
- Person
- Point
- Scanner

50 of 87
[set of references to character sequences] [set of references to Person objects] [set of references to Point objects] [set of references to Scanner objects]

Java Data Types (2)

- A variable that is declared with a type but uninitialized is implicitly assigned with its default value.
- Primitive Type
- int i;
- double d;
- boolean b;
- Reference Type
- String s;
- Person jim;
- Point p1;
- Scanner input;

```
\([0\) is implicitly assigned to i]
\([0.0\) is implicitly assigned to \(d]\)
    [ 0.0 is implicitly assigned to d]
[false is implicitly assigned to b]
[ null is implicitly assigned to s]
[null is implicitly assigned to jim]
[ null is implicitly assigned to p1]
[ null is implicitly assigned to input]
```

- You can use a primitive variable that is uninitialized.

Make sure the default value is what you want!

- Calling a method on a uninitialized reference variable crashes your program.
[NullPointerException]
Always initialize reference variables!

Java Data Types (3.1)

- An attribute may store the reference to some object.

```
class Person { Person spouse; }
```

- Methods may take as parameters references to other objects.

```
class Person {
    void marry(Person other) { ... } }
```

- Return values from methods may be references to other objects.

```
    class Point {
    void moveUpBy(int i) { y = y + i; }
    Point movedUpBy(int i) {
        Point np = new Point(x, y);
        np.moveUp(i);
        return np;
    }
```

52 of 87

Java Data Types (3.2.1)

An attribute may be of type Point [], storing references to

 Point objects.```
class PointCollector {
 Point[] points; int nop; /* number of points */
 PointCollector() { points = new Point[100]; }
 void addPoint(double x, double y) {
 points[nop] = new Point(x, y); nop++; }
 Point[] getPointsInQuadrantI() {
 Point[] ps = new Point[nop];
 int count = 0; /* number of points in Quadrant I */
 for(int i = 0; i < nop; i ++) {
 Point p = points[i];
 if(p.x>0 && p.y>0) { ps[count] = p; count ++; } }
 Point[] qlPoints = new Point[count];
 /* ps contains null if count < nop */
 for(int i = 0; i < count; i ++) { qlPoints[i] = ps[i] }
 return qlPoints ;
 } }
```


## Java Data Types (3.2.2)

```
class PointCollectorTester {
 public static void main(String[] args) {
 PointCollector pc = new PointCollector();
 System.out.println(pc.nop); /* 0 */
 pc.addPoint(3, 4);
 System.out.println(pc.nop); /* 1 */
 pc.addPoint(-3, 4);
 System.out.println(pc.nop); /* 2 */
 pc.addPoint(-3, -4);
 System.out.println(pc.nop); /* 3 */
 pc.addPoint(3, -4);
 System.out.println(pc.nop);
 Point[] ps = pc.getPointsInQuadrantI();
 System.out.println(ps.length); /* 1 */
 System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
 /* (3, 4) */
 }
}

\section*{Java Data Types (3.3.1)}

\section*{An attribute may be of type ArrayList<Point>, storing references to Point objects.}
```

class PointCollector {
ArrayList<Point> points;
PointCollector() { points = new ArrayList<>(); }
void addPoint(Point p) {
points.add (p); }
void addPoint(double x, double y) {
points.add (new Point(x, y)); }
ArrayList<Point> getPointsInQuadrantI() {
ArrayList<Point> qlPoints = new ArrayList<>();
for(int i = 0; i < points.size(); i ++) {
Point p = points.get(i);
if(p.x> 0 \&\& p.y>0) { qlPoints.add (p); } }
return qlPoints ;
} }

```

\section*{L8 \& L9 may be replaced by:}
```

for(Point p : points) { q1Points.add(p);

```

\section*{Java Data Types (3.3.2)}
```

class PointCollectorTester
public static void main(String[] args) {
PointCollector pc = new PointCollector();
System.out.println(pc.points.size()); /* 0 */
pc.addPoint(3, 4);
System.out.println(pc.points.size()); /* 1 */
pc.addPoint(-3, 4);
System.out.println(pc.points.size()); /* 2 */
pc.addPoint(-3, -4);
System.out.println(pc.points.size()); /* 3 */
pc.addPoint(3, -4);
System.out.println(pc.points.size()); /* 4 */
ArrayList<Point> ps = pc.getPointsInQuadrantI();
System.out.println(ps.length); /* 1 */
System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
/* (3, 4) */
}
}
56 of 87

```

\section*{The this Reference (7.1): Exercise}

Consider the Person class
```

class Person {
String name;
Person spouse;
Person(String name) {
this.name = name;
}
}

```

How do you implement a mutator method marry which marries the current Person object to an input Person object?

\section*{The this Reference (7.2): Exercise}
```

void marry(Person other) {
if(this.spouse != null || other.spouse != null) {
System.out.println("Error: both must be single.");
}
else { this.spouse = other; other.spouse = this; }
}

```

When we call jim.marry (elsa): this is substituted by the call target jim, and other is substituted by the argument elsa.
```

void marry(Person other) {
jim.spouse = elsa;
elsa.spouse = jim;
}
}

```

\section*{OOP: The Dot Notation (2)}
- LHS of dot can be more complicated than a variable :
- It can be a path that brings you to an object
```

class Person {
String name;
Person spouse;
}

```
- Say we have Person jim = new Person("Jim Davies")
- Inquire about jim's name?
- Inquire about jim's spouse's name? [jim.spouse.name]
- But what if jim is single (i.e., jim.spouse == null)?

Calling jim. spouse. name will trigger NullPointerException!!
- Assuming that:
- jim is not single.
- The marriage is mutual.
```

    [jim.spouse != null]
    [jim.spouse.spouse != null]

```

What does jim.spouse.spouse.name mean? [jim.name]

\section*{OOP: The Dot Notation (3.1)}

In real life, the relationships among classes are sophisticated.

Aggregation links between classes constrain how you can navigate among these classes.
e.g., In the context of class Student:
- Writing cs denotes the list of registered courses.
- Writing cs [i] (where \(i\) is a valid index) navigates to the class Course, which changes the context to class Course.

\section*{OOP: The Dot Notation (3.2)}
```

class Student {
String id;
ArrayList<Course> Cs;
}

```
```

class Course {
String title;
Faculty prof;
}

```
```

class Faculty {
String name;
ArrayList<Course> te;
}

```
```

class Student {
... /* attributes */
/* Get the student's id */
String getID() { return this.id; }
/* Get the title of the ith course */
String getCourseTitle(int i) {
return this.cs.get(i).title;
}
/* Get the instructor's name of the ith course */
String getInstructorName(int i) {
return this.cs.get(i).prof.name;
}
}

```

\section*{OOP: The Dot Notation (3.3)}
class Student \(\{\)
String id;
ArrayList<Course> cs;
```

class Course {
String title;
Faculty prof;
}

```
```

class Faculty {
String name;
ArrayList<Course> te;
}

```
```

class Course
... /* attributes */
/* Get the course's title */
String getTitle() { return this.title; }
/* Get the instructor's name */
String getInstructorName() {
return this.prof.name;
}
/* Get title of ith teaching course of the instructor */
String getCourseTitleOfInstructor(int i) {
return this.prof.te.get(i).title;
}
}

```

\section*{OOP: The Dot Notation (3.4)}
```

class Student {
String id;
ArrayList<Course> cs;
}

```
```

class Course {
String title;
Faculty prof;
}

```
```

class Faculty {
String name;
ArrayList<Course> te;
}

```
class Faculty \{
... /* attributes */
/* Get the instructor's name */
String getName() \{
return this.name;
\}
/* Get the title of ith teaching course */
String getCourseTitle(int i) \{
return this.te.get(i).title;
\}
\}

\section*{OOP: Equality (1)}
```

Point p1 = new Point(2, 3);
Point p2 = new Point(2, 3);
boolean sameLoc = (p1 == p2);
System.out.println("p1 and p2 same location?" + sameLoc);

```
p1 and p2 same location? false

\section*{OOP: Equality (2)}
- Recall that
- A primitive variable stores a primitive value e.g., double d1 = 7.5; double d2 = 7.5;
- A reference variable stores the address to some object (rather than storing the object itself)
e.g., Point p1 \(=\) new Point \((2,3)\) assigns to p1 the address of the new Point object
e.g., Point p2 \(=\) new Point \((2,3)\) assigns to \(p 2\) the address of another new Point object
- The binary operator == may be applied to compare:
- Primitive variables: their contents are compared e.g., d1 == d2 evaluates to true
- Reference variables: the addresses they store are compared (rather than comparing contents of the objects they refer to) e.g., p1 == p2 evaluates to false because p1 and p2 are addresses of different objects, even if their contents are identical.

\section*{Static Variables (1)}
```

class Account {
int id;
String owner;
Account(int id, String owner) {
this.id = id;
this.owner = owner;
}
}

```
```

class AccountTester {
Account acc1 = new Account(1, "Jim");
Account acc2 = new Account(2, "Jeremy");
System.out.println(acc1.id != acc2.id);
}

```

But, managing the unique id's manually is error-prone!

\section*{Static Variables (2)}
class Account \{
```

static int globalCounter = 1;
int id; String owner;
Account(String owner) {
this.id = globalCounter ; globalCounter ++;
this.owner = owner; } }

```
```

class AccountTester
Account accl = new Account("Jim");
Account acc2 = new Account("Jeremy");
System.out.println(accl.id != acc2.id); }

```
- Each instance of a class (e.g., acc1, acc2) has a local copy of each attribute or instance variable (e.g., id).
- Changing acc1.id does not affect acc2.id.
- A static variable (e.g., globalCounter) belongs to the class.
- All instances of the class share a single copy of the static variable.
- Change to globalCounter via c1 is also visible to c2.

\section*{Static Variables (3)}
```

class Account {
static int globalCounter = 1;
int id; String owner;
Account(String owner) {
this.id = globalCounter ;
globalCounter ++;
this.owner = owner;
} }

```
- Static variable globalCounter is not instance-specific like instance variable (i.e., attribute) id is.
- To access a static variable:
- No context object is needed.
- Use of the class name suffices, e.g., Account.globalCounter.
- Each time Account's constructor is called to create a new instance, the increment effect is visible to all existing objects of Account.

\section*{Static Variables (4.1): Common Error}
```

class Client {
Account[] accounts;
static int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;
} }

```
```

class ClientTester {
Client bill = new Client("Bill");
Client steve = new Client("Steve");
Account accl = new Account();
Account acc2 = new Account();
bill.addAccount(accl);
/* correctly added to bill.accounts[0] */
steve.addAccount(acc2);
/* mistakenly added to steve.accounts[1]! */
}

```

\section*{Static Variables (4.2): Common Error}
- Attribute numberOfAccounts should not be declared as static as its value should be specific to the client object.
- If it were declared as static, then every time the addAccount method is called, although on different objects, the increment effect of numberOfAccounts will be visible to all Client objects.
- Here is the correct version:
```

class Client {
Account[] accounts;
int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;
}
}

```

\section*{Static Variables (5.1): Common Error}
```

public class Bank {
public string branchName;
public static int nextAccountNumber = 1;
public static void useAccountNumber() {
System.out.println (branchName + ...);
nextAccountNumber ++;
}
}

```
- Non-static method cannot be referenced from a static context
- Line 4 declares that we can call the method userAccountNumber without instantiating an object of the class Bank.
- However, in Lined 5, the static method references a non-static attribute, for which we must instantiate a Bank object.

\section*{Static Variables (5.2): Common Error}
```

public class Bank {
public string branchName;
public static int nextAccountNumber = 1;
public static void useAccountNumber() {
System.out.printIn (branchName + ...);
nextAccountNumber ++;
}
}

```
- To call useAccountNumber (), no instances of Bank are required:
```

Bank .useAccountNumber();

```
- Contradictorily, to access branchName, a context object is required:
```

Bank b1 = new Bank(); b1.setBranch("Songdo IBK");
System.out.println(bl.branchName);

```

\section*{Static Variables (5.3): Common Error}

There are two possible ways to fix:
1. Remove all uses of non-static variables (i.e., branchName) in the static method (i.e., useAccount Number).
2. Declare branchName as a static variable.
- This does not make sense.
\(\because\) branchName should be a value specific to each Bank instance.

\section*{OOP: Helper Methods (1)}
- After you complete and test your program, feeling confident that it is correct, you may find that there are lots of repetitions.
- When similar fragments of code appear in your program, we say that your code "smells"!
- We may eliminate repetitions of your code by:
- Factoring out recurring code fragments into a new method.
- This new method is called a helper method:
- You can replace every occurrence of the recurring code fragment by a call to this helper method, with appropriate argument values.
- That is, we reuse the body implementation, rather than repeating it over and over again, of this helper method via calls to it.
- This process is called refactoring of your code:

Modify the code structure without compromising correctness.

\section*{OOP: Helper (Accessor) Methods (2.1)}
```

class PersonCollector {
Person[] ps;
final int MAX = 100; /* max \# of persons to be stored */
int nop; /* number of persons */
PersonCollector() {
ps = new Person[MAX];
}
void addPerson(Person p) {
ps[nop] = p;
nop++;
}
/* Tasks:
* 1. An accessor: boolean personExists(String n)
* 2. A mutator: void changeWeightOf(String n, double w)
* 3. A mutator: void changeHeightOf(String n, double h)
*/
}

```

\section*{OOP: Helper (Accessor) Methods (2.2.1)}
```

class PersonCollector {
/* ps, MAX, nop, PersonCollector(), addPerson */
boolean personExists(String n) {
boolean found = false;
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { found = true; } }
return found;
}
void changeWeightOf(String n, double w) {
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { ps[i].setWeight(w); } }
}
void changeHeightOf(String n, double h) {
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { ps[i].setHeight(h); } }
}
}

```

\section*{OOP: Helper (Accessor) Methods (2.2.2)}
class PersonCollector \{ /* code smells: repetitions! */ /* ps, MAX, nop, PersonCollector(), addPerson */ boolean personExists (String \(n\)) \{
boolean found = false;
```

for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { found = true; } }

```
return found;
\}
void changeWeightOf(String \(n\), double w) \{
 for (int \(i=0 ; i<n o p ; i++\)) \{
 if(ps[i].name.equals(n)) \{ ps[i].setWeight(w); \} \}
\}
void changeHeightOf(String \(n\), double h) \{
 for (int \(i=0 ; i<n o p ; i++\)) \(\{\)
 if(ps[i].name.equals(n)) \{ ps[i].setHeight(h); \} \}
\}

\section*{OOP: Helper (Accessor) Methods (2.3)}
```

class PersonCollector { /* Eliminate code smell. */
/* ps, MAX, nop, PersonCollector(), addPerson */
int indexOf (String n) { /* Helper Methods */
int i = -1;
for(int j = 0; j < nop; j ++) {
if(ps[j].name.equals(n)) { i = j; }
}
return i; /* -1 if not found; >= 0 if found. */
}
boolean personExists(String n) { return indexOf (n) >= 0;
void changeWeightOf(String n, double w) {
int i = indexOf (n); if(i >= 0) { ps[i].setWeight(w); }
}
void changeHeightOf(String n, double h) {
int i = indexOf (n); if(i >= O) { ps[i].setHeight(h); }
}
}

```

\section*{OOP: Helper (Accessor) Methods (3.1)}

\section*{Problems:}
- A Point class with x and y coordinate values.
- Accessor double getDistanceFromOrigin().
p.getDistanceFromOrigin() returns the distance between \(p\) and (0,0).
- Accessor double getDistancesto(Point p1, Point p2). p.getDistancesTo(p1, p2) returns the sum of distances between p and p1, and between p and p2.
- Accessor double getTriDistances(Point p1, Point p2). p.getDistancesTo (p1, p2) returns the sum of distances between p and p 1 , between p and p 2 , and between p 1 and p 2 .

\section*{OOP: Helper (Accessor) Methods (3.2)}

\section*{LASSONDE}
class Point \{
double \(x ;\) double \(y\);
double getDistanceFromOrigin() \{
return Math.sqrt (Math.pow \((x-0,2)+\operatorname{Math} \cdot \operatorname{pow}(y-0,2))\); \(\}\) double getDistancesTo(Point p1, Point p2) \{ return
Math.sqrt (Math.pow (x-pl.x, 2) \(+\operatorname{Math} \cdot \operatorname{pow}(y-p 1 . y, 2))\) \(+\)

Math.sqrt (Math. pow (x - p2.x, 2), Math.pow (y - p2.y, 2)) ; \}
double getTriDistances (Point pl, Point p2) \{
return
Math.sqrt (Math.pow (x - pl.x, 2) \(+\operatorname{Math} \cdot \operatorname{pow}(y-p 1 . y, 2))\) \(+\)

Math.sqrt (Math.pow (x - p2.x, 2) \(+\operatorname{Math} \cdot \operatorname{pow}(y-p 2 . y, 2))\) \(+\)

Math.sqrt (Math.pow(p1.x - p2.x, 2)
\(+\)
Math.pow (p1.y - p2.y, 2));

\section*{OOP: Helper (Accessor) Methods (3.3)}
- The code pattern

Math.sqrt(Math.pow(... - ..., 2) + Math.pow(... - ..., 2))
is written down explicitly every time we need to use it.
- Create a helper method out of it, with the right parameter and return types:
```

double getDistanceFrom(double otherX, double otherY) {
return
Math.sqrt(Math.pow(ohterX - this.x, 2)
+
Math.pow(otherY - this.y, 2));
}

```

\section*{OOP: Helper (Accessor) Methods (3.4)}
class Point \{
double \(x ;\) double \(y\);
double getDistanceFrom(double otherX, double otherY) \{ return Math.sqrt(Math.pow(ohterX - this.x, 2) + Math. pow(otherY - this.y, 2));
\}
double getDistanceFromOrigin() \{ return this.getDistanceFrom(0, 0); \}
double getDistancesTo(Point p1, Point p2) \{ return this.getDistanceFrom(p1.x, p1.y) + this.getDistanceFrom(p2.x, p2.y);
\}
double getTriDistances (Point p1, Point p2) \{
return this.getDistanceFrom(p1.x, p1.y) + this.getDistanceFrom(p2.x, p2.y) + p1.getDistanceFrom(p2.x, p2.y)
\} \}

\section*{OOP: Helper (Mutator) Methods (4.1)}
```

class Student
String name;
double balance;
Student(String n, double b) {
name = n;
balance = b;
}
/* Tasks:
* 1. A mutator void receiveScholarship(double val)
* 2. A mutator void payLibraryOverdue(double val)
* 3. A mutator void payCafecoupons(double val)
* 4. A mutator void transfer(student other, double val)
*/
}

```

\section*{OOP: Helper (Mutator) Methods (4.2.1)}
```

class Student {
/* name, balance, Student(String n, double b) */
void receiveScholarship(double val) {
balance = balance + val;
}
void payLibraryOverdue(double val) {
balance = balance - val;
}
void payCafeCoupons(double val) {
balance = balance - val;
}
void transfer(Student other, double val) {
balance = balance - val;
other.balance = other.balance + val;
}
}

```

\section*{OOP: Helper (Mutator) Methods (4.2.2)}
```

class Student { /* code smells: repetitions! */
/* name, balance, Student(String n, double b) */
void receiveScholarship(double val) {
balance = balance + val;
}
void payLibraryOverdue(double val) {
balance = balance - val;
}
void payCafeCoupons(double val) {
balance = balance - val;
}
void transfer(Student other, double val) {
balance = balance - val;
balance = other.balance + val;
}
}

```

\section*{OOP: Helper (Mutator) Methods (4.3)}
```

class Student { /* Eliminate code smell. */
/* name, balance, Student(String n, double b)
void deposit (double val) { /* Helper Method */
balance = balance + val;
}
void withdraw (double val) { /* Helper Method */
balance = balance - val;
}
void receiveScholarship(double val) { this.deposit (val);
void payLibraryOverdue(double val) { this.withdraw (val);
void payCafeCoupons(double val) { this.withdraw (val) }
void transfer(Student other, double val) {
this.withdraw (val);
other. deposit (val);
}
}

```

\section*{Index (1)}

Separation of Concerns:
Model vs. Controller/Tester Object Orientation:
Observe, Model, and Execute
Object-Oriented Programming (OOP)
00 Thinking: Templates vs. Instances (1.1)
OO Thinking: Templates vs. Instances (1.2)
00 Thinking: Templates vs. Instances (2.1)
OO Thinking: Templates vs. Instances (2.2)
00 Thinking: Templates vs. Instances (3)
OOP: Classes \(\approx\) Templates
OOP:
Define Constructors for Creating Objects (1.1) OOP:
Define Constructors for Creating Objects (1.2)
07 ण107
Index (2)
OOP:
Define Constructors for Creating Objects (2.1)
OOP:
Define Constructors for Creating Objects (2.2)
Visualizing Objects at Runtime (1)
Visualizing Objects at Runtime (2.1)
Visualizing Objects at Runtime (2.2)
Visualizing Objects at Runtime (2.3)
Visualizing Objects at Runtime (2.4)
The this Reference (1)
The this Reference (2)
The this Reference (3)
The this Reference (4)
The this Reference (5)
000107

\section*{Index (3)}

The this Reference (6.1): Common Error
The this Reference (6.2): Common Error
OOP: Methods (1.1)
OOP: Methods (1.2)
OOP: Methods (2)
OOP: Methods (3)
OOP: The Dot Notation (1)
OOP: Method Calls
OOP: Class Constructors (1)
OOP: Class Constructors (2)
OOP: Class Constructors (3)
OOP: Class Constructors (4)
OOP: Object Creation (1)
OOP: Object Creation (2)
090107

\section*{Index (4)}

OOP: Object Creation (3)
OOP: Object Creation (4)
OOP: Object Creation (5)
OOP: Object Creation (6)
OOP: Mutator Methods
OOP: Accessor Methods
OOP: Use of Mutator vs. Accessor Methods
OOP: Method Parameters
OOP: Object Alias (1)
OOP: Object Alias (2.1)
OOP: Object Alias (2.2)
Java Data Types (1)
Java Data Types (2)
Java Data Types (3.1)
300107

\section*{Index (5)}

Java Data Types (3.2.1)
Java Data Types (3.2.2)
Java Data Types (3.3.1)
Java Data Types (3.3.2)
The this Reference (7.1): Exercise
The this Reference (7.2): Exercise
OOP: The Dot Notation (2)
OOP: The Dot Notation (3.1)
OOP: The Dot Notation (3.2)
OOP: The Dot Notation (3.3)
OOP: The Dot Notation (3.4)
OOP: Equality (1)
OOP: Equality (2)
Static Variables (1)
210107

\section*{Index (6)}

Static Variables (2)
Static Variables (3)
Static Variables (4.1): Common Error Static Variables (4.2): Common Error Static Variables (5.1): Common Error Static Variables (5.2): Common Error Static Variables (5.3): Common Error OOP: Helper Methods (1) OOP: Helper (Accessor) Methods (2.1) OOP: Helper (Accessor) Methods (2.2.1) OOP: Helper (Accessor) Methods (2.2.2) OOP: Helper (Accessor) Methods (2.3) OOP: Helper (Accessor) Methods (3.1) OOP: Helper (Accessor) Methods (3.2)

\section*{Index (7)}

OOP: Helper (Accessor) Methods (3.3)

OOP: Helper (Accessor) Methods (3.4)

OOP: Helper (Mutator) Methods (4.1)

OOP: Helper (Mutator) Methods (4.2.1)
OOP: Helper (Mutator) Methods (4.2.2)

OOP: Helper (Mutator) Methods (4.3)

\section*{Loops}

\author{
EECS1022: \\ Programming for Mobile Computing Winter 2018 \\ CHEN-WEI WANG
}

\section*{Learning Outcomes}

Understand about Loops :
- Motivation: Repetition of similar actions
- Two common loops: for and while
- Primitive vs. Compound Statements
- Nesting loops within if statements
- Nesting if statements within loops
- Common Errors and Pitfalls

\section*{Motivation of Loops}
- We may want to repeat the similar action(s) for a (bounded) number of times.
e.g., Print the "Hello World" message for 100 times
e.g., To find out the maximum value in a list of numbers
- We may want to repeat the similar action(s) under certain circumstances.
e.g., Keep letting users enter new input values for calculating the BMI until they enter "quit"
- Loops allow us to repeat similar actions either
- for a specified number of times; or
- while a specified condition holds true.

\section*{The for Loop (1)}
```

for (int i = 0; i < 100; i ++) {
System.out.println("Welcome to Java!");
}

```


4 of 76

\section*{The for Loop (2)}
```

for (int i = 0; i< 100; i ++) {
System.out.println("Welcome to Java!");

```
\}
\begin{tabular}{c||c|c|c|c}
\hline\(i\) & \(i<100\) & Enter/Stay Loop? & Iteration & Actions \\
\hline \hline 0 & \(0<100\) & True & 1 & print, \(i++\) \\
\hline 1 & \(1<100\) & True & 2 & print, \(i++\) \\
\hline 2 & \(2<100\) & True & 3 & print, \(i \quad++\) \\
\hline\(\ldots\) & \multicolumn{5}{|c}{} \\
\hline 99 & \(99<100\) & True & 100 & print, \(i \quad++\) \\
\hline 100 & \(100<100\) & False & - & - \\
\hline
\end{tabular}
- The number of iterations (i.e., 100) corresponds to the number of times the loop body is executed.
- \# of times that we check the stay condition (SC) (i.e., 101) is \# of iterations (i.e., 100) plus 1.
[True \(\times 100\); False \(\times 1\)]
5 of 76

\section*{The for Loop (3)}
```

for (int i = 0; i < 100; i ++) {
System.out.println("Welcome to Java!");
}

```
- The "initial-action" is executed only once, so it may be moved right before the for loop.
- The "action-after-each-iteration" is executed repetitively to make progress, so it may be moved to the end of the for loop body.
```

int i = 0;
for (; i < 100; ) {
System.out.println("Welcome to Java!");
i ++;
}

```

\section*{The for Loop: Exercise (1)}

\section*{Compare the behaviour of this program}
```

for (int count = 0; count < 100; count ++) {
System.out.println("Welcome to Java!");
}
and this program
for (int count = 1; count < 201; count += 2) {
System.out.println("Welcome to Java!");
}

```
- Are the outputs same or different?
- It is similar to asking if the two intervals
\[
[0,1,2, \ldots, 100) \text { and }[1,3,5, \ldots, 201)
\]
contain the same number of integers.
- Same, both loop bodies run exactly 100 times and do not depend on the value of count.

\section*{The for Loop: Exercise (2)}

Compare the behaviour of this program
```

int count = 0;
for (; count < 100; ) {
System.out.println("Welcome to Java " + count + "!");
count ++; /* count = count + 1; */
}
and this program

```
```

int count = 1;

```
int count = 1;
for (; count <= 100;) {
 System.out.println("Welcome to Java " + count + "!");
 count ++; /* count = count + 1; */
}
```

Are the outputs same or different? Different, both loop body run exactly 100 times and depend on the value of count.

## The for Loop: Exercise (3)

Compare the behaviour of the following three programs:

```
for (int i = 1; i <= 5 ; i ++) {
 System.out.print(i); }
```

Output: 12345

```
int i = 1;
for (; i <= 5 ;) {
 System.out.print(i);
 i ++; }
```


## Output: 12345

```
int i = 1;
for (; i <= 5 ;) {
 i ++;
 System.out.print(i); }
```

Output: 23456

## The while Loop (1)

```
int count = 0;
while (count < 100) {
 System.out.println("Welcome to Java!");
 count ++; /* count = count + 1; */
}
```



## The while Loop (2)

```
int j = 3;
while (j < 103) {
 System.out.println("Welcome to Java!");
 j ++; /* j = j + 1; */ }
```

| $j$ | $j<103$ | Enter/Stay Loop? | Iteration | Actions |
| :---: | :---: | :---: | :---: | :---: |
| 3 | $3<103$ | True | 1 | print, $j++$ |
| 4 | $4<103$ | True | 2 | print, $j++$ |
| 5 | $5<103$ | True | 3 | print, $j++$ |
| $\ldots$ |  |  |  |  |
| 102 | $102<103$ | True | 100 | print, $j++$ |
| 103 | $103<103$ | False | - | - |

- The number of iterations (i.e., 100) corresponds to the number of times the loop body is executed.
- \# of times that we check the stay condition (SC) (i.e., 101) is \# of iterations (i.e., 100) plus 1.
[ True $\times$ 100; False $\times 1$ ]


## The while Loop: Exercise (1)

Compare the behaviour of this program

```
int count = 0;
while (count < 100) {
 System.out.println("Welcome to Java!");
 count ++; /* count = count + 1; */
}
and this program
```

```
int count = 1;
```

int count = 1;
while (count <= 100) {
System.out.println("Welcome to Java!");
count ++; /* count = count + 1; */
}

```

Are the outputs same or different? Same, both loop bodies run exactly 100 times and do not depend on the value of count.

\section*{The while Loop: Exercise (2)}

Compare the behaviour of this program
```

int count = 0;
while (count < 100) {
System.out.println("Welcome to Java " + count + "!");
count ++; /* count = count + 1; */
}
and this program
int count = 1;
while (count <= 100) {
System.out.println("Welcome to Java " + count + "!");
count ++; /* count = count + 1; */
}

```

Are the outputs same or different? Different, both loop body run exactly 100 times and depend on the value of count.

\section*{Primitive Statement vs. Compound Statementsonos}
- A statement is a block of Java code that modifies value(s) of some variable(s).
- An assignment (=) statement is a primitive statement: it only modifies its left-hand-side (LHS) variable.
- An for or while loop statement is a compound statement: the loop body may modify more than one variables via other statements (e.g., assignments, if statements, and for or while statements).
- e.g., a loop statement may contain as its body if statements
- e.g., a loop statement may contain as its body loop statements
- e.g., an if statement may contain as its body loop statements

\section*{Compound Loop: Exercise (1.1)}

How do you extend the following program
```

System.out.println("Enter a radius value:");
double radius = input.nextDouble();
double area = radius * radius * 3.14;
System.out.println("Area is " + area);

```
with the ability to repeatedly prompt the user for a radius value, until they explicitly enter a negative radius value to terminate the program (in which case an error message is also printed)?
```

System.out.println("Enter a radius value:");
double radius = input.nextDouble();
while (radius >= 0) {
double area = radius * radius * 3.14;
System.out.println("Area is " + area);
System.out.println("Enter a radius value:");
radius = input.nextDouble(); }
System.out.println("Error: negative radius value.");

```

\section*{Compound Loop: Exercise (1.2)}

Another alternative: Use a boolean variable isPositive
```

System.out.println("Enter a radius value:");
double radius = input.nextDouble();
boolean isPositive = radius >= 0;
while (isPositive) {
double area = radius * radius * 3.14;
System.out.println("Area is " + area);
System.out.println("Enter a radius value:");
radius = input.nextDouble();
isPositive = radius >= 0; }
System.out.println("Error: negative radius value.");

```
- In L2: What if user enters 2? What if user enters -2?
- Say in L2 user entered 2, then in L8:

What if user enters 3 ? What if user enters -3 ?
- What if isPositive = radius >= 0 in L9 is missing?

\section*{Compound Loop: Exercise (1.3)}

Another alternative: Use a boolean variable isNegat ive
```

System.out.println("Enter a radius value:");
double radius = input.nextDouble();
boolean isNegative = radius < 0;
while (!isNegative)
double area = radius * radius * 3.14;
System.out.println("Area is " + area);
System.out.println("Enter a radius value:");
radius = input.nextDouble();
isNegative = radius < 0; }
System.out.println("Error: negative radius value.");

```
- In L2: What if user enters 2? What if user enters -2?
- Say in L2 user entered 2, then in L8:

What if user enters 3? What if user enters -3?
- What if isNegative = radius < 0 in L9 is missing?

17 of 76

\section*{Converting between for and while Loops (1) sonvog}
- To convert a while loop to a for loop, leave the initialization and update parts of the for loop empty.
```

while(B)
/* Actions */
}

```
is equivalent to:
```

for( ; B ; ) {
/* Actions */
}

```
where \(B\) is any valid Boolean expression.
- However, when there is not a loop counter (i.e., \(i\), count, etc.) that you intend to explicitly maintain, stick to a while loop.

\section*{Converting between for and while Loops (2) sonos}
- To convert a for loop to a while loop, move the initialization part immediately before the while loop and place the update part at the end of the while loop body.
```

for(int i = 0 ; B ; i ++ ) {
/* Actions */
}

```
is equivalent to:
```

int i = 0;
while(B)
/* Actions */
i ++;
}

```
where \(B\) is any valid Boolean expression.
- However, when there is a loop counter (i.e., i, count, etc.) that you intend to explicitly maintain, stick to a for loop.

\section*{Stay Condition vs. Exit Condition (1)}
- A for loop or a while loop
- stays to repeat its body when its stay condition (SC) evaluates to true.
- exits when its SC evaluates to false.
- Say we have two Boolean variables:
```

boolean iP7sInStock, iP7sPlusInStock;

```
- When does the following loop exit?
```

while(iP7sInStock \&\& iP7sPlusInStock) { ... }

```
! (iP7sInStock \&\& iP7sPlusInStock)
this is equivalent to !iP7sInStock || !iP7sPlusInStock
- When does the following loop exit?
```

while(iP7sInStock || iP7sPlusInStock) { ... }

```
! (iP7sInStock || iP7sPlusInStock)
20 thifs is equivalent to !iP7sInStock \& \& !iP7sPlusInStock

\section*{Stay Condition vs. Exit Condition (2)}

Consider the following loop:
```

int x = input.nextInt();
while(10 <= x || x <= 20)
/* body of while loop */
}

```
- It compiles, but has a logical error. Why?
- Think about the exit condition:
- ! (10 <= x || x <= 20)
- ! (10 <= x) \&\& ! (x <= 20)
- \(10>x \& \& x>20\)
[\(\because\) negation of stay condition]
[\(\because\) law of disjunction]
[\(\because\) law of negation]
- \(10>x \& \& x>20\) is equivalent to false, since there is no number smaller than 10 and larger than 20 at the same time.
- An exit condition being false means that there is no way to exit from the loop!
[infinite loops are BAD!]

\section*{Problems, Data Structures, and Algorithms}
- A well-specified computational problem precisely describes the desired input/output relationship.
- Input: A sequence of \(n\) numbers \(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\)
- Output: The maximum number max in the input array, such that \(\max \geq a_{i}\), where \(1 \leq i \leq n\)
- An instance of the problem: \(\langle 3,1,2,5,4\rangle\)
- A data structure is a systematic way to store and organize data in order to facilitate access and modifications.
- An algorithm is:
- A solution to a well-specified computational problem
- A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an algorithm manipulate well-chosen data structure(s).

\section*{Arrays: A Simple Data Structure}
- An array is a linear sequence of elements.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 940 & 880 & 830 & 790 & 750 & 660 & 650 & 590 & 510 & 440 \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}
- Types of elements in an array are the same.
- an array of integers
- an array of doubles
- an array of characters
- an array of strings
- an array of booleans
[int[]]
[double[]]
[char[]]
[String[]]
boolean[]]
- Each element in an array is associated with an integer index.
- Range of valid indices of an array is constrained by its size.
- The 1st element of an array has the index 0 .
- The 2nd has index 1.
- The \(i^{\text {th }}\) element has index \(i-1\).
- The last element of an array has the index value that is equal to the size of the array minus one.

\section*{Arrays: Initialization and Indexing}
- Initialize a new array object with a fixed size:
```

String[] names = new String[10];

```
- Alternatively, initialize a new array explicitly with its contents:
```

String[] names = {"Alan", "Mark", "Tom"};

```
- Access elements in an array through indexing:
```

String first = names[0];
String last = names[names.length - 1];

```

An illegal index triggers an ArrayInexOutOfBoundsException.

\section*{Arrays: Iterations}
- Iterate through an array using a for-loop:
```

for (int i = 0; i < names.length; i ++) {
System.out.println (names[i]);
}

```
- Iterate through an array using a while-loop:
```

int i = 0;
while (i < names.length) {
System.out.println (names[i]);
i ++;
}

```

\section*{The for Loop: Exercise (3)}

Problem: Given an array numbers of integers, how do you print its average?
e.g., Given array \(\{1,2,6,8\}\), print 4.25 .
int sum \(=0\);
for (int \(i=0 ; i<n u m b e r s . l e n g t h ; i++)\{\) sum \(+=\) numbers[i];
\}
double average = (double) sum / numbers.length;
System.out.println("Average is " + average);
Q: What's the printout when the array is empty
(e.g., int[] numbers \(=\{ \} ;\))?

A: Division by zero (i.e., numbers.length is 0). Fix?

\section*{The for Loop: Exercise (4)}

Problem: Given an array numbers of integers, how do you print its contents backwards?
e.g., Given array \(\{1,2,3,4\}\), print 4321 .

Solution 1: Change bounds and updates of loop counter.
```

for(int i = numbers.length - 1; i >= 0; i --) {
System.out.println(numbers[i]);
}

```

Solution 2: Change indexing.
```

for(int i = 0; i < names.length; i ++) {
System.out.println(numbers[ names.length - i - 1]);
}

```

\section*{The for Loop: Exercise (5)}

Problem: Given an array names of strings, how do you print its contents separated by commas and ended with a period? e.g., Given array \{"Alan", "Mark", "Tom" \}, print "Names: Alan, Mark, Tom."
```

System.out.print("Names:")
for(int i = 0; i < names.length; i ++) {
System.out.print(names[i]);
if (i < names.length - 1) {
System.out.print(", ");
}
}
System.out.println(".");

```

\section*{Array Iterations: Translating for to while (1) 1 Ssomos}
- Use either when you intend to iterate through the entire array.
- int[] \(a=\) new int[100];
```

for(int i = 0; i < a.length; i ++) {

```
```

    /* Actions to repeat. */
    ```
\}

In a for loop, the initialization and update of the loop counter \(i\) are specified as part of the loop header.
- int \(i=0\);
```

while(i < a.length) {

```
 /* Actions to repeat. */
 i ++;
\}

In a while loop, the loop counter \(i\)
- Is initialized outside and before the loop header
- Is updated at the end of the loop body

\section*{Array Iterations: Translating for to while (2)}
- In both the for and while loops:
- The stay/continuation conditions are identical.
- The loop counter \(i\) is initialized only once before first entrance.
- In each iteration, the loop counter \(i\) is executed at the end of the loop body.

\section*{Compound Loop: Exercise (2)}

Given an integer array:
int [] \(a=\{2,1,3,4,-4,10\}\)
How do you print out positive numbers only?
Hint: Use a for loop to iterate over the array. In the loop body, conditionally print out positive numbers only.
```

1

```
for(int i = 0; i < a.length; i ++) {
```

for(int i = 0; i < a.length; i ++) {
if (a[i] > 0) {
if (a[i] > 0) {
System.out.println(a[i]);
System.out.println(a[i]);
}
}
}

```
}
```

Exercise: Write the equivalent using a while loop.

## Compound Loop: Exercise (3.1)

- Problem: Given an array of numbers, determine if it contains all positive number.

```
1 int[] numbers = {2, 3, -1, 4, 5, 6, 8, 9, 100};
2 \text { boolean soFaronlyPosNums = true;}
3 int i = 0;
4 \text { while (i < numbers.length) \{}
5
6
7
8 if (soFarOnlyPosNums) { /* print a msg. */ }
9 else { /* print another msg. */ }
```

- Change Line 5 to soFarOnlyPosNums = numbers[i] > 0; ?
- Hints: Run both versions on the following three arrays:

1. $\{2,3,1,4,5,6,8,9,100\}$
2. $\{2,3,100,4,5,6,8,9,-1\}$
3. $\{2,3,-1,4,5,6,8,9,100\}$
[all positive]
[negative at the end] [negative in the middle]

## Compound Loop: Exercise (3.1) Demo (1)



## Compound Loop: Exercise (3.1) Demo (2)

```int[] ns = {2, 3, -1, 4, 5}; boolean soFarOnlyPosNums = true; int i = 0; while (i < ns.length) { soFarOnlyPosNums = ns[i] > 0; /* wrong */ i = i + 1; }```					
i	soFarOnlyPosNums	$i<n s . l e n g t h$	stay?	$n s[i]$	$n s[i]>0$
0	true	true	true	2	true
1	true	true	true	3	true
2	true	true	true	-1	false
3	false	true	true	4	true
4	true	true	true	5	true
5	true	false	false	-	-

Compound Loop: Exercise (3.2)

Problem: Given an array of numbers, determine if it contains all positive number. Also, for efficiency, exit from the loop as soon as you find a negative number.

```
1 int[] numbers = {2, 3, -1, 4, 5, 6, 8, 9, 100};
boolean soFarOnlyPosNums = true;
int i = 0;
while (soFarOnlyPosNums && i < numbers.length) {
    soFarOnlyPosNums = numbers[i] > 0;
    i = i + 1;
}
if (soFarOnlyPosNums) { /* print a msg. */ }
else { /* print another msg. */ }
```


Compound Loop: Exercise (3.2) Demo

```int[] ns = {2, 3, -1, 4, 5, 6, 8, 9, 100}; boolean soFarOnlyPosNums = true; int i = 0; while (soFarOnlyPosNums && i < ns.length) { soFarOnlyPosNums = ns[i] > 0; i = i + 1; }```					
$i$	soFarOnlyPosNums	$i<n s . l e n g t h$	stay?	$n s[i]$	$n s[i]>0$
0	true	true	true	2	true
1	true	true	true	3	true
2	true	true	true	-1	false
3	false	true	false	-	-

## Compound Loop: Exercise (3.3) Summary

Four possible solutions (posNumsSoFar is initialized as true):

1. Scan the entire array and accumulate the result.
```
for (int i = 0; i < ns.length; i ++) {
 posNumsSoFar = posNumsSoFar && ns[i] > 0; }
```

2. Scan the entire array but the result is not accumulative.
```
for (int i = 0; i < ns.length; i ++) {
 posNumsSoFar = ns[i] > 0; } /* Not working. Why? */
```

3. The result is accumulative until the early exit point.
```
for (int i = 0; posNumsSoFar && i < ns.length; i ++) {
 posNumsSoFar = posNumsSoFar && ns[i] > 0; }
```

4. The result is not accumulative until the early exit point.
```
for (int i = 0; posNumsSoFar && i < ns.length; i ++) {
 posNumsSoFar = ns[i] > 0; }
```


## Compound Loop: Exercise (4)

Given a non-empty integer array, e.g., int [] $a=\{2,1$,
$3,4,-4,10\}$, find out its maximum element.
Hint: Iterate over the array. In the loop body, maintain the maximum found so far and update it when necessary.

```
int max = a[0];
for(int i = 0; i < a.length; i ++) {
 if (a[i] > max) { max = a[i]; } }
System.out.println("Maximum is " + max);
```

Q: Will the program still work if we change the initialization in L1 to int max $=0$ ?
A: No $\because$ Contents of a may be all smaller than this initial value (e.g., all negatives).

Q: Will the program still work if we change the initialization in L2
to int i = 1?
A: YES $\because a[0]>a[0]$ is always false anyway.

## Compound Loop: Exercise (4) Demo

```
1 int[] a = {2, 1, 3, 4, -4, 10}
2 int max = a[0];
3 for(int i = 0; i < a.length; i ++) {
4 if (a[i] > max) {
5 max = a[i]; } }
6 System.out.println("Maximum is " + max);
```

$i$	$a[i]$	$a[i]>\max$	update max?	$\max$
0	-	-	-	2
0	2	false	N	2
1	1	false	N	2
2	3	true	$\mathbf{Y}$	3
3	4	true	$\mathbf{Y}$	4
4	-4	false	N	4
5	10	true	$\mathbf{Y}$	10

## Compound Loop: Exercise (5)

Problem: Given an array a of integers, how do determine if it is sorted in a non-decreasing order?
e.g., Given $\{1,2,2,4\}$, print true; given $\{2,4,3,3\}$ print false.

```
boolean isSorted = true;
for(int i = 0; i < a.length - 1 ; i ++) {
 isSorted = isSorted && (a[i] <= a[i + 1]);
}
```

Alternatively (with early exit):

```
1 boolean isSorted = true;
2 |for(int i = 0; isSorted && i < a.length - 1 ; i ++) {
3 isSorted = a[i] <= a[i + 1];
4
```


## Compound Loop: Exercise (5) Demo [A]

```
1 int[] a = {1, 2, 2, 4}
2 boolean isSorted = true;
3 for(int i = 0; i < a.length - 1; i ++) {
4 isSorted = isSorted && (a[i] <= a[i + 1]);
5 }
```

$i$	$a[i]$	$a[i+1]$	$a[i]<=a[i+1]$	isSorted	exit?
0	-	-	-	true	N
0	1	2	true	true	N
1	2	2	true	true	N
2	2	4	true	true	$\mathbf{Y}$

## Compound Loop: Exercise (5) Demo [B]

```
1 int[] a = {2, 4, 3, 3}
2 boolean isSorted = true;
3 for(int i = 0; i < a.length - 1 ; i ++) {
4 isSorted = isSorted && (a[i] <= a[i + 1]);
5 }
```

$i$	$a[i]$	$a[i+1]$	$a[i]<=a[i+1]$	isSorted	exit?
0	-	-	-	true	N
0	2	4	true	true	N
1	4	3	false	false	N
2	3	3	true	false	$\mathbf{Y}$

## Compound Loop: Exercise (5) Demo [C]

```
int[] a = {2, 4, 3, 3}
boolean isSorted = true;
for(int i = 0; isSorted && i < a.length - 1 ; i ++) {
 isSorted = a[i] <= a[i + 1];
}
```

$i$	$a[i]$	$a[i+1]$	$a[i]<=a[i+1]$	isSorted	exit?
0	-	-	-	true	N
0	2	4	true	true	N
1	4	3	false	false	$\mathbf{Y}$

## Checking Properties of Arrays (1)

- Determine if all elements satisfy a property.
- We need to repeatedly apply the logical conjunction.
- As soon as we find an element that does not satisfy a property, then we exit from the loop.
e.g., Determine if all elements in array a are positive.

```
boolean allPOS = true;
for(int i = 0; i < a.length; i ++) {
 allPOS = allPOS && (a[i] > 0);
}
```

Alternatively (with early exit):
3

```
```

1 boolean allPOS = true;

```
```

1 boolean allPOS = true;
2 for(int i = 0; allPOS \&\& i < a.length; i ++) {
2 for(int i = 0; allPOS \&\& i < a.length; i ++) {

```
 allPOS = a[i] > 0;
```

    allPOS = a[i] > 0;
    }

```
}
```


## Checking Properties of Arrays (1): Demo

```
int[] a = {2, 3, -1, 4, 5, 6, 8, 9, 100};
boolean allPOs = true;
for(int i = 0; allPOS && i < a.length; i ++) {
 allPOS = a[i] > 0;
}
```

$i$	$a[i]$	$a[i]>0$	allPos	exit?
0	-	-	true	N
0	2	true	true	N
1	3	true	true	N
2	-1	false	false	$\mathbf{Y}$

- Question: Why do we initialize allpos as true in Line 2?
- Question: What if we change the stay condition in Line 3 to only i < a.length?
Intermediate values of allpos will be overwritten!


## Checking Properties of Arrays (2)

- Determine if at least one element satisfies a property.
- As soon as we find an element that satisfies a property, then we exit from the loop.
e.g., Is there at lease one negative element in array a?

Version 1: Scanner the Entire Array

```
boolean foundNegative = false;
for(int i = 0; i < a.length; i ++) {
 foundNegative = foundNegative || a[i] < 0;
}
```

Version 2: Possible Early Exit
1

```
boolean foundNegative = false;
for(int i = 0; ! foundNegative && i < a.length; i ++) {
 foundNegative = a[i] < 0;
 }
```


## Checking Properties of Arrays (2) Demo

```
1 int[] a = {2, 3, -1, 4, 5, 6, 8, 9, 100};
2 boolean foundNegative = false;
3 for(int i = 0; ! foundNegative && i < a.length; i ++) {
4 foundNegative = a[i] < 0;
5
```

$i$	$a[i]$	$a[i]<0$	foundNegative	!foundNegative	exit?
0	-	-	false	true	N
0	2	false	false	true	N
1	3	false	false	true	N
2	-1	true	true	false	$\mathbf{Y}$

- Question: Why do we initialize foundNegative as false in Line 2?


## Observations

- In some cases, you must iterate through the entire array in order to obtain the result.
e.g., max, min, total, etc.
- In other cases, you exit from the loop as soon as you obtain the result.
e.g., to know if all numbers positive, it is certainly false as soon as you find the first negative number e.g., to know if there is at least one negative number, it is certainly true as soon as you find the first negative number


## Compound Loop: Exercise (6.1)

Problem: Read an integer from the user, indicating how many strings exactly they want to enter, prompt them for that many strings, and then print them out.

```
How many strings?
3
Enter a string:
Alan
Enter a string:
Mark
Enter a string:
Tom
You entered:
Alan Mark Tom
```


## Compound Loop: Exercise (6.2)

```
Scanner input = new Scanner(System.in);
System.out.println("How many strings?");
int howMany = input.nextInt();
String[] strings = new String[howMany];
for(int i = 0; i < howMany; i ++) {
 System.out.println("Enter a string:");
 String s = input.nextLine();
 strings[i] = s;
}
System.out.println("You entered: ");
for(int i = 0; i < strings.length ; i ++) {
 System.out.print(strings[i] + " ");
}
```

- In L10, the following three integer expressions have the same value: howMany, i, and strings. length.
- Scope of loop counter i declared in L5 is limited to L6 to L8.
- Scope of loop counter i declared in L11 is limited to L12.

50 of 76

## Compound Loop: Exercise (7.1)

Problem: Read an integer from the user, indicating how many strings at most they want to enter, prompt them for up to that many strings, and then print them out as soon as exit is read.

```
How many strings?
4
Enter a string:
Alan
Enter a string:
Mark
Enter a string:
exit
You entered:
Alan Mark
```


## Compound Loop: Exercise (7.2)

```
Scanner input = new Scanner(System.in);
System.out.println("How many strings?");
int howMany = input.nextInt();
boolean userWantsToContinue = true;
String[] strings = new String[howMany];
for(int i = 0; i < howMany && userWantsTocontinue; i ++) {
 System.out.println("Enter a string:");
 String S = input.nextLine();
 userWantsToContinue = !s.equals("exit");
 if(userWantsToContinue) { strings[i] = s; }
}
System.out.println("You entered: ");
for(int i = 0; i < strings.length; i ++) {
 System.out.print(strings[i] + " ");
}
```

In L12, i may be that less than howMany slots are occupied. Is this correct?

## Compound Loop: Exercise (7.3)

How many strings?
4
Enter a string:
Alan
Enter a string:
Mark
Enter a string:
exit
You entered:
Alan Mark null null

- In L5, contents of array strings are all unknown:

$$
\{n u l l, ~ n u l l, ~ n u l l, ~ n u l l\} ~
$$

- In L12, after exiting the loop, only two slots are filled:

$$
\{\text { "Alan", "Mark", null, null\} }
$$

53 of 76

## Compound Loop: Exercise (7.4)

```
Scanner input = new Scanner(System.in);
System.out.println("How many strings?");
int howMany = input.nextInt();
boolean userWantsToContinue = true;
String[] strings = new String[howMany];
int numberOfStringsRead = 0;
for(int i = 0; i < howMany && userWantsToContinue; i ++) {
 System.out.println("Enter a string:");
 String s = input.nextLine();
 userWantsToContinue = !s.equals("exit");
 if(userWantsToContinue) {
 strings[i] = s;
 numberOfStringsRead t+; } }
System.out.println("You entered: ");
for(int i = 0; i < numberOfStringsRead ; i ++) {
 System.out.print(strings[i] + " "); }
```

Is this correct?

## Compound Loop: Exercise (7.5)

## This version also works:

```
Scanner input = new Scanner(System.in);
System.out.println("How many strings?");
int howMany = input.nextInt();
 boolean userWantsToExit = false;
String[] strings = new String[howMany];
int numberOfStringsRead = 0;
for(int i = 0; i < howMany && !userWantsToExit ; i ++) {
 System.out.println("Enter a string:");
 String s = input.nextLine();
 userWantsToExit = s.equals("exit");
 if(!userWantsToExit) {
 strings[i] = s;
 numberOfStringsRead ++; } }
System.out.println("You entered: ");
for(int i = 0; i < numberOfStringsRead; i ++) {
 System.out.print(strings[i] + " "); }
```


## Arrays: Indexing and Short-Circuit Logic (1)

Problem: Ask the user how many integers they would like to input, prompt them accordingly, then ask them for an integer index, and check if the number stored at that index is even (i.e., error if it is odd).

```
How many integers?
2
Enter an integer:
23
Enter an integer:
24
Enter an index:
1
2 4 \text { at index 1 is even.}
```


## Arrays: Indexing and Short-Circuit Logic (2)

```
Scanner input = new Scanner(System.in);
System.out.println("How many integers?");
int howMany = input.nextInt();
int[] ns = new int[howMany];
for(int i = 0; i < howMany; i ++) {
 System.out.println("Enter an integer");
 ns[i] = input.nextInt(); }
System.out.println("Enter an index:");
int i = input.nextInt();
if(ns[i] % 2 == 0) {
 System.out.println("Element at index " + i + " is even."); }
else { /* Error \becausens[i] is odd */ }
```

- Does the above code work?
[ not always!]
- It works if $0<=i \quad \& \& i<n s . l e n g t h$
- It fails on L10 if i < 0 || i >= ns.length
[ ArrayIndexOutOfBoundException ]


## Arrays: Indexing and Short-Circuit Logic (3.1) ssovos

```
Scanner input = new Scanner(System.in);
System.out.println("How many integers?");
int howMany = input.nextInt();
int[] ns = new int[howMany];
for(int i = 0; i < howMany; i ++) {
 System.out.println("Enter an integer");
 ns[i] = input.nextInt(); }
System.out.println("Enter an index:");
int i = input.nextInt();
if(0 <= i && i < ns.length && ns[i] % 2 == 0) {
 println(ns[i] + " at index " + i + " is even."); }
else { /* Error: invalid index or odd ns[i] */ }
```

- Does the above code work?
- Short-circuit effect of conjunction has L-to-R evaluations:
ns[i] \% $2==0$ is evaluated only when the guard
(i.e., $0<=i \& \& i<n s . l e n g t h)$ evaluates to true.


## Arrays: Indexing and Short-Circuit Logic (3.2) ${ }_{\text {SoNOE }}$

```
Scanner input = new Scanner(System.in);
System.out.println("How many integers?");
int howMany = input.nextInt();
int[] ns = new int[howMany];
for(int i = 0; i < howMany; i ++) {
 System.out.println("Enter an integer");
 ns[i] = input.nextInt(); }
System.out.println("Enter an index:");
int i = input.nextInt();
if(i<0 || i >= ns.length || ns[i] % 2 == 1) {
 * Error: invalid index or odd ns[i] */ }
else { println(ns[i] + " at index " + i + " is even."); }
```

- Does the above code work?
[ always! ]
- Short-circuit effect of disjunction has L-to-R evaluations:
ns [i] \% 2 == 1 is evaluated only when the guard (i.e., i < 0 || i >= ns.length) evaluates to false.


## Arrays: Indexing and Short-Circuit Logic (4)

- $\because$ Short-circuit evaluations go from left to right.
$\therefore$ Order in which the operands are placed matters!
- Consider the following changes to L10:
- ns[i] $\% 2==0 \& \& 0<=i \& \& i<n s . l e n g t h$

What if input $i$ is s.t. $i<0$ ?
[ crash]
[ crash]

- $0<=i \& \& n s[i] \div 2==0$ \&\& i < ns.length

What if input $i$ is s.t. $i<0$ ?
What if input $i$ is s.t. $i>=$ ns.length?
[ works]
[ crash]

- i < ns.length \&\& ns[i] \% $2==0$ \&\& $0<=i$ What if input $i$ is s.t. $i<0$ ?
What if input i is s.t. i >= ns.length?
[ works]
- When does each change to L10 work and crash?
$\circ n s[i] \div 2==1| | i<0| | i>=n s . l e n g t h$
$\circ i<0| | n s[i] \div 2==1| | i>=n s . l e n g t h$
$\circ i>=n s . l e n g t h| | n s[i] \div 2==1| | i<0$


## Parallel Loops vs. Nested Loops

- Parallel Loops :

Each loop completes an independent phase of work. e.g., Print an array from left to right, then right to left.

```
System.out.println("Left to right:");
for(int i = 0; i < a.length; i ++) {
 System.out.println(a[i]); }
System.out.println("Right to left:");
for(int i = 0; i < a.length; i ++) {
 System.out.println(a[a.length - i - 1]); }
```

- Nested Loops :

Loop counters form all combinations of indices.

```
for(int i = 0; i < a.length; i ++) {
 for(int j = 0; j < a.length; j ++) {
 System.out.println("(" + i + ", " + j + ")");
 } }
```


## Nested Loops: Finding Duplicates (1)

- Given an integer array a, determine if it contains any duplicates. e.g., Print false for $\{1,2,3,4\}$. Print true for $\{1,4,2,4\}$.
- Hint: When can you conclude that there are duplicates?

As soon as we find that two elements at difference indices happen to be the same

```
boolean hasDup = false;
for(int i = 0; i < a.length; i ++) {
 for(int j = 0; j < a.length; j ++) {
 hasDup = hasDup | | (i != j && a[i] == a[j]);
 } /* end inner for */ } /* end outer for */
System.out.println(hasDup);
```

- Question: How do you modify the code, so that we exit from the loops as soon as the array is found containing duplicates?

```
\circ L2: for(...;
 !hasDup
 && i < a.length; ...)
 \circ L3: for(...; !hasDup && j < a.length; ...)
 \circ L4:hasDup = (i != j && a[i] == a[j]);
62 of 76
```


## Nested Loops: Finding Duplicates (2)

```
/* Version 1 with redundant scan */
int[] a = {1, 2, 3}; /* no duplicates */
boolean hasDup = false;
for(int i = 0; i < a.length; i ++) {
 for(int j = 0; j < a.length; j ++) {
 hasDup = hasDup || (i != j && a[i] == a[j]);
 } /* end inner for */ } /* end outer for */
System.out.println(hasDup);
```

$i$	$j$	$i \quad!=j$	$a[i]$	$a[j]$	$a[i]==a[j]$	hasDup
0	0	false	1	1	true	false
0	1	true	1	2	false	false
0	2	true	1	3	false	false
1	0	true	2	1	false	false
1	1	false	2	2	true	false
1	2	true	2	3	false	false
2	0	true	3	1	false	false
2	1	true	3	2	false	false
2	2	false	3	3	true	false

## Nested Loops: Finding Duplicates (3)

```
/* Version 1 with redundant scan and no early exit */
int[] a = {4, 2, 4}; /* duplicates: a[0] and a[2] */
boolean hasDup = false;
for(int i = 0; i < a.length; i ++) {
 for(int j = 0; j < a.length; j ++) {
 hasDup = hasDup || (i != j && a[i] == a[j]);
 } /* end inner for */ } /* end outer for */
System.out.println(hasDup);
```

$i$	$j$	$i \quad$ ! $=j$	$a[i]$	$a[j]$	$a[i]==a[j]$	hasDup
0	0	false	4	4	true	false
0	1	true	4	2	false	false
0	2	true	4	4	true	true
1	0	true	2	4	false	true
1	1	false	2	2	true	true
1	2	true	2	4	false	true
2	0	true	4	4	true	true
2	1	true	4	2	false	true
2	2	false	4	4	true	true

## Nested Loops: Finding Duplicates (4)



## Nested Loops: Finding Duplicates (5)

```
1 / ~ / * ~ V e r s i o n ~ 2 ~ w i t h ~ r e d u n d a n t ~ s c a n ~ a n d ~ e a r l y ~ e x i t ~ * /
2 int[] a = {4, 2, 4}; /* duplicates: a[0] and a[2] */
3 boolean hasDup = false;
4 for(int i = 0; i < a.length && !hasDup; i ++) {
5 for(int j = 0; j < a.length && !hasDup; j ++) {
6 | hasDup = i != j&& a[i] == a[j];
7 } /* end inner for */ } /* end outer for */
8 System.out.println(hasDup);
```

$i$	$j$	$i \quad!=j$	$a[i]$	$a[j]$	$a[i]==a[j]$	hasDup
0	0	false	4	4	true	false
0	1	true	4	2	false	false
0	2	true	4	4	true	true

## Nested Loops: Finding Duplicates (6)

The previous two versions scan all pairs of array slots, but with redundancy: e.g., a[0] == a[2] and a[2] == a[0].

```
/* Version 3 with no redundant scan */
int[] a = {1, 2, 3, 4}; /* no duplicates */
boolean hasDup = false;
for(int i = 0; i < a.length && !hasDup ; i ++) {
 for(int j = i + 1 ; j < a.length && !hasDup ; j ++) {
 hasDup = a[i] == a[j];
 } /* end inner for */ } /* end outer for */
System.out.println(hasDup);
\begin{tabular}{c|c|c|c|c||c}
i & \(j\) & \(a[i]\) & \(a[j]\) & \(a[i]==a[j]\) & hasDup \\
\hline \hline 0 & 1 & 1 & 2 & false & false \\
0 & 2 & 1 & 3 & false & false \\
0 & 3 & 1 & 4 & false & false \\
\hline 1 & 2 & 2 & 3 & false & false \\
1 & 3 & 2 & 4 & false & false \\
\hline 2 & 3 & 3 & 4 & false & false
\end{tabular}
```


## Nested Loops: Finding Duplicates (7)

```
/* Version 3 with no redundant scan:
 * array with duplicates causes early exit
int[] a = {1, 2, 3, 2}; /* duplicates: a[1] and a[3] */
boolean hasDup = false;
for(int i = 0; i < a.length && !hasDup ; i ++) {
 for(int j = i + 1; j < a.length && !hasDup ; j ++) {
 hasDup = a[i] == a[j];
} /* end inner for */ } /* end outer for */
System.out.println(hasDup);
```

$i$	$j$	$a[i]$	$a[j]$	$a[i]==a[j]$	hasDup
0	1	1	2	false	false
0	2	1	3	false	false
0	3	1	2	false	false
1	2	2	3	false	false
1	3	2	2	true	true

## Common Error (1): Improper Initialization of Loop Counter

```
boolean userWantsToContinue;
while (userWantsToContinue)
 /* some computations here */
 String answer = input.nextLine();
 userWantsToContinue = answer.equals("Y");
}
```

The default value for an initialized boolean variable is false.
Fix?

```
boolean userWantsToContinue = true;
while (userWantsToContinue) {
 /* some computations here */
 String answer = input.nextLine();
 userWantsToContinue = answer.equals("Y");
}
```


## Common Error (2): Improper Stay Condition

```
for (int i = 0; i <= a.length; i ++) {
 System.out.println(a[i]);
}
```

The maximum index for array a is a.length - 1
Fix?

```
for (int i = 0; i < a.length; i ++) {
 System.out.println(a[i]);
}
```


## Common Error (3): Improper Update to Loop Counter

Does the following loop print all slots of array a?

```
int i = 0;
while (i < a.length) {
 i ++;
 System.out.println(a[i]);
}
```

The indices used to print will be: 1, 2, 3, ..., a. length
Fix?

```
int i = 0;
while (i < a.length) {
 System.out.println(a[i]);
 i ++;
```

```
int i = 0;
while (i < a.length) {
 i ++;
 System.out.println(a[i - 1]);
}
```


## Common Error (4): Improper Update of Stay Condition

```
String answer = input.nextLine();
boolean userWantsToContinue = answer.equals("Y");
while (userWantsToContinue) { / * stay condition (SC) */
 / * some computations here
 answer = input.nextLine();
}
```

What if the user's answer in L1 is simply Y? An infinite loop!!
$\because$ SC never gets updated when a new answer is read. Fix?

```
String answer = input.nextLine();
boolean userWantsToContinue = answer.equals("Y");
while (userWantsToContinue) {
 / * some computations here
 answer = input.nextLine();
 userWantsToContinue = answer.equals("Y");
}
```


## Common Error (5): Improper Start Value of Loop Counter

```
int i = a.length - 1;
while (i >= 0) {
 System.out.println(a[i]); i --; }
while (i < a.length) {
 System.out.println(a[i]); i ++; }
```

The value of loop counter $i$ after the first while loop is -1 !
Fix?

```
int i = a.length - 1;
while (i >= 0) {
 System.out.println(a[i]); i --; }
i = 0;
while (i < a.length) {
 System.out.println(a[i]); i ++; }
```


## Common Error (6): Wrong Syntax

How about this?

```
while(int i = 0; i < 10; i ++) { ... }
```

You meant:

```
for(int i = 0; i < 10; i ++) {... }
```

How about this?

```
for(i < 10) { ... }
```

You meant:

```
while(i < 10) { ... }
```

or
for ( ; i < 10 ; ) \{ ... \}

## Common Error (7): Misplaced Semicolon

Semicolon (; ) in Java marks the end of a statement (e.g., assignment, if statement, for, while).

```
int[] ia = {1, 2, 3, 4};
for (int i = 0; i < 10; i ++); {
 System.out.println("Hello!");
}
```


## Output?

```
Hello!
```

Fix?

```
for (int i = 0; i < 10; i ++) {
 System.out.println("Hello!");
}
```


## Index (1)

Learning Outcomes
Motivation of Loops
The for Loop (1)
The for Loop (2)
The for Loop (3)
The for Loop: Exercise (1)
The for Loop: Exercise (2)
The for Loop: Exercise (3)
The while Loop (1)
The while Loop (2)
The while Loop: Exercise (1)
The while Loop: Exercise (2)
Primitive Statement vs. Compound Statement
Compound Loop: Exercise (1.1)
700170

## Index (2)

Compound Loop: Exercise (1.2)
Compound Loop: Exercise (1.3)
Converting between for and while Loops (1)
Converting between for and while Loops (2)
Stay Condition vs. Exit Condition (1)
Stay Condition vs. Exit Condition (2)
Problems, Data Structures, and Algorithms
Arrays: A Simple Data Structure
Arrays: Initialization and Indexing
Arrays: Iterations
The for Loop: Exercise (3)
The for Loop: Exercise (4)
The for Loop: Exercise (5)
Array Iterations: Translating for to while (1)
T70170
Index (3)
Array Iterations: Translating for to while (2)
Compound Loop: Exercise (2)
Compound Loop: Exercise (3.1)
Compound Loop: Exercise (3.1) Demo (1)
Compound Loop: Exercise (3.1) Demo (2)
Compound Loop: Exercise (3.2)
Compound Loop: Exercise (3.2) Demo
Compound Loop: Exercise (3.3) Summary
Compound Loop: Exercise (4)
Compound Loop: Exercise (4) Demo
Compound Loop: Exercise (5)
Compound Loop: Exercise (5) Demo [A]
Compound Loop: Exercise (5) Demo [B]
Compound Loop: Exercise (5) Demo [C]

## Index (4)

Checking Properties of Arrays (1)
Checking Properties of Arrays (1): Demo
Checking Properties of Arrays (2)
Checking Properties of Arrays (2) Demo
Observations
Compound Loop: Exercise (6.1)
Compound Loop: Exercise (6.2)
Compound Loop: Exercise (7.1)
Compound Loop: Exercise (7.2)
Compound Loop: Exercise (7.3)
Compound Loop: Exercise (7.4)
Compound Loop: Exercise (7.5)
Arrays: Indexing and Short-Circuit Logic (1)
Arrays: Indexing and Short-Circuit Logic (2) 190170

## Index (5)

Arrays: Indexing and Short-Circuit Logic (3.1)
Arrays: Indexing and Short-Circuit Logic (3.2)
Arrays: Indexing and Short-Circuit Logic (4)
Parallel Loops vs. Nested Loops
Nested Loops: Finding Duplicates (1)
Nested Loops: Finding Duplicates (2)
Nested Loops: Finding Duplicates (3)
Nested Loops: Finding Duplicates (4)
Nested Loops: Finding Duplicates (5)
Nested Loops: Finding Duplicates (6)
Nested Loops: Finding Duplicates (7)
Common Error (1):
Improper Initialization of Loop Counter
2000170

## Index (6)

Common Error (2): Improper Stay Condition

Common Error (3):
Improper Update to Loop Counter
Common Error (4): Improper Update of Stay Condition

Common Error (5): Improper Start Value of Loop Counter

Common Error (6): Wrong Syntax
Common Error (7): Misplaced Semicolon

## Two-Dimensional Arrays

EECS1022:
Programming for Mobile Computing
Winter 2018

Chen-Wei Wang

## 2-D Arrays: Motivating Example (1)

Consider a table of distances between seven cities:

	Chicago	Boston	New York	Atlanta	Miami	Dallas	Houston
Chicago	0	983	787	714	$\mathbf{1 3 7 5}$	967	1087
Boston	983	0	214	1102	1763	1723	1842
New York	787	214	0	888	1549	1548	1627
Atlanta	714	1102	888	0	661	781	810
Miami	1375	1763	1549	661	0	1426	1187
Dallas	967	1723	1548	781	1426	0	239
Houston	1087	1842	1627	810	1187	239	0

As part of the program for an airline reservation system, the distance of a trip with multiple stop-overs is to be calculated in order to accumulate the milage of frequent flyers.
e.g., A trip \{Boston, Chicago, Miami, Houston\} takes 983 (B-to-C) +1375 (C-to-M) $+1187(\mathrm{M}$-to-H) $=3545$ miles
Question: How do you manipulate such information in Java?

## 2-D Arrays: Motivating Example (2.1)

Here is a solution based on what we've learnt so far:

- Fix the "positions" of cities in the table as constants:

```
final int CHICAGO = 0;
final int BOSTON = 1;
final int MIAMI = 4;
```

- Represent each (horizontal) row using a one-dimensional array:

```
int[] fromChicago = {0, 983, 787, 714, 1375, 967, 1087}
int[] fromBoston = {983, 0, 214, 1102, 1763, 1723, 1842}
int[] fromMiami = {1375, 1763, 1549, 661, 0, 1426, 1187}
```

- Given an itinerary \{Boston, Chicago, Miami, Houston\}, choose the corresponding arrays in the right order:

```
int[] dist = fromBoston[CHICAGO]
 + fromChicago[MIAMI]
 + fromMiami[HUSTON];
```


## 2-D Arrays: Motivating Example (2.2)

What if cities of an itinerary are read from the user?

```
Scanner input = new Scanner(System.in);
System.out.println("How many cities?");
int howMany = input.nextInt(); input.nextLine();
String[] trip = new String[howMany];
/* Read cities in the trip from the user. */
for(int i = 0; i < howMany; i ++) {
 System.out.println("Enter a city:");
 trip[i] = input.nextLine();
}
/* Add up source-to-destination distances. */
int dist = 0;
for(int i = 0; i < howMany - 1 ; i ++) {
 String src = trip[i];
 String dst = trip[i + 1];
 / * How to accumulate the distance between src and dst? */
}
```


## 2-D Arrays: Motivating Example (2.3)

Given a source and a destination, we need to explicitly select:

- The corresponding source row
- The corresponding destination index
[e.g., fromBoston]
[e.g., CHICAGO]

13
14
15
16
17
18
19
20
21

```
String src = trip[i];
String dst = trip[i + 1];
if(src.equals("Chicago")) {
 if(dst.equals("Boston")) {dist += fromChicago[BOSTON];}
 else if(dst.equals("New York")) {dist += fromChicago[NY];}
}
else if(src.equals("Boston")) {
 if(dst.equals("Chicago")) {dist += fromBoston[CHICAGO];}
 else if(dst.equals("NEW YORK")) {dist += fromBoston[NY];}
}
...
```

- Drawback?
$7 \times(7-1)$ possibilities to program!


## 2-D Arrays: Initialization (1)

A 2D array is really an array of arrays

[0][1][2][3][4]					
[0]	0	0	0	0	0
[1]	0	0	0	0	0
[2]	0	0	0	0	0
[3]	0	0	0	0	0
[4]	0	0	0	0	0

matrix $=$ new int[5][5];

$[0][1][2]$			
$[0]$	1	2	3
$[1]$	4	5	6
$[2]$	7	8	9
$[3]$	10	11	12

## 2-D Arrays: Initialization (1)

A $2 D$ array may be initialized either at the time of declaration, or after declaration.
int[][] array $=\{$
$\{1,2,3\}$,
$\{4,5,6\}$,
$\{7,8,9\}$,
$\{10,11,12\}$
$\} ;$

$$
\begin{aligned}
& \operatorname{int}[[][] \operatorname{array}=\text { new int }[4][3] ; \\
& \operatorname{array}[0][0]=1 ; \operatorname{array}[0][1]=2 ; \operatorname{array}[0][2]=3 ; \\
& \operatorname{array}[1][0]=4 ; \operatorname{array}[1][1]=5 ; \operatorname{array}[1][2]=6 ; \\
& \operatorname{array}[2][0]=7 ; \operatorname{array}[2][1]=8 ; \operatorname{array}[2][2]=9 ; \\
& \operatorname{array}[3][0]=10 ; \operatorname{array}[3][1]=11 ; \operatorname{array}[3][2]=12 ;
\end{aligned}
$$

## 2-D Arrays: Lengths (1)

For a 2 D array, you may query about its size, or sizes of its component arrays.


## 2-D Arrays: Lengths (2)

For a 2 D array, its components may have different sizes. e.g.,

```
int[][] triangleArray={
```

    \(\{1,2,3,4,5\}\),
    \(\{2,3,4,5\}\),
    \(\{3,4,5\}\),
    \(\{4,5\}\),
    \{5\}
    \};


## 2-D Arrays: Assignments

For a $2 D$ array, access a slot via its row and column. e.g.,

[0][1][2][3][4]					
[0]	0	0	0	0	0
[1]	0	0	0	0	0
[2]	0	7	0	0	0
[3]	0	0	0	0	0
[4]	0	0	0	0	0

## Revisiting the Motivating Example

```
double[][] distances = {
 {0, 983, 787, 714, 1375, 967, 1087},
 {983, 0, 214, 1102, 1763, 1723, 1842},
 {787, 214, 0, 888, 1549, 1548, 1627},
 {714, 1102, 888, 0, 661, 781, 810},
 {1375, 1763, 1549, 661, 0, 1426, 1187},
 {967, 1723, 1548, 781, 1426, 0, 239},
 {1087, 1842, 1627, 810, 1187, 239, 0},
};
```

```
final int CHICAGO = 0;
final int BOSTON = 1;
final int HOUSTON = 6;
int MiamiToBoston = distances[MIAMI][BOSTON];
int BostonToNewYork = distances[BOSTON][NEWYORK];
int MiamiToNewYork = MiamiToBoston + BostonToNewYork;
```

11 of 21

## Two Dimensional Arrays: Example (1)

Problem: Given a 2D array a of integers, print out all its values: first row, second row, third row, and so on.
4
5
6

```
```

```
1 for(int row = 0; row< a.length; row ++) {
```

```
1 for(int row = 0; row< a.length; row ++) {
2 System.out.print("Row" + row);
2 System.out.print("Row" + row);
3 for(int col = 0; col < a[row].length; col ++) {
3 for(int col = 0; col < a[row].length; col ++) {
```

        System.out.print(a[row][col]);
    ```
 System.out.print(a[row][col]);
 }
 }
 System.out.println(); }
```

    System.out.println(); }
    ```
- In L1, we write a.length so that it will print out exactly that many rows in the matrix.
- In L3, we write a[row].length so that it will print out according to how large the row a [row] is.

\section*{Two Dimensional Arrays: Example (2)}

Problem: Given a 2D array a of integers, calculate the average of its values.
```

int total = 0;
int numOfElements = 0;
for(int row = 0; row < a.length; row ++) {
for(int col = 0; col < a[row].length; col ++) {
total += a[row][col];
numOfElements ++;
}
}
double average = ((double) total) / numOfElements;
System.out.println("Average is " + average);

```
- Why is the numOfElements counter necessary?
- Divide total by a.length * a[0].length instead?

\section*{Two Dimensional Arrays: Example (3)}

Problem: Given a 2D array a of integers, find out its maximum and minimum values.
```

int max = a[0][0];
int min = a[0][0];
for(int row = 0; row < a.length; row ++) {
for(int col = 0; col < a[row].length; col ++) {
if (a[row][cOl] > max) {
max =a[row][col];
}
if (a[rOW][COL] < min) {
min =a[rOW][cOl];
}
}
}
System.out.println("Maximum is " + max);
System.out.println("Minimum is " + min);

```

\section*{Two Dimensional Arrays: Example (4.1)}

Problem: Given a 2D array a of integers, find out the row which has the maximum sum.
```

```
1 int maxRow= 0 ; int maxSum = 0;
```

```
1 int maxRow= 0 ; int maxSum = 0;
2 for(int col=0; col < a[0].length; col ++){maxSum += a[0][col];}
2 for(int col=0; col < a[0].length; col ++){maxSum += a[0][col];}
3 for(int row = 1 ; row < a.length; row ++) {
3 for(int row = 1 ; row < a.length; row ++) {
```

    int sum = 0;
    ```
 int sum = 0;
 for(int col = 0; col < a[row].length; col ++) {
 for(int col = 0; col < a[row].length; col ++) {
 sum += a[rOW][COL];
 sum += a[rOW][COL];
 }
 }
 if (sum > maxSum) {
 if (sum > maxSum) {
 maxROW = row;
 maxROW = row;
 maxSum = sum;
 maxSum = sum;
 }
 }
}
}
System.out.print("Row at index " + maxRow);
System.out.print("Row at index " + maxRow);
System.out.println(" has the maximum sum " + maxSum);
```

System.out.println(" has the maximum sum " + maxSum);

```

Q: What if statement int sum \(=0\); at \(L 4\) is moved, outside the for-loop, between L2 and L3?

\section*{Two Dimensional Arrays: Example (5)}

Problem: Given a 2D array a of integers, determine if all elements are positive.
```

boolean allPos = true;
for(int row = 0; row < a.length; row ++) {
for(int col = 0; col < a[row].length; col ++) {
allPos = allPos \&\& a[row][col] > 0;
} }
if (allPos) { /* print */ } else { /* print */ }

```

Alternatively (with early exit):
```

boolean allPOS = true;
for(int row = 0; allPOS \&\& row < a.length; row ++) {
for(int col = 0; allPOS \&\& col < a[row].length; col ++) {
allPOS = a[rOW][cOl] > 0;
} }
if (allPos) { /* print */ } else { /* print */ }

```

\section*{Two Dimensional Arrays: Example (6.1)}

Problem: Given a 2D array a of integers, determine if it is a rectangle (i.e., each row has the same number of columns).
```

if(a.length == 0) { /* empty array can't be a rectangle */ }
else { /* a.length > 0 */
int assumedLength = a[0].length;
boolean isRectangle = true;
for(int row = 0; row < a.length; row ++) {
isRectangle =
isRectangle \&\& a[row].length == assumedLength;
}
if (isRectangle) { /* print */ } else { /* print */ }
}

```

Exercise: Change the above code so that it exits from the loop as soon as it is found that the 2-D array is not a rectangle.

\section*{Two Dimensional Arrays: Example (6.2)}

\begin{abstract}
Problem: Given a 2D array a of integers, determine if it is a square (i.e., each row has the same number of columns, and that number is equal to the number of rows of the 2-D array).
\end{abstract}
```

if(a.length == 0) { /* empty array can't be a square */ }
else { /* a.length > 0 */
int assumedLength = a.length;
boolean isSquare = a[0].length == assumedLength;
for(int row = 0; row < a.length; row ++) {
isSquare =
isSquare \&\& a[row].length == assumedLength;
}
if (isSquare) { /* print */ } else { /* print */ }
}

```

Exercise: Change the above code so that it exits from the loop as soon as it is found that the 2-D array is not a square.

\section*{Two Dimensional Arrays: Example (7)}
- Problem: Given a 2D array a of integers, print out the lower-left triangular area of elements.
Assumption: The input 2D array is of a square shape.
```

for(int row = 0; row < a.length ; row ++) {
for(int col = 0; col <= row ; col ++) {
System.out.print(a[row][col]); }
System.out.println(); }

```
- Problem: upper-left triangular area?
```

for(int row = 0; row < a.length ; row ++) {
for(int col = 0; col < a[row].length - row ; col ++) {
System.out.print(a[row][col]); }
System.out.println(); }

```

Exercises: upper-right triangle? lower-right triangle?

2-D Arrays: Example (8)
Consider the tic-tac-toe game:

\section*{Index (1)}

2-D Arrays: Motivating Example (1)
2-D Arrays: Motivating Example (2.1)
2-D Arrays: Motivating Example (2.2)
2-D Arrays: Motivating Example (2.3)
2-D Arrays: Initialization (1)
2-D Arrays: Initialization (1)
2-D Arrays: Lengths (1)
2-D Arrays: Lengths (2)
2-D Arrays: Assignments
Revisiting the Motivating Example
Two Dimensional Arrays: Example (1)
Two Dimensional Arrays: Example (2)
Two Dimensional Arrays: Example (3)
Two Dimensional Arrays: Example (4.1)

\section*{Index (2)}

Two Dimensional Arrays: Example (5)

Two Dimensional Arrays: Example (6.1)

Two Dimensional Arrays: Example (6.2)

Two Dimensional Arrays: Example (7)

2-D Arrays: Example (8)

\section*{Using API in Java}

\author{
EECS1022: \\ Programming for Mobile Computing \\ Winter 2018 \\ Chen-Wei Wang
}

\section*{Learning Outcomes}

Understand:
- Self-Exploration of Java API
- Method Signature
- Parameters vs. Arguments
- Non-Static Methods and Collection Library
- Static Methods and Math Library

\section*{Application Programming Interface (API)}
- An Application Programming Interface (API) is a collection of programming facilities for reuse and building your applications.
- Java API contains a library of classes (e.g., Math, ArrayList, HashMap) and methods (e.g., sqrt, add, remove):
https://docs.oracle.com/javase/8/docs/api/
- To use a library class, put a corresponding import statement:
```

import java.util.ArrayList;
class MyClass {
ArrayList myList;
}

```
- Each time before you start solving a problem:
- As a beginner, crucial to implement everything by yourself.
- As you get more experienced, first check to see if it is already solved by one of the library classes or methods.

Rule of the Thumb: Do Not Reinvent the Wheel!
3 of 13

\section*{Classes vs. Methods}
- A method is a named block of code reusable by its name. e.g., As a user of the sqrt method (from the Math class):
- Implementation code of sqrt is hidden from you.
- You only need to know how to call it in order to use it.
- A static method can be called using the name of its class. e.g., By calling Math.sqrt (1.44), you are essentially reusing a block of code, hidden from you, that will be executed and calculate the square root of the input value you supply (i.e., 1.44).
- A non-static method must be called using a context object e.g., Illegal to call ArrayList.add ("Suyeon"). Instead:
```

ArrayList<String> list = new ArrayList<String>();
list.add("Suyeon")

```
- A class contains a collection of related methods. e.g., The Math class supports methods related to more advanced mathematical computations beyond the simple arithmetical operations we have seen so far (i.e., +,,\(- \star\), , , and \%).
4 of 13

\section*{Parameters vs. Arguments}
- Parameters of a method are its input variables that you read from the API page.
e.g., double pow(double a, double b) has:
- two parameters a and b, both of type double
- one output/return value of type double
- Arguments of a method are the specific input values that you supply/pass in order to use it.
e.g., To use the pow method to calculate \(3.4^{5}\), we call it by writing Math. pow (3.4, 5).
- Argument values must conform to the corresponding parameter types.
e.g., Math.pow("three point four", "5") is an invalid call!

\section*{Signature of a Method}

Signature of a method informs users of the intended usage:
- Name of method
- List of inputs (a.k.a. parameters) and their types
- Type of the output (a.k.a. return type)
- Methods with the void return type are mutators.
- Methods with non-void return types are accessors.
e.g. In Java API, the Method Summary section lists signatures and descriptions of methods.

\section*{Example Method Signatures: Math Class}
- The class Math contains methods for performing basic numeric operations such as the elementary exponential, logarithm, square root, and trigonometric functions.
\begin{tabular}{ll}
\hline Modifier and Type & Method and Description \\
static double & \begin{tabular}{l}
abs(double a) \\
Returns the absolute value of a double value.
\end{tabular} \\
static float & \begin{tabular}{l}
abs(float a) \\
Returns the absolute value of a float value.
\end{tabular} \\
\hline static int & \begin{tabular}{l}
abs(int a) \\
Returns the absolute value of an int value.
\end{tabular} \\
static long & \begin{tabular}{l}
abs(long a) \\
Returns the absolute value of a long value.
\end{tabular}
\end{tabular}
- Method Overloading : multiple methods sharing the same name, but with distinct lists of parameters (e.g., abs method).
- The abs method being static allows us to write Math.abs(-2.5).
7 of 13

\section*{Case Study: Guessing a Number}

\section*{Problem: Your program:}
- internally and randomly sets a number between 0 and 100
- repeatedly asks the user to enter a guess, and hints if they got it, or should try something smaller or larger
- once the user got it and still wishes to continue, repeat the game with a different number

\section*{Hints:}
```

static double random()
Returns a double value with a positive sign, greater than or equal to
0.0 and less than 1.0.

```
(int) Math. random() * 100
Or
(int) (Math.random() * 100)
??

\section*{Example Method Signatures: ArrayList Class.assonoE}

An ArrayList acts like a "resizable" array (i.e., indices start with \(0)\).
\begin{tabular}{ll}
int & \begin{tabular}{l}
size() \\
Returns the number of elements in this list.
\end{tabular} \\
boolean & \begin{tabular}{l}
add(E e) \\
Appends the specified element to the end of this list. \\
add(int index, E element) \\
Inserts the specified element at the specified position in this list.
\end{tabular} \\
boid \\
contains (Object o) \\
Returns true if this list contains the specified element. \\
boolean & \begin{tabular}{l}
remove(int index) \\
Removes the element at the specified position in this list. \\
remove(Object o) \\
Removes the first occurrence of the specified element from this list, if it \\
is present.
\end{tabular} \\
int & \begin{tabular}{l}
index0f(0bject o) \\
Returns the index of the first occurrence of the specified element in this \\
list, or -1 if this list does not contain the element.
\end{tabular} \\
get(int index) \\
Returns the element at the specified position in this list.
\end{tabular}

\section*{Case Study: Using an ArrayList}
```

import java.util.ArrayList;
public class ArrayListTester {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<String>();
println(list.size());
println(list.contains("A"));
println(list.indexOf("A"));
list.add("A");
list.add("B");
println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
list.add(1, "C");
println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
list.remove("C");
println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
for(int i = 0; i < list.size(); i ++) {
println(list.get(i));
}
}
}

```

See Java Data Types (3.3.1) - (3.3.2) in Classes and Objects for another example on ArrayList.

\section*{Example Method Signatures: HashTable Classonome}

A HashTable acts like a two-column table of (searchable) keys and values.
```

int
size()
Returns the number of keys in this hashtable.
boolean containsKey(Object key)
Tests if the specified object is a key in this hashtable.
boolean containsValue(Object value)
Returns true if this hashtable maps one or more keys to this value.
V get(Object key)
Returns the value to which the specified key is mapped, or null if this
map contains no mapping for the key.
V put(K key, V value)
Maps the specified key to the specified value in this hashtable.
V remove(Object key)
Removes the key (and its corresponding value) from this hashtable.

```

\section*{Case Study: Using a HashTable}
```

import java.util.Hashtable;
public class HashTableTester {
public static void main(String[] args) {
Hashtable<String, String> grades = new Hashtable<String, String>();
System.out.println("Size of table: " + grades.size());
System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
System.out.println("Value B+ exists: " + grades.containsValue("B+"));
grades.put("Alan", "A");
grades.put("Mark", "B+");
grades.put("Tom", "C");
System.out.println("Size of table: " + grades.size());
System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
System.out.println("Key Mark exists: " + grades.containsKey("Mark"));
System.out.println("Key Tom exists: " + grades.containsKey("Tom"));
System.out.println("Key Simon exists: " + grades.containsKey("Simon"));
System.out.println("Value A exists: " + grades.containsValue("A"));
System.out.println("Value B+ exists: " + grades.containsValue("B+"));
System.out.println("Value C exists: " + grades.containsValue("C"));
System.out.println("Value A+ exists: " + grades.containsValue("A+"));
System.out.println("Value of existing key Alan: " + grades.get("Alan"));
System.out.println("Value of existing key Mark: " + grades.get("Mark"));
System.out.println("Value of existing key Tom: " + grades.get("Tom"));
System.out.println("Value of non-existing key Simon: " + grades.get("Simon"));
grades.put("Mark", "F");
System.out.println("Value of existing key Mark: " + grades.get("Mark"));
grades.remove("Alan");
System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
System.out.println("Value of non-existing key Alan: " + grades.get("Alan"));
}
12 of 13

```

\section*{Index (1)}

Learning Outcomes
Application Programming Interface (API)
Classes vs. Methods
Parameters vs. Arguments
Signature of a Method
Example Method Signatures: Math Class
Case Study: Guessing a Number
Example Method Signatures: ArrayList Class
Case Study: Using an ArrayList

\section*{Example Method Signatures: HashTable Class}

Case Study: Using a HashTable```

