
Uniform Access Principle

EECS3311 A: Software Design
Fall 2018

CHEN-WEI WANG

Uniform Access Principle (1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).● How the Point is implemented is irrelevant to users:○ Imp. 1: Store x and y. [Compute r and phi on demand]○ Imp. 2: Store r and phi. [Compute x and y on demand]● As far as users of a Point object p is concerned, having a

uniform access by always being able to call p.x and p.y is
what matters, despite Imp. 1 or Imp. 2 being current strategy.

2 of 13

Uniform Access Principle (2)
class

POINT

create

make_cartisian, make_polar

feature -- Public, Uniform Access to x- and y-coordinates

x : REAL

y : REAL

end

● A class Point declares how users may access a point: either
get its x coordinate or its y coordinate.● We offer two possible ways to instantiating a 2-D point:○ make cartisian (nx: REAL; ny: REAL)○ make polar (nr: REAL; np: REAL)● Features x and y, from the client’s point of view, cannot tell
whether it is implemented via:○ Storage [x and y stored as real-valued attributes]○ Computation [x and y defined as queries returning real values]

3 of 13

Uniform Access Principle (3)
Let’s say the supplier decides to adopt strategy Imp. 1.
class POINT -- Version 1

feature -- Attributes

x : REAL

y : REAL

feature -- Constructors

make_cartisian(nx: REAL; nx: REAL)
do

x := nx

y := ny

end

end

● Attributes x and y represent the Cartesian system● A client accesses a point p via p.x and p.y.○ No Extra Computations: just returning current values of x and y.● However, it’s harder to implement the other constructor: the
body of make polar (nr: REAL; np: REAL) has to
compute and store x and y according to the inputs nr and np.

4 of 13

Uniform Access Principle (4)
Let’s say the supplier decides (secretly) to adopt strategy Imp. 2.
class POINT -- Version 2

feature -- Attributes

r : REAL

p : REAL

feature -- Constructors

make_polar(nr: REAL; np: REAL)
do

r := nr

p := np

end

feature -- Queries

x : REAL do Result := r × cos(p) end

y : REAL do Result := r × sin(p) end

end

● Attributes r and p represent the Polar system● A client still accesses a point p via p.x and p.y.○ Extra Computations: computing x and y according to the current
values of r and p.

5 of 13

Uniform Access Principle (5.1)

Let’s consider the following scenario as an example:

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
�

32a · cos30� = a ·
�

3

2a2a

30�30�

(a ·
�

3, a)(a ·
�

3, a)

Note: 360○ = 2⇡
6 of 13

Uniform Access Principle (5.2)
1 test_points: BOOLEAN

2 local

3 A, X, Y: REAL

4 p1, p2: POINT

5 do

6 comment("test: two systems of points")
7 A := 5; X := A ×√3; Y := A

8 create {POINT} p1.make_cartisian (X, Y)
9 create {POINT} p2.make_polar (2 × A, 1

6⇡)
10 Result := p1.x = p2.x and p1.y = p2.y
11 end

● If strategy Imp. 1 is adopted:○ L8 is computationally cheaper than L9. [x and y attributes]○ L10 requires no computations to access x and y.
If strategy Imp. 2 is adopted:○ L9 is computationally cheaper than L8. [r and p attributes]○ L10 requires computations to access x and y.

7 of 13

UAP in Java: Interface (1)

interface Point {
double getX();
double getY();

}

● An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

● Methods getX() and getY() have no implementations, but
signatures only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!

8 of 13

UAP in Java: Interface (2)
public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.
● Attributes x and y declared according to the Cartesian system
● CartesianPoint can be used as a dynamic type
○ Point p = new CartesianPoint(3, 4) allowed!○ p.getX() and p.getY() return storage values

9 of 13

UAP in Java: Interface (3)
public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.
● Attributes phi and r declared according to the Polar system
● PolarPoint can be used as a dynamic type
○ Point p = new PolarPoint(3, ⇡

6) allowed! [360○ = 2⇡]○ p.getX() and p.getY() return computation results

10 of 13

UAP in Java: Interface (4)

1 @Test
2 public void testPoints() {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p1 = new CartisianPoint(X, Y); /* polymorphism */

7 Point p2 = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

8 assertEquals(p1.getX(), p2.getX());
9 assertEquals(p1.getY(), p2.getY());

10 }

How does dynamic binding work in L9 and L10?○ p1.getX() and p1.getY() return storage values○ p2.getX() and p2.getY() return computation results

11 of 13

Uniform Access Principle (6)

The Uniform Access Principle :
● Allows clients to use services (e.g., p.x and p.y) regardless of

how they are implemented.
● Gives suppliers complete freedom as to how to implement the

services (e.g., Cartesian vs. Polar).○ No right or wrong implementation; it depends!

`````````̀access
calculation efficient inefficient

frequent COMPUTATION STORAGE

infrequent STORAGE if “convenient” to keep its value up to date
COMPUTATION otherwise

● Whether it’s storage or computation, you can always change
secretly , since the clients’ access to the services is uniform .

12 of 13



Index (1)
Uniform Access Principle (1)

Uniform Access Principle (2)

Uniform Access Principle (3)

Uniform Access Principle (4)

Uniform Access Principle (5.1)

Uniform Access Principle (5.2)

UAP in Java: Interface (1)

UAP in Java: Interface (2)

UAP in Java: Interface (3)

UAP in Java: Interface (4)

Uniform Access Principle (6)
13 of 13


