
The Composite Design Pattern

EECS3311 A: Software Design
Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Problem (1)

● Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
● Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.
● Composites such as cabinets, busses, and chassis

Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

● Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

2 of 21

Motivating Problem (2)
Design for tree structures with whole-part hierarchies.

2

CABINET

HARD_DRIVE CARD

CHASSIS

POWER_SUPPLY

DVD-CDROM

CHASSIS

Challenge : There are base and recursive modelling artifacts.
3 of 21

Multiple Inheritance: Sharing vs. Replication
A class may have two more parent classes.

○ Features not renamed along the inheritance paths will be shared .
[e.g., age]

○ Features renamed along the inheritance paths will be replicated .
[e.g., tax id, address, pay taxes]

Exercise: Design the class for a smart watch, both a watch and an
activity tracker.

4 of 21

MI: Combining Abstractions (1)

5 of 21

MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,
move, parent window, descendant windows, add child window

6 of 21

MI: Combining Abstractions (2)
A: Separating Graphical features and Hierarchical features

class RECTANGLE
feature -- Queries
width, height: REAL
xpos, ypos: REAL

feature -- Commands
make (w, h: REAL)
change_width
change_height
move

end

class TREE[G]
feature -- Queries
parent: TREE[G]
descendants: LIST[TREE[G]]

feature -- Commands
add_child (c: TREE[G])

end

class WINDOW
inherit
RECTANGLE
TREE[WINDOW]

feature
add (w: WINDOW)

end

test_window: BOOLEAN
local w1, w2, w3, w4: WINDOW
do
create w1.make(8, 6) ; create w2.make(4, 3)
create w3.make(1, 1) ; create w4.make(1, 1)
w2.add(w4) ; w1.add(w2) ; w1.add(w3)
Result := w1.descendants.count = 2

end

7 of 21

MI: Name Clashes

In class C, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

8 of 21

MI: Resolving Name Clashes

class C
inherit
A rename foo as fog end
B rename foo as zoo end

. . .

o.foo o.fog o.zoo
o: A ✓ × ×

o: B ✓ × ×

o: C × ✓ ✓

9 of 21

Solution: The Composite Pattern
● Design : Categorize into base artifacts or recursive artifacts.

● Programming :

Build a tree structure representing the whole-part hierarchy .
● Runtime :

Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.
e.g., Given e: EQUIPMENT :
○ e.price may return the unit price of a DISK DRIVE.
○ e.price may sum prices of a CHASIS’ containing equipments.

10 of 21

Composite Architecture: Design (1.1)

6

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

11 of 21

Composite Architecture: Design (1.2)

7

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

The client uses
abstract class
EQUIPMENT to
manipulate objects
in the composition.

Class EQUIPMENT defines an interface for all
objects in the composition: both the composite
and leaf nodes.
May implement default behavior for add(child)
etc.

Class
COMPOSITE �s
role is (a)
implement leaf
related ops
such as price
and (b) to
define
component
behaviour such
as storing a
child.

A leaf has no children.

Note that the leaf also
inherits features like
children and add that
don�t necessarily make
all that sense for a leaf
node.

12 of 21

Composite Architecture: Design (1.3)

Q: Any flaw of this first design?
A: Two “composite” features defined at the EQUIPMENT level:
○ children: LIST[EQUIPMENT]
○ add(child: EQUIPMENT)

⇒ Inherited to all base equipments (e.g., HARD DRIVE) that do
not apply to such features.

13 of 21

Composite Architecture: Design (2.1)

8

Cleaner solution – Multiple Inheritance

14 of 21

Composite Architecture: Design (2.2)

9

Cleaner solution – Multiple Inheritance

Put the price &
power consumption
behavior here

Put the tree behavior
such as adding a child
and list of children
here where it is needed

15 of 21

Implementing the Composite Pattern (1)

deferred class
EQUIPMENT

feature
name: STRING
price: REAL -- uniform access principle

end

class
CARD

inherit
EQUIPMENT

feature
make (n: STRING; p: REAL)
do
name := n
price := p -- price is an attribute

end
end

16 of 21

Implementing the Composite Pattern (2.1)

deferred class
COMPOSITE[T]

feature
children: LINKED_LIST[T]

add (c: T)
do
children.extend (c) -- Polymorphism

end
end

Exercise: Make the COMPOSITE class iterable.

17 of 21

Implementing the Composite Pattern (2.2)

class
COMPOSITE_EQUIPMENT

inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]

create
make

feature
make (n: STRING)
do name := n ; create children.make end

price : REAL -- price is a query
-- Sum the net prices of all sub-equipments

do
across
children as cursor

loop
Result := Result + cursor.item.price -- dynamic binding

end
end

end

18 of 21

Testing the Composite Pattern

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET -- holds a CHASSIS
chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
bus: BUS -- holds a CARD

do
create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)
chassis.add(bus)
chassis.add(drive)
cabinet.add(chassis)
Result := cabinet.price = 700

end

19 of 21

Index (1)
Motivating Problem (1)
Motivating Problem (2)
Multiple Inheritance: Sharing vs. Replication
MI: Combining Abstractions (1)
MI: Combining Abstractions (2.1)
MI: Combining Abstractions (2)
MI: Name Clashes
MI: Resolving Name Clashes
Solution: The Composite Pattern
Composite Architecture: Design (1.1)
Composite Architecture: Design (1.2)
Composite Architecture: Design (1.3)
Composite Architecture: Design (2.1)
Composite Architecture: Design (2.2)

20 of 21

Index (2)
Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

21 of 21

	Motivating Problem (1)
	Motivating Problem (2)
	Multiple Inheritance: Sharing vs. Replication
	MI: Combining Abstractions (1)
	MI: Combining Abstractions (2.1)
	MI: Combining Abstractions (2)
	MI: Name Clashes
	MI: Resolving Name Clashes
	Solution: The Composite Pattern
	Composite Architecture: Design (1.1)
	Composite Architecture: Design (1.2)
	Composite Architecture: Design (1.3)
	Composite Architecture: Design (2.1)
	Composite Architecture: Design (2.2)
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Testing the Composite Pattern

