
EECS1022 Winter 2018

Guide to Lab Test 2

Chen-Wei Wang

In this lab test you will be required to code Java methods in Android Studio, using arrays and loops.
You need not worry about declaring any classes, attributes, or methods. A class declared with methods will be
given to you, and you only need to worry about writing lines of code that serve as bodies of implementations
of these methods.

1 Coverage

– All lecture materials (slides, recordings, and example codes) covered up to and including Monday,
February 26 (in particular loops and arrays).

– Lab 3 and Lab 4 are not needed for this lab test.

2 Solutions

Video solutions to the example test will be made available during the reading week. You are advised to
first attempt all problems.

3 Rules

– This lab test is purely a programming test:

• You are forbidden to use Java library classes and methods, e.g., Math, Arrays.sort, etc..

• You are given starter code (i.e., Utilities and UtilitiesTester) that compile. See the prepa-
ration exercise below.

• As you fill in bodies of implementations of methods in the Utilities class, you must not introduce
any compile-time syntax or type errors.

An advice for you is to pay close attention to the tags of these two classes, as soon as you see any
of these two tags has a red underline, e.g.,

then your priority is not to continue your development of code, but to fix the compile-time errors.

• You will only need to submit the Utilities.java file:

∗ If this class does not compile due to any syntax or type errors, you receive zero marks for
the test. There will be no partial marks rewarded to a class that does not even compile.

1

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/W/EECS1022/exercises/Example_Test_2.zip


This requirement will be imposed strictly, so your best preparation strategy is to familiarize
yourself with all basic syntax of Java that’s so far covered in the lectures and used in your
labs.

∗ If your submitted class compiles, then you already receive 10 marks (out of 100) of the test.

∗ To determine the remaining 90% of your marks, we will run a number of test cases on your
submitted class.

For example, say we run 10 test cases (and say they happen to have equal weights) on your
submitted code, and your submitted code complies and passes 6 of them, then your final
marks are: 10 + 80× 6

10 = 58.

– You will be given 80 minutes for the lab test.

– You must show up for your registered session only.

– Bring a piece of photo ID.

– No mobile phone usage is allowed during the test.

– No data sheet will be allowed.

– You may bring pen/pencil and a piece of blank paper for sketching your solutions.

4 Format

– The format will be similar to the preparation exercises here (click on the link to download),
where you are be given:

• A class Utilities with a list of methods, each of which with its body of implementation returning
something useless. You are forbidden to change signatures of methods.

• A class UtilitiesTester which demonstrates a list of use cases of methods of the Utilities
class. To execute this tester class, in your Android Studio, go to the Project panel on the left, go
under app/java/eecs1022.exampletest2, then right-click on UtilitiesTester and select Run
’UtilitiesTester.main()’.

Running UtilitiesTester will execute methods in the Utilities class and display output on
the console in Android Studio. No physical connection to a tablet will be necessary in the test.

2

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/W/EECS1022/exercises/Example_Test_2.zip


• For the example test you’re given, here’s the expected output (which is not the case until you
correctly implement all methods in Utilities):

============averageOf

75.0

76.0

15.0

14.8

============allMultiplesOf5

true

true

false

true

false

============atLeastOneMultipleOf5

false

true

false

true

true

============secondMaximumOf

5

5

9

10

9

============reverseOf

{}
{75}
{76}
{25,20,15,10,5}
{25,19,15,10,5}
============isReverseOfEachOther

false

false

false

true

true

============getArithSeq

{}
{3}
{3,5,7,9,11}
{}
{3}
{3,1,-1,-3,-5}
============isArithSeq

true

true

true

true

true

true

false

false

3



============getFibSeq

{}
{1}
{1,1}
{1,1,2}
{1,1,2,3}
{1,1,2,3,5}
{1,1,2,3,5,8}
{1,1,2,3,5,8,13}
============isFibSeq

true

true

true

true

true

false

false

false

false

============numberOfOccurrences

4

1

2

3

0

0

0

============getIndices

{2,6,7,9}
{3}
{1,4}
{0,5,8}
{}
{}
{}

– Your tasks are to fill in, for each method in the Utilities class, lines of code in valid Java syntax
as its body of implementation, such that running UtlitiesTester.main() will produce the identical
output as expected.

4


	Coverage
	Solutions
	Rules
	Format

