
Uniform Access Principle

EECS3311 A: Software Design
Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Uniform Access Principle (1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.
○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● How the Point is implemented is irrelevant to users:
○ Imp. 1: Store x and y. [Compute r and phi on demand]
○ Imp. 2: Store r and phi. [Compute x and y on demand]

● As far as users of a Point object p is concerned, having a
uniform access by always being able to call p.x and p.y is
what matters, despite Imp. 1 or Imp. 2 being current strategy.

2 of 13

Uniform Access Principle (2)
class
POINT

create
make_cartisian, make_polar

feature -- Public, Uniform Access to x- and y-coordinates
x : REAL
y : REAL

end

● A class Point declares how users may access a point: either
get its x coordinate or its y coordinate.

● We offer two possible ways to instantiating a 2-D point:
○ make cartisian (nx: REAL; ny: REAL)
○ make polar (nr: REAL; np: REAL)

● Features x and y, from the client’s point of view, cannot tell
whether it is implemented via:
○ Storage [x and y stored as real-valued attributes]
○ Computation [x and y defined as queries returning real values]

3 of 13

Uniform Access Principle (3)
Let’s say the supplier decides to adopt strategy Imp. 1.
class POINT -- Version 1
feature -- Attributes
x : REAL
y : REAL

feature -- Constructors
make_cartisian(nx: REAL; nx: REAL)
do
x := nx
y := ny

end
end

● Attributes x and y represent the Cartesian system
● A client accesses a point p via p.x and p.y.

○ No Extra Computations: just returning current values of x and y.
● However, it’s harder to implement the other constructor: the

body of make polar (nr: REAL; np: REAL) has to
compute and store x and y according to the inputs nr and np.

4 of 13

Uniform Access Principle (4)
Let’s say the supplier decides (secretly) to adopt strategy Imp. 2.
class POINT -- Version 2
feature -- Attributes
r : REAL
p : REAL

feature -- Constructors
make_polar(nr: REAL; np: REAL)
do
r := nr
p := np

end
feature -- Queries
x : REAL do Result := r × cos(p) end
y : REAL do Result := r × sin(p) end

end

● Attributes r and p represent the Polar system
● A client still accesses a point p via p.x and p.y.

○ Extra Computations: computing x and y according to the current
values of r and p.

5 of 13

Uniform Access Principle (5.1)

Let’s consider the following scenario as an example:

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
p

32a · cos30� = a ·
p

3

2a2a

30�30�

(a ·
p

3, a)(a ·
p

3, a)

Note: 360○ = 2π
6 of 13

Uniform Access Principle (5.2)

1 test_points: BOOLEAN
2 local
3 A, X, Y: REAL
4 p1, p2: POINT
5 do
6 comment("test: two systems of points")

7 A := 5; X := A ×√3; Y := A
8 create {POINT} p1.make_cartisian (X, Y)
9 create {POINT} p2.make_polar (2 × A, 1

6π)
10 Result := p1.x = p2.x and p1.y = p2.y
11 end

● If strategy Imp. 1 is adopted:
○ L8 is computationally cheaper than L9. [x and y attributes]
○ L10 requires no computations to access x and y.
If strategy Imp. 2 is adopted:
○ L9 is computationally cheaper than L8. [r and p attributes]
○ L10 requires computations to access x and y.

7 of 13

UAP in Java: Interface (1)

interface Point {
double getX();
double getY();

}

● An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

● Methods getX() and getY() have no implementations, but
signatures only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!

8 of 13

UAP in Java: Interface (2)

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.
● Attributes x and y declared according to the Cartesian system
● CartesianPoint can be used as a dynamic type

○ Point p = new CartesianPoint(3, 4) allowed!
○ p.getX() and p.getY() return storage values

9 of 13

UAP in Java: Interface (3)

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.
● Attributes phi and r declared according to the Polar system
● PolarPoint can be used as a dynamic type

○ Point p = new PolarPoint(3, π
6) allowed! [360○ = 2π]

○ p.getX() and p.getY() return computation results

10 of 13

UAP in Java: Interface (4)

1 @Test
2 public void testPoints() {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p1 = new CartisianPoint(X, Y); /* polymorphism */
7 Point p2 = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */
8 assertEquals(p1.getX(), p2.getX());
9 assertEquals(p1.getY(), p2.getY());

10 }

How does dynamic binding work in L9 and L10?
○ p1.getX() and p1.getY() return storage values
○ p2.getX() and p2.getY() return computation results

11 of 13

Uniform Access Principle (6)

The Uniform Access Principle :
● Allows clients to use services (e.g., p.x and p.y) regardless of

how they are implemented.
● Gives suppliers complete freedom as to how to implement the

services (e.g., Cartesian vs. Polar).
○ No right or wrong implementation; it depends!

`````````̀access
calculation efficient inefficient

frequent COMPUTATION STORAGE

infrequent STORAGE if “convenient” to keep its value up to date
COMPUTATION otherwise

● Whether it’s storage or computation, you can always change
secretly , since the clients’ access to the services is uniform .

12 of 13



Index (1)
Uniform Access Principle (1)

Uniform Access Principle (2)

Uniform Access Principle (3)

Uniform Access Principle (4)

Uniform Access Principle (5.1)

Uniform Access Principle (5.2)

UAP in Java: Interface (1)

UAP in Java: Interface (2)

UAP in Java: Interface (3)

UAP in Java: Interface (4)

Uniform Access Principle (6)
13 of 13


	Uniform Access Principle (1)
	Uniform Access Principle (2)
	Uniform Access Principle (3)
	Uniform Access Principle (4)
	Uniform Access Principle (5.1)
	Uniform Access Principle (5.2)
	UAP in Java: Interface (1)
	UAP in Java: Interface (2)
	UAP in Java: Interface (3)
	UAP in Java: Interface (4)
	Uniform Access Principle (6)

