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Uniform Access Principle (1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.
○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● How the Point is implemented is irrelevant to users:
○ Imp. 1: Store x and y. [ Compute r and phi on demand ]
○ Imp. 2: Store r and phi. [ Compute x and y on demand ]

● As far as users of a Point object p is concerned, having a
uniform access by always being able to call p.x and p.y is
what matters, despite Imp. 1 or Imp. 2 being current strategy.
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Uniform Access Principle (2)
class
POINT

create
make_cartisian, make_polar

feature -- Public, Uniform Access to x- and y-coordinates
x : REAL
y : REAL

end

● A class Point declares how users may access a point: either
get its x coordinate or its y coordinate.

● We offer two possible ways to instantiating a 2-D point:
○ make cartisian (nx: REAL; ny: REAL)
○ make polar (nr: REAL; np: REAL)

● Features x and y, from the client’s point of view, cannot tell
whether it is implemented via:
○ Storage [ x and y stored as real-valued attributes ]
○ Computation [ x and y defined as queries returning real values ]

3 of 13



Uniform Access Principle (3)
Let’s say the supplier decides to adopt strategy Imp. 1.
class POINT -- Version 1
feature -- Attributes
x : REAL
y : REAL

feature -- Constructors
make_cartisian(nx: REAL; nx: REAL)
do
x := nx
y := ny

end
end

● Attributes x and y represent the Cartesian system
● A client accesses a point p via p.x and p.y.

○ No Extra Computations: just returning current values of x and y.
● However, it’s harder to implement the other constructor: the

body of make polar (nr: REAL; np: REAL) has to
compute and store x and y according to the inputs nr and np.
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Uniform Access Principle (4)
Let’s say the supplier decides ( secretly ) to adopt strategy Imp. 2.
class POINT -- Version 2
feature -- Attributes
r : REAL
p : REAL

feature -- Constructors
make_polar(nr: REAL; np: REAL)
do
r := nr
p := np

end
feature -- Queries
x : REAL do Result := r × cos(p) end
y : REAL do Result := r × sin(p) end

end

● Attributes r and p represent the Polar system
● A client still accesses a point p via p.x and p.y.

○ Extra Computations: computing x and y according to the current
values of r and p.
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Uniform Access Principle (5.1)

Let’s consider the following scenario as an example:

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
p

32a · cos30� = a ·
p

3

2a2a

30�30�

(a ·
p

3, a)(a ·
p

3, a)

Note: 360○ = 2π
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Uniform Access Principle (5.2)

1 test_points: BOOLEAN
2 local
3 A, X, Y: REAL
4 p1, p2: POINT
5 do
6 comment("test: two systems of points")

7 A := 5; X := A ×√3; Y := A
8 create {POINT} p1.make_cartisian (X, Y)
9 create {POINT} p2.make_polar (2 × A, 1

6π)
10 Result := p1.x = p2.x and p1.y = p2.y
11 end

● If strategy Imp. 1 is adopted:
○ L8 is computationally cheaper than L9. [ x and y attributes ]
○ L10 requires no computations to access x and y.
If strategy Imp. 2 is adopted:
○ L9 is computationally cheaper than L8. [ r and p attributes ]
○ L10 requires computations to access x and y.
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UAP in Java: Interface (1)

interface Point {
double getX();
double getY();

}

● An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

● Methods getX() and getY() have no implementations, but
signatures only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!
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UAP in Java: Interface (2)

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.
● Attributes x and y declared according to the Cartesian system
● CartesianPoint can be used as a dynamic type

○ Point p = new CartesianPoint(3, 4) allowed!
○ p.getX() and p.getY() return storage values
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UAP in Java: Interface (3)

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.
● Attributes phi and r declared according to the Polar system
● PolarPoint can be used as a dynamic type

○ Point p = new PolarPoint(3, π
6) allowed! [360○ = 2π]

○ p.getX() and p.getY() return computation results
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UAP in Java: Interface (4)

1 @Test
2 public void testPoints() {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p1 = new CartisianPoint(X, Y); /* polymorphism */
7 Point p2 = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */
8 assertEquals(p1.getX(), p2.getX());
9 assertEquals(p1.getY(), p2.getY());

10 }

How does dynamic binding work in L9 and L10?
○ p1.getX() and p1.getY() return storage values
○ p2.getX() and p2.getY() return computation results
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Uniform Access Principle (6)

The Uniform Access Principle :
● Allows clients to use services (e.g., p.x and p.y) regardless of

how they are implemented.
● Gives suppliers complete freedom as to how to implement the

services (e.g., Cartesian vs. Polar).
○ No right or wrong implementation; it depends!

`````````̀access
calculation efficient inefficient

frequent COMPUTATION STORAGE

infrequent STORAGE if “convenient” to keep its value up to date
COMPUTATION otherwise

● Whether it’s storage or computation, you can always change
secretly , since the clients’ access to the services is uniform .
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