
Subcontracting

Readings: OOSCS2 Chapters 14 – 16

EECS3311 A: Software Design

Fall 2018

CHEN-WEI WANG

Aspects of Inheritance

● Code Reuse
● Substitutability○ Polymorphism and Dynamic Binding

[compile-time type checks]

○ Sub-contracting
[runtime behaviour checks]

2 of 16

Background of Logic (1)

Given preconditions P1 and P2, we say that

P2 requires less than P1 if

P2 is less strict on (thus allowing more) inputs than P1 does.

{ x � P1(x) } ⊆ { x � P2(x) }

More concisely:

P1 ⇒ P2

e.g., For command withdraw(amount: amount),

P2 ∶ amount ≥ 0 requires less than P1 ∶ amount > 0

What is the precondition that requires the least? [true]

3 of 16

Background of Logic (2)

Given postconditions or invariants Q1 and Q2, we say that

Q2 ensures more than Q1 if

Q2 is stricter on (thus allowing less) outputs than Q1 does.

{ x � Q2(x) } ⊆ { x � Q1(x) }
More concisely:

Q2 ⇒ Q1

e.g., For query q(i: INTEGER): BOOLEAN,

Q2 ∶ Result = (i > 0) ∧ (i mod 2 = 0) ensures more than

Q1 ∶ Result = (i > 0) ∨ (i mod 2 = 0)
What is the postcondition that ensures the most? [false]

4 of 16

Inheritance and Contracts (1)

● The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE 6S PLUS
samsung_phone: GALAXY S6 EDGE
htc_phone: HTC ONE A9

do my_phone := i_phone
my_phone := samsung_phone
my_phone := htc_phone

suggests that these instances may substitute for each other.● Intuitively, when expecting SMART PHONE, we can substitute it

by instances of any of its descendant classes.∵ Descendants accumulate code from its ancestors and can thus

meet expectations on their ancestors.● Such substitutability can be reflected on contracts, where a

substitutable instance will:○ Not require more from clients for using the services.○ Not ensure less to clients for using the services.
5 of 16

Inheritance and Contracts (2.1)

SMART_PHONE
get_reminders: LIST[EVENT]
 require ??
 ensure ??

IPHONE_6S_PLUS
get_reminders: LIST[EVENT]
 require else ??
 ensure then ??

PHONE_USER
my_phone: SMART_PHONE

my_phone

6 of 16

Inheritance and Contracts (2.2)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.15 -- 15%

ensure then
�: ∀e ∶ Result � e happens today or tomorrow

end

Contracts in descendant class IPHONE_6S_PLUS are not suitable.(battery level ≥ 0.1⇒ battery level ≥ 0.15) is not a tautology.

e.g., A client able to get reminders on a SMART_PHONE, when battery

level is 12%, will fail to do so on an IPHONE_6S_PLUS.
7 of 16

Inheritance and Contracts (2.3)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.15 -- 15%

ensure then
�: ∀e ∶ Result � e happens today or tomorrow

end

Contracts in descendant class IPHONE_6S_PLUS are not suitable.(e happens ty. or tw.)⇒ (e happens ty.) not tautology.

e.g., A client receiving today’s reminders from SMART_PHONE are

shocked by tomorrow-only reminders from IPHONE_6S_PLUS.
8 of 16

Inheritance and Contracts (2.4)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.05 -- 5%

ensure then
�: ∀e ∶ Result � e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_6S_PLUS are suitable.○ Require the same or less ↵⇒ �
Clients satisfying the precondition for SMART_PHONE are not shocked

by not being to use the same feature for IPHONE_6S_PLUS.
9 of 16

Inheritance and Contracts (2.5)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.05 -- 5%

ensure then
�: ∀e ∶ Result � e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_6S_PLUS are suitable.○ Ensure the same or more �⇒ �
Clients benefiting from SMART_PHONE are not shocked by failing to

gain at least those benefits from same feature in IPHONE_6S_PLUS.
10 of 16

Contract Redeclaration Rule (1)

● In the context of some feature in a descendant class:○ Use require else to redeclare its precondition.○ Use ensure then to redeclare its precondition.

● The resulting runtime assertions checks are:○ original_pre or else new_pre

⇒ Clients able to satisfy original pre will not be shocked.∵ true ∨ new pre ≡ true
A precondition violation will not occur as long as clients are able

to satisfy what is required from the ancestor classes.○ original_post and then new_post

⇒ Failing to gain original post will be reported as an issue.∵ false ∧ new post ≡ false
A postcondition violation occurs (as expected) if clients do not

receive at least those benefits promised from the ancestor classes.

11 of 16

Contract Redeclaration Rule (2.1)

class FOO
f

do . . .
end

end

class BAR
inherit FOO redefine f end
f require else new pre

do . . .
end

end

● Unspecified original pre is as if declaring require true∵ true ∨ new pre ≡ true

class FOO
f

do . . .
end

end

class BAR
inherit FOO redefine f end
f
do . . .
ensure then new post
end

end

● Unspecified original post is as if declaring ensure true∵ true ∧ new post ≡ new post
12 of 16

Contract Redeclaration Rule (2.2)

class FOO
f require

original pre
do . . .
end

end

class BAR
inherit FOO redefine f end
f

do . . .
end

end

● Unspecified new pre is as if declaring require else false∵ original pre ∨ false ≡ original pre
class FOO
f

do . . .
ensure

original post
end

end

class BAR
inherit FOO redefine f end
f
do . . .
end

end

● Unspecified new post is as if declaring ensure then true∵ original post ∧ true ≡ original post
13 of 16

Invariant Accumulation

● Every class inherits invariants from all its ancestor classes.● Since invariants are like postconditions of all features, they are

“conjoined” to be checked at runtime.

class POLYGON
vertices: ARRAY[POINT]

invariant
vertices.count ≥ 3

end

class RECTANGLE
inherit POLYGON
invariant
vertices.count = 4

end

● What is checked on a RECTANGLE instance at runtime:(vertices.count ≥ 3) ∧ (vertices.count = 4) ≡ (vertices.count = 4)● Can PENTAGON be a descendant class of RECTANGLE?(vertices.count = 5) ∧ (vertices.count = 4) ≡ false
14 of 16

Inheritance and Contracts (3)

class FOO
f

require
original pre

ensure
original post

end
end

class BAR
inherit FOO redefine f end
f
require else

new pre
ensure then
new post

end
end

(Static) Design Time :

○ original pre ⇒ new pre should be proved as a tautology

○ new post ⇒ original post should be proved as a tautology

(Dynamic) Runtime :

○ original pre ∨ new pre is checked

○ original post ∧ new post is checked

15 of 16

Index (1)

Aspects of Inheritance

Background of Logic (1)

Background of Logic (2)

Inheritance and Contracts (1)

Inheritance and Contracts (2.1)

Inheritance and Contracts (2.2)

Inheritance and Contracts (2.3)

Inheritance and Contracts (2.4)

Inheritance and Contracts (2.5)

Contract Redeclaration Rule (1)

Contract Redeclaration Rule (2.1)

Contract Redeclaration Rule (2.2)

Invariant Accumulation

Inheritance and Contracts (3)
16 of 16

