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Motivating Problem (1)

● Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
● Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.
● Composites such as cabinets, busses, and chassis

Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply ) and busses that
contain cards.

● Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.
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Motivating Problem (2)
Design for tree structures with whole-part hierarchies.
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Challenge : There are base and recursive modelling artifacts.
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Multiple Inheritance: Sharing vs. Replication
A class may have two more parent classes.

○ Features not renamed along the inheritance paths will be shared .
[ e.g., age ]

○ Features renamed along the inheritance paths will be replicated .
[ e.g., tax id, address, pay taxes ]

Exercise: Design the class for a smart watch, both a watch and an
activity tracker.
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MI: Combining Abstractions (1)
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MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,
move, parent window, descendant windows, add child window
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MI: Combining Abstractions (2)
A: Separating Graphical features and Hierarchical features

class RECTANGLE
feature -- Queries
width, height: REAL
xpos, ypos: REAL

feature -- Commands
make (w, h: REAL)
change_width
change_height
move

end

class TREE[G]
feature -- Queries
parent: TREE[G]
descendants: LIST[TREE[G]]

feature -- Commands
add_child (c: TREE[G])

end

class WINDOW
inherit
RECTANGLE
TREE[WINDOW]

feature
add (w: WINDOW)

end

test_window: BOOLEAN
local w1, w2, w3, w4: WINDOW
do
create w1.make(8, 6) ; create w2.make(4, 3)
create w3.make(1, 1) ; create w4.make(1, 1)
w2.add(w4) ; w1.add(w2) ; w1.add(w3)
Result := w1.descendants.count = 2

end
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MI: Name Clashes

In class C, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.
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MI: Resolving Name Clashes

class C
inherit
A rename foo as fog end
B rename foo as zoo end

. . .

o.foo o.fog o.zoo
o: A ✓ × ×

o: B ✓ × ×

o: C × ✓ ✓
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Solution: The Composite Pattern
● Design : Categorize into base artifacts or recursive artifacts.

● Programming :

Build a tree structure representing the whole-part hierarchy .
● Runtime :

Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.
e.g., Given e: EQUIPMENT :
○ e.price may return the unit price of a DISK DRIVE.
○ e.price may sum prices of a CHASIS’ containing equipments.
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Composite Architecture: Design (1.1)

6 

price: VALUE 
add(child: EQUIPMENT) 
children: LIST[EQUIPMENT] 
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Composite Architecture: Design (1.2)
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price: VALUE 
add(child: EQUIPMENT) 
children: LIST[EQUIPMENT] 

The client uses 
abstract class 
EQUIPMENT to 
manipulate objects 
in the composition. 

Class EQUIPMENT defines an interface for all 
objects in the composition: both the composite 
and leaf nodes. 
May implement default behavior for add(child) 
etc. 

Class 
COMPOSITE �s 
role is (a) 
implement leaf 
related ops 
such as price 
and (b) to 
define 
component 
behaviour such 
as storing a 
child. 

A leaf has no children.  
 
Note that the leaf also 
inherits  features like 
children and add that 
don�t necessarily make 
all that sense for a leaf 
node.  
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Composite Architecture: Design (1.3)

Q: Any flaw of this first design?
A: Two “composite” features defined at the EQUIPMENT level:
○ children: LIST[EQUIPMENT]
○ add(child: EQUIPMENT)

⇒ Inherited to all base equipments (e.g., HARD DRIVE) that do
not apply to such features.
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Composite Architecture: Design (2.1)

8 

Cleaner solution – Multiple Inheritance 
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Composite Architecture: Design (2.2)
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Cleaner solution – Multiple Inheritance 

Put the price & 
power consumption 
behavior here 

Put the tree behavior 
such as adding a child 
and list of children 
here where it is needed 
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Implementing the Composite Pattern (1)

deferred class
EQUIPMENT

feature
name: STRING
price: REAL -- uniform access principle

end

class
CARD

inherit
EQUIPMENT

feature
make (n: STRING; p: REAL)
do
name := n
price := p -- price is an attribute

end
end
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Implementing the Composite Pattern (2.1)

deferred class
COMPOSITE[T]

feature
children: LINKED_LIST[T]

add (c: T)
do
children.extend (c) -- Polymorphism

end
end

Exercise: Make the COMPOSITE class iterable.
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Implementing the Composite Pattern (2.2)

class
COMPOSITE_EQUIPMENT

inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]

create
make

feature
make (n: STRING)
do name := n ; create children.make end

price : REAL -- price is a query
-- Sum the net prices of all sub-equipments

do
across
children as cursor

loop
Result := Result + cursor.item.price -- dynamic binding

end
end

end
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Testing the Composite Pattern

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET -- holds a CHASSIS
chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
bus: BUS -- holds a CARD

do
create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)
chassis.add(bus)
chassis.add(drive)
cabinet.add(chassis)
Result := cabinet.price = 700

end
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