
The Composite Design Pattern

EECS3311 A: Software Design

Fall 2018

CHEN-WEI WANG

Motivating Problem (1)

● Many manufactured systems, such as computer systems or

stereo systems, are composed of individual components and

sub-systems that contain components.

e.g., A computer system is composed of:

● Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.

● Composites such as cabinets, busses, and chassis

Each cabinet contains various types of chassis, each of which in turn

containing components (hard-drive, power-supply) and busses that

contain cards.

● Design a system that will allow us to easily build systems and

calculate their total cost and power consumption.

2 of 21

Motivating Problem (2)

Design for tree structures with whole-part hierarchies.

2

CABINET

HARD_DRIVE CARD

CHASSIS

POWER_SUPPLY

DVD-CDROM

CHASSIS

Challenge : There are base and recursive modelling artifacts.

3 of 21

Multiple Inheritance: Sharing vs. Replication

A class may have two more parent classes.

○ Features not renamed along the inheritance paths will be shared .

[e.g., age]○ Features renamed along the inheritance paths will be replicated .

[e.g., tax id, address, pay taxes]

Exercise: Design the class for a smart watch, both a watch and an

activity tracker.
4 of 21

MI: Combining Abstractions (1)

5 of 21

MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window

6 of 21

MI: Combining Abstractions (2)

A: Separating Graphical features and Hierarchical features

class RECTANGLE

feature -- Queries
width, height: REAL

xpos, ypos: REAL

feature -- Commands
make (w, h: REAL)
change_width
change_height
move

end

class TREE[G]

feature -- Queries
parent: TREE[G]
descendants: LIST[TREE[G]]

feature -- Commands
add_child (c: TREE[G])

end

class WINDOW
inherit

RECTANGLE

TREE[WINDOW]
feature

add (w: WINDOW)
end

test_window: BOOLEAN

local w1, w2, w3, w4: WINDOW
do

create w1.make(8, 6) ; create w2.make(4, 3)
create w3.make(1, 1) ; create w4.make(1, 1)
w2.add(w4) ; w1.add(w2) ; w1.add(w3)
Result := w1.descendants.count = 2

end

7 of 21

MI: Name Clashes

In class C, feature foo inherited from ancestor class A clashes

with feature foo inherited from ancestor class B.

8 of 21

MI: Resolving Name Clashes

class C
inherit

A rename foo as fog end

B rename foo as zoo end

. . .

o.foo o.fog o.zoo
o: A ✓ × ×
o: B ✓ × ×
o: C × ✓ ✓

9 of 21

Solution: The Composite Pattern

● Design : Categorize into base artifacts or recursive artifacts.

● Programming :

Build a tree structure representing the whole-part hierarchy .

● Runtime :

Allow clients to treat base objects (leafs) and recursive

compositions (nodes) uniformly .

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.

e.g., Given e: EQUIPMENT :

○ e.price may return the unit price of a DISK DRIVE.

○ e.price may sum prices of a CHASIS’ containing equipments.

10 of 21

Composite Architecture: Design (1.1)

6

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

11 of 21

Composite Architecture: Design (1.2)

7

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

The client uses
abstract class
EQUIPMENT to
manipulate objects
in the composition.

Class EQUIPMENT defines an interface for all
objects in the composition: both the composite
and leaf nodes.
May implement default behavior for add(child)
etc.

Class
COMPOSITE �s
role is (a)
implement leaf
related ops
such as price
and (b) to
define
component
behaviour such
as storing a
child.

A leaf has no children.

Note that the leaf also
inherits features like
children and add that
don�t necessarily make
all that sense for a leaf
node.

12 of 21

Composite Architecture: Design (1.3)

Q: Any flaw of this first design?

A: Two “composite” features defined at the EQUIPMENT level:○ children: LIST[EQUIPMENT]○ add(child: EQUIPMENT)

⇒ Inherited to all base equipments (e.g., HARD DRIVE) that do

not apply to such features.

13 of 21

Composite Architecture: Design (2.1)

8

Cleaner solution – Multiple Inheritance

14 of 21

Composite Architecture: Design (2.2)

9

Cleaner solution – Multiple Inheritance

Put the price &
power consumption
behavior here

Put the tree behavior
such as adding a child
and list of children
here where it is needed

15 of 21

Implementing the Composite Pattern (1)

deferred class

EQUIPMENT
feature

name: STRING

price: REAL -- uniform access principle
end

class

CARD
inherit

EQUIPMENT
feature

make (n: STRING; p: REAL)
do

name := n
price := p -- price is an attribute

end

end

16 of 21

Implementing the Composite Pattern (2.1)

deferred class

COMPOSITE[T]
feature

children: LINKED_LIST[T]

add (c: T)
do

children.extend (c) -- Polymorphism

end

end

Exercise: Make the COMPOSITE class iterable.

17 of 21

Implementing the Composite Pattern (2.2)

class

COMPOSITE_EQUIPMENT
inherit

EQUIPMENT
COMPOSITE [EQUIPMENT]

create

make
feature

make (n: STRING)
do name := n ; create children.make end

price : REAL -- price is a query
-- Sum the net prices of all sub-equipments

do

across

children as cursor
loop

Result := Result + cursor.item.price -- dynamic binding

end

end

end

18 of 21

Testing the Composite Pattern

test_composite_equipment: BOOLEAN

local

card, drive: EQUIPMENT
cabinet: CABINET -- holds a CHASSIS
chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
bus: BUS -- holds a CARD

do

create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)
chassis.add(bus)
chassis.add(drive)
cabinet.add(chassis)
Result := cabinet.price = 700

end

19 of 21

Index (1)

Motivating Problem (1)

Motivating Problem (2)

Multiple Inheritance: Sharing vs. Replication

MI: Combining Abstractions (1)

MI: Combining Abstractions (2.1)

MI: Combining Abstractions (2)

MI: Name Clashes

MI: Resolving Name Clashes

Solution: The Composite Pattern

Composite Architecture: Design (1.1)

Composite Architecture: Design (1.2)

Composite Architecture: Design (1.3)

Composite Architecture: Design (2.1)

Composite Architecture: Design (2.2)
20 of 21

Index (2)

Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

21 of 21

