

A First Attempt

A Top-Down, Hierarchical Solution

• Separation of Concern Declare the transition table as a

feature the system, rather than its central control structure:

transition (src: INTEGER; choice: INTEGER): INTEGER	
Return state by taking transition 'choice' from 'src' state	e.
require valid_source_state: 1 ≤ src ≤ 6	
valid_choice: $1 \leq choice \leq 3$	
<pre>ensure valid_target_state: 1 ≤ Result ≤ 6</pre>	

• We may implement transition via a 2-D array.

							cnoice	
Снојсе		_	_		<u> </u>	1	2	3
SRC STATE	1	2	3	1	1	6	5	2
1 (Initial)	6	5	2	2	2		1	3
2 (Flight Enquiry)	-	1	3	3	3		2	4
3 (Seat Enquiry)	-	2	4	state				
4 (Reservation)	-	3	5	4	¥ _		3	5
5 (Confirmation)	-	4	1	5	5		4	1
6 (Final)	-	-	-	e	5			
	1 (Initial) 2 (Flight Enquiry) 3 (Seat Enquiry) 4 (Reservation) 5 (Confirmation)	SRC STATE 1 1 (Initial) 6 2 (Flight Enquiry) - 3 (Seat Enquiry) - 4 (Reservation) - 5 (Confirmation) -	SRC STATE 1 2 1 (Initial) 6 5 2 (Flight Enquiry) - 1 3 (Seat Enquiry) - 2 4 (Reservation) - 3 5 (Confirmation) - 4	SRC STATE 1 2 3 1 (Initial) 6 5 2 2 (Flight Enquiry) - 1 3 3 (Seat Enquiry) - 2 4 4 (Reservation) - 3 5 5 (Confirmation) - 4 1	SRC STATE 1 2 3 1 (Initial) 6 5 2 2 (Flight Enquiry) - 1 3 3 (Seat Enquiry) - 2 4 4 (Reservation) - 3 5 5 (Confirmation) - 4 1	SRC STATE 1 2 3 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 1 1 1 5 1	SRC STATE 1 2 3 1 6 1 (Initial) 6 5 2 2 2 2 (Flight Enquiry) - 1 3 3 3 3 (Seat Enquiry) - 2 4 3 3 4 (Reservation) - 3 5 4 5	SRC STATE 1 2 3 1 6 5 1 (Initial) 6 5 2 1 2 1 1 1 2 1

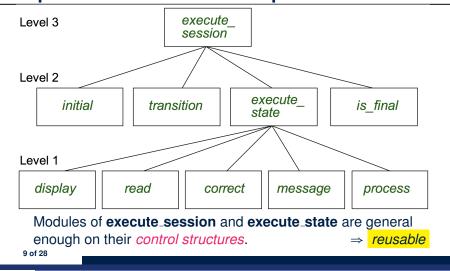
5 of 28

A First Attempt: Good Design?

- Runtime execution ≈ a "bowl of spaghetti".
 - \Rightarrow The system's behaviour is hard to predict, trace, and debug.
- Transitions hardwired as system's central control structure.
 - \Rightarrow The system is vulnerable to changes/additions of states/transitions.
- All labelled blocks are largely similar in their code structures.
 - \Rightarrow This design "*smells*" due to duplicates/repetitions!
- The branching structure of the design exactly corresponds to that of the specific *transition graph*.

 \Rightarrow The design is *application-specific* and *not reusable* for other interactive systems.

Hierarchical Solution: Good Design?


LASSONDE

. .

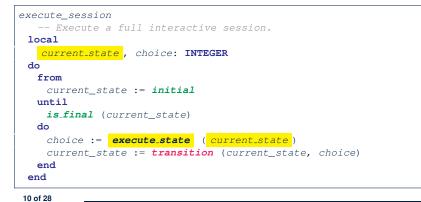
- This is a more general solution.
 - :: State transitions are separated from the system's central control structure.
 - \Rightarrow *Reusable* for another interactive system by making changes only to the transition feature.
- How does the *central control structure* look like in this design?

7 of 28

Hierarchical Solution: Top-Down Functional Decomposition

Hierarchical Solution: State Handling (1)

The following *control pattern* handles **all** states:

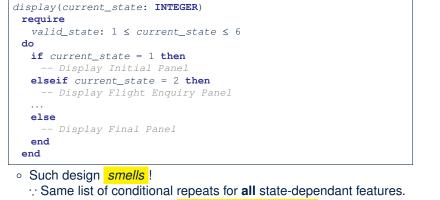

execute_state (current_state : INTEGER) : INTEGER
Handle interaction at the current state.
Return user's exit choice.
local
answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER
do
from
until
valid_answer
do
display(current_state)
answer := read_answer (current_state)
choice := read_choice (current_state)
valid_answer := correct (
<pre>if not valid_answer then message(current_state , answer)</pre>
end
process(current_state, answer)
Result := choice
end
11 of 28

Hierarchical Solution: System Control

LASSONDE

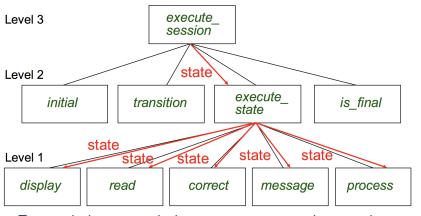
- All interactive sessions share the following control pattern:
- Start with some initial state.
- Repeatedly make *state transitions* (based on *choices* read from the user) until the state is *final* (i.e., the user wants to exit).

Hierarchical Solution: State Handling (2)


FEATURE CALL	FUNCTIONALITY
display(<mark>s</mark>)	Display screen outputs associated with state s
<pre>read_answer(\$)</pre>	Read user's input for answers associated with state s
<pre>read_choice(\$)</pre>	Read user's input for exit choice associated with state s
correct(s, answer)	Is the user's answer valid w.r.t. state s?
process(s, answer)	Given that user's answer is valid w.r.t. state s,
	process it accordingly.
message(s, answer)	Given that user's answer is not valid w.r.t. state s,
	display an error message accordingly.

Q: How similar are the code structures of the above state-dependant commands or queries?

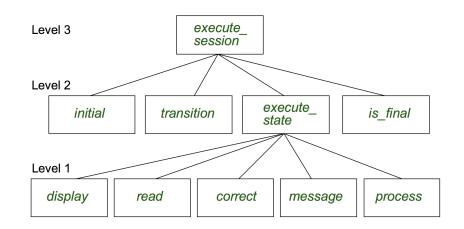
Hierarchical Solution: State Handling (3)



A: Actions of all such state-dependant features must **explicitly** *discriminate* on the input state argument.

- Such design violates the Single Choice Principle.
- e.g., To add/delete a state \Rightarrow Add/delete a branch in all such features.

Hierarchical Solution: Pervasive States



LASSONDE

LASSONDE

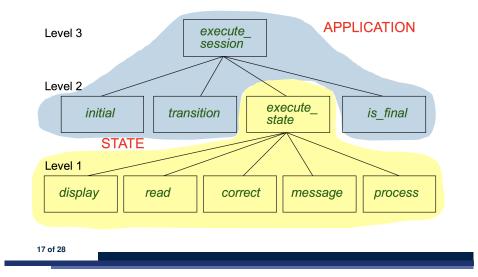
Too much data transmission: current_state is passed • From execute_session (Level 3) to execute_state (Level 2) • From execute_state (Level 2) to all features at Level 1 15 of 28

Hierarchical Solution: Visible Architecture

Law of Inversion

If your routines exchange too many data, then put your routines in your data.

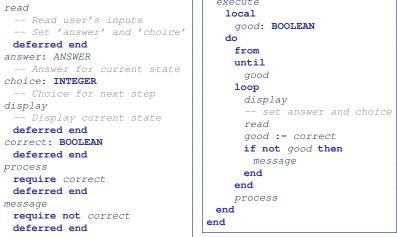
e.g.,

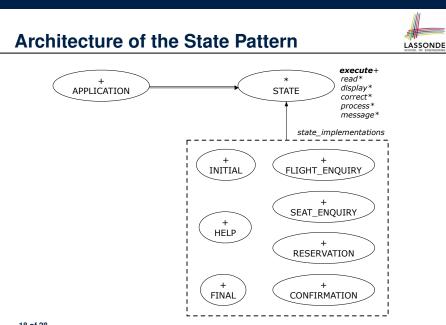

- $\texttt{execute_state}$ (Level 2) and all features at Level 1:
- Pass around (as *inputs*) the notion of *current_state*
- Build upon (via *discriminations*) the notion of *current_state*

execute_state (s: INTEGER)
display (s: INTEGER)
read_answer (s: INTEGER)
read_choice (s: INTEGER)
correct (s: INTEGER	; answer: ANSWER)
process (s: INTEGER	; answer: ANSWER)
message (s: INTEGER	; answer: ANSWER)

- \Rightarrow *Modularize* the notion of state as *class STATE*.
- \Rightarrow **Encapsulate** state-related information via a **STATE** interface.
- ⇒ Notion of current_state becomes implicit: the Current class.

14 of 28

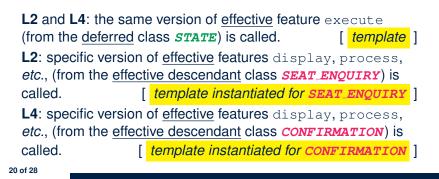

Grouping by Data Abstractions

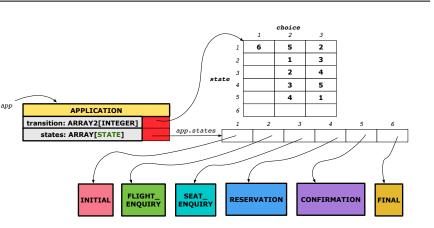


The STATE ADT

LASSONDE

19 of 28


The Template Design Pattern

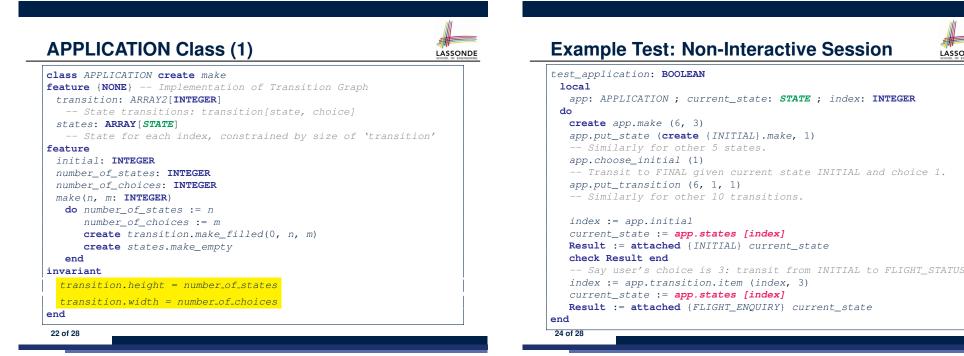

Consider the following fragment of Eiffel code:

- s: STATE 2 create { SEAT_ENOUIRY } s.make
- 3 s.execute
- 4 create {CONFIRMATION} s.make
- 5 s.execute

1

APPLICATION Class: Array of STATE

21 of 28


APPLICATION Class (2)

class APPLICATION
feature {NONE} Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]
feature
<pre>put_state(s: STATE; index: INTEGER)</pre>
require 1 ≤ index ≤ number_of_states
<pre>do states.force(s, index) end</pre>
choose_initial(index: INTEGER)
require 1 ≤ index ≤ number_of_states
<pre>do initial := index end</pre>
<pre>put_transition(tar, src, choice: INTEGER)</pre>
require
$1 \leq src \leq number_of_states$
$1 \leq tar \leq number_of_states$
1 ≤ choice ≤ number_of_choices
do
transition.put(tar, src, choice)
end
end

LASSONDE

LASSONDE

23 of 28

LASSONDE

APPLICATION Class (3): Interactive Session

class	APPLICATION
featur	e {NONE} Implementation of Transition Graph
trans	sition: ARRAY2[INTEGER]
state	es: ARRAY[STATE]
featur	e
execi	ite_session
loc	al
СІ	irrent_state: STATE
ir	ndex: INTEGER
do	
fr	com
	index := initial
ur	htil
	is_final (index)
10	pop
	<pre>current_state := states[index] polymorphism</pre>
	current_state.execute dynamic binding
	<pre>index := transition.item (index, current_state.choice)</pre>
er	nd
end	
end	
25 of 28	

Top-Down, Hierarchical vs. OO Solutions

LASSONDE

• In the second (top-down, hierarchy) solution, it is required for every state-related feature to *explicitly* and *manually* discriminate on the argument value, via a a list of conditionals. e.g., Given display(current_state: INTEGER), the calls display(1) and display(2) behave differently. • The third (OO) solution, called the State Pattern, makes such conditional *implicit* and *automatic*, by making STATE as a deferred class (whose descendants represent all types of states), and by delegating such conditional actions to dynamic binding. e.g., Given s: STATE, behaviour of the call s.display depends on the *dynamic type* of s (such as INITIAL vs. FLIGHT_ENOUIRY). 27 of 28

Bui	Iding an Application	
0	Create instances of STATE.	
	<pre>s1: STATE create { INITIAL} s1.make</pre>	
0	Initialize an APPLICATION.	
	<pre>create app.make(number_of_states, number_of_choices)</pre>	
0	Perform polymorphic assignments on app.states.	
	<pre>app.put_state(initial, 1)</pre>	
0	Choose an initial state.	
	app.choose_initial(1)	
0	Build the transition table.	
	app.put_transition(6, 1, 1)	
0	Run the application.	
26 of 2	app.execute_session	

Index (1)

Motivating Problem State Transition Diagram Design Challenges A First Attempt A First Attempt: Good Design? A Top-Down, Hierarchical Solution **Hierarchical Solution: Good Design? Hierarchical Solution: Top-Down Functional Decomposition Hierarchical Solution: System Control** Hierarchical Solution: State Handling (1) **Hierarchical Solution: State Handling (2)** Hierarchical Solution: State Handling (3) Hierarchical Solution: Visible Architecture

Index (2)

Hierarchical Solution: Pervasive States Law of Inversion Grouping by Data Abstractions Architecture of the State Pattern The STATE ADT The Template Design Pattern APPLICATION Class: Array of STATE APPLICATION Class (1) APPLICATION Class (2) Example Test: Non-Interactive Session APPLICATION Class (3): Interactive Session Building an Application Top-Down, Hierarchical vs. OO Solutions LASSONDE