
Classes and Objects

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Separation of Concerns: App/Tester vs. Model
● In EECS1022:

○ Model Component : One or More Java Classes
e.g., Person vs. SMS, Student, CourseRecord

○ Another Java class that “manipulates” the model class
(by creating instances and calling methods):
● Controller (e.g., BMIActivity, BankActivity). Effects?

Visualized (via a GUI) at connected tablet
● Tester with main (e.g., PersonTester, BankTester). Effects?

Seen (as textual outputs) at console
● In Java:

○ We may define more than one classes.
○ Each class may contain more than one methods.
object-oriented programming in Java:
○ Use classes to define templates
○ Use objects to instantiate classes
○ At runtime, create objects and call methods on objects, to simulate

interactions between real-life entities.
2 of 68

https://www.youtube.com/playlist?list=PL5dxAmCmjv_6KPR7g2mcUh7OwQML7RG1M

Object Orientation:
Observe, Model, and Execute

Real World: Entities

Entities:
jim, jonathan, …

Entities:
p1(2, 3), p2(-1, -2), …

…

Compile-Time: Classes
(definitions of templates)

class Person {
 String name;
 double weight;
 double height;
}

class Potint {
 double x;
 double y;
}

…

Run-Time: Objects
(instantiations of templates)

Person
name
weight
height

“Jim”
80

1.80
jim

Person
name
weight
height

“Jonathan”
80

1.80
jonathan

Point
x
y

2
3

p1

Point
x
y

-1
-2

p2

…

Model Execute

○ Study this tutorial video that walks you through the idea of
object orientation .

○ We observe how real-world entities behave.
○ We model the common attributes and behaviour of a set of

entities in a single class.
○ We execute the program by creating instances of classes, which

interact in a way analogous to that of real-world entities.
3 of 68

https://www.youtube.com/watch?v=y7qOhn6Ep4A&index=15&t=4s&list=PL5dxAmCmjv_7WvY_QnJrcPczM_KjABxBn

Object-Oriented Programming (OOP)

● In real life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.

● Entities:
○ Possess attributes;
○ Exhibit bebaviour ; and
○ Interact with each other.

● Goals: Solve problems programmatically by
○ Classifying entities of interest

Entities in the same class share common attributes and bebaviour.
○ Manipulating data that represent these entities

Each entity is represented by specific values.

4 of 68

OO Thinking: Templates vs. Instances (1.1)

A person is a being, such as a human, that has certain
attributes and behaviour constituting personhood: a person
ages and grows on their heights and weights.

● A template called Person defines the common
○ attributes (e.g., age, weight, height) [≈ nouns]
○ behaviour (e.g., get older, gain weight) [≈ verbs]

5 of 68

OO Thinking: Templates vs. Instances (1.2)

● Persons share these common attributes and behaviour .
○ Each person possesses an age, a weight, and a height.
○ Each person’s age, weight, and height might be distinct

e.g., jim is 50-years old, 1.8-meters tall and 80-kg heavy
e.g., jonathan is 65-years old, 1.73-meters tall and 90-kg heavy

● Each person, depending on the specific values of their
attributes, might exhibit distinct behaviour:
○ When jim gets older, he becomes 51
○ When jonathan gets older, he becomes 66.
○ jim’s BMI is based on his own height and weight [80

1.82]
○ jonathan’s BMI is based on his own height and weight [90

1.732]

6 of 68

OO Thinking: Templates vs. Instances (2.1)

Points on a two-dimensional plane are identified by their signed
distances from the X- and Y-axises. A point may move
arbitrarily towards any direction on the plane. Given two points,
we are often interested in knowing the distance between them.

● A template called Point defines the common
○ attributes (e.g., x, y) [≈ nouns]
○ behaviour (e.g., move up, get distance from) [≈ verbs]

7 of 68

OO Thinking: Templates vs. Instances (2.2)

● Points share these common attributes and behaviour .
○ Each point possesses an x-coordinate and a y-coordinate.
○ Each point’s location might be distinct

e.g., p1 is located at (3,4)
e.g., p2 is located at (−4,−3)

● Each point, depending on the specific values of their attributes
(i.e., locations), might exhibit distinct behaviour:
○ When p1 moves up for 1 unit, it will end up being at (3,5)
○ When p2 moves up for 1 unit, it will end up being at (−4,−2)
○ Then, p1’s distance from origin: [

√
32 + 52]

○ Then, p2’s distance from origin: [
√
(−4)2 + (−2)2]

8 of 68

OO Thinking: Templates vs. Instances (3)
● A template defines what’s shared by a set of related entities.

○ Common attributes (age in Person, x in Point)
○ Common behaviour (get older for Person, move up for Point)

● Each template may be instantiated into multiple instances.
○ Person instances: jim and jonathan
○ Point instances: p1 and p2

● Each instance may have specific values for the attributes.
○ Each Person instance has an age:
jim is 50-years old, jonathan is 65-years old

○ Each Point instance has a location:
p1 is at (3,4), p2 is at (−3,−4)

● Therefore, instances of the same template may exhibit distinct
behaviour .
○ Each Person instance can get older: jim getting older from 50 to

51; jonathan getting older from 65 to 66.
○ Each Point instance can move up: p1 moving up from (3,3)

results in (3,4); p1 moving up from (−3,−4) results in (−3,−3).
9 of 68

OOP: Classes ≈ Templates

In Java, you use a class to define a template that enumerates
attributes that are common to a set of entities of interest.

public class Person {
int age;
String nationality;
double weight;
double height;

}

public class Point {
double x;
double y;

}

10 of 68

OOP:
Define Constructors for Creating Objects (1.1)
● Within class Point, you define constructors , specifying how

instances of the Point template may be created.
public class Point {
. . . /* attributes: x, y */
Point(double newX, double newY) {
x = newX;
y = newY; } }

● In the corresponding tester class, each call to the Point
constructor creates an instance of the Point template.
public class PointTester {
public static void main(String[] args) {

Point p1 = new Point (2, 4);
println(p1.x + " " + p1.y);
Point p2 = new Point (-4, -3);
println(p2.x + " " + p2.y); } }

11 of 68

OOP:
Define Constructors for Creating Objects (1.2)

Point p1 = new Point(2, 4);

1. RHS (Source) of Assignment: new Point(2, 4) creates
a new Point object in memory.

2.0

4.0

x

y

Point

2. LHS (Target) of Assignment: Point p1 declares a variable
that is meant to store the address of some Point object .

3. Assignment: Executing = stores new object’s address in p1.

2.0

4.0

x

y

Point

p1

12 of 68

OOP:
Define Constructors for Creating Objects (2.1)
● Within class Person, you define constructors , specifying how

instances of the Person template may be created.
public class Person {
. . . /* attributes: age, nationality, weight, height */
Person(int newAge, String newNationality) {
age = newAge;
nationality = newNationality; } }

● In the corresponding tester class, each call to the Person
constructor creates an instance of the Person template.
public class PersonTester {
public static void main(String[] args) {

Person jim = new Person (50, "British");
println(jim.nationlaity + " " + jim.age);
Person jonathan = new Person (60, "Canadian");
println(jonathan.nationlaity + " " + jonathan.age); } }

13 of 68

OOP:
Define Constructors for Creating Objects (2.2)

Person jim = new Person(50, "British");

1. RHS (Source) of Assignment: new Person(50, "British")

creates a new Person object in memory.

50

“British”

age

nationality

Person

0.0

0.0

weight

height

2. LHS (Target) of Assignment: Point jim declares a variable
that is meant to store the address of some Person object .

3. Assignment: Executing = stores new object’s address in jim.

50

“British”

age

nationality

Person

jim

0.0

0.0

weight

height
14 of 68

Visualizing Objects at Runtime (1)

● To trace a program with sophisticated manipulations of objects,
it’s critical for you to visualize how objects are:
○ Created using constructors

Person jim = new Person(50, "British", 80, 1.8);
○ Inquired using accessor methods

double bmi = jim.getBMI();
○ Modified using mutator methods

jim.gainWeightBy(10);
● To visualize an object:

○ Draw a rectangle box to represent contents of that object:

● Title indicates the name of class from which the object is instantiated.

● Left column enumerates names of attributes of the instantiated class.

● Right column fills in values of the corresponding attributes.

○ Draw arrow(s) for variable(s) that store the object’s address .
15 of 68

Visualizing Objects at Runtime (2.1)
After calling a constructor to create an object:

Person jim = new Person(50, "British", 80, 1.8);

“British”nationality

Person

jim

80

1.8

weight

height

50age

16 of 68

Visualizing Objects at Runtime (2.2)
After calling an accessor to inquire about context object jim:
double bmi = jim.getBMI();

● Contents of the object pointed to by jim remain intact.
● Retuned value 80

(1.8)2 of jim.getBMI() stored in variable bmi.

“British”nationality

Person

jim

80

1.8

weight

height

50age

17 of 68

Visualizing Objects at Runtime (2.3)
After calling a mutator to modify the state of context object jim:
jim.gainWeightBy(10);

● Contents of the object pointed to by jim change.
● Address of the object remains unchanged.
⇒ jim points to the same object!

“British”nationality

Person

jim

80 90

1.8

weight

height

50age

18 of 68

Visualizing Objects at Runtime (2.4)
After calling the same accessor to inquire the modified state of
context object jim:
bmi = p.getBMI();

● Contents of the object pointed to by jim remain intact.
● Retuned value 90

(1.8)2 of jim.getBMI() stored in variable bmi.

“British”nationality

Person

jim

80 90

1.8

weight

height

50age

19 of 68

The this Reference (1)
● Each class may be instantiated to multiple objects at runtime.
class Point {
double x; double y;
void moveUp(double units) { y += units; }

}

● Each time when we call a method of some class, using the dot
notation, there is a specific target /context object.

1 Point p1 = new Point(2, 3);
2 Point p2 = new Point(4, 6);
3 p1.moveUp(3.5);
4 p2.moveUp(4.7);

○ p1 and p2 are called the call targets or context objects .
○ Lines 3 and 4 apply the same definition of the moveUp method.
○ But how does Java distinguish the change to p1.y versus the

change to p2.y?
20 of 68

The this Reference (2)
● In the method definition, each attribute has an implicit this

which refers to the context object in a call to that method.
class Point {
double x;
double y;
Point(double newX, double newY) {
this.x = newX;
this.y = newY;

}
void moveUp(double units) {
this.y = this.y + units;

}
}

● Each time when the class definition is used to create a new
Point object , the this reference is substituted by the name of
the new object.

21 of 68

The this Reference (3)
● After we create p1 as an instance of Point
Point p1 = new Point(2, 3);

● When invoking p1.moveUp(3.5), a version of moveUp that is
specific to p1 will be used:
class Point {
double x;
double y;
Point(double newX, double newY) {

p1 .x = newX;

p1 .y = newY;

}
void moveUp(double units) {

p1 .y = p1 .y + units;

}
}

22 of 68

The this Reference (4)
● After we create p2 as an instance of Point
Point p2 = new Point(4, 6);

● When invoking p2.moveUp(4.7), a version of moveUp that is
specific to p2 will be used:
class Point {
double x;
double y;
Point(double newX, double newY) {

p2 .x = newX;

p2 .y = newY;

}
void moveUp(double units) {

p2 .y = p2 .y + units;

}
}

23 of 68

The this Reference (5)

The this reference can be used to disambiguate when the
names of input parameters clash with the names of class
attributes.
class Point {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;

}
void setX(double x) {
this.x = x;

}
void setY(double y) {
this.y = y;

}
}

24 of 68

The this Reference (6.1): Common Error

The following code fragment compiles but is problematic:

class Person {
String name;
int age;
Person(String name, int age) {
name = name;
age = age;

}
void setAge(int age) {
age = age;

}
}

Why? Fix?

25 of 68

The this Reference (6.2): Common Error

Always remember to use this when input parameter names
clash with class attribute names.

class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;

}
void setAge(int age) {
this.age = age;

}
}

26 of 68

OOP: Methods (1.1)
● A method is a named block of code, reusable via its name.

{
 …
 /* implementation of method m */
}

m

…
RT

T1T1 p1p1

T2T2 p2p2

TnTn pnpn

● The header of a method consists of: [see here]
○ Return type [RT (which can be void)]
○ Name of method [m]
○ Zero or more parameter names [p1, p2, . . . , pn]
○ The corresponding parameter types [T1, T2, . . . , Tn]

● A call to method m has the form: m(a1,a2, . . . ,an)

Types of argument values a1, a2, . . . , an must match the the
corresponding parameter types T1, T2, . . . , Tn.

27 of 68

https://www.inf.unibz.it/~calvanese/teaching/ip/lecture-notes/uni02/node7.html

OOP: Methods (1.2)
● In the body of the method, you may

○ Declare and use new local variables
Scope of local variables is only within that method.

○ Use or change values of attributes.
○ Use values of parameters, if any.

class Person {
String nationality;
void changeNationality(String newNationality) {
nationality = newNationality; } }

● Call a method , with a context object , by passing arguments.
class PersonTester {
public static void main(String[] args) {
Person jim = new Person(50, "British");
Person jonathan = new Person(60, "Canadian");
jim.changeNationality("Korean");
jonathan.changeNationality("Korean"); } }

28 of 68

OOP: Methods (2)

● Each class C defines a list of methods.
○ A method m is a named block of code.

● We reuse the code of method m by calling it on an object obj
of class C.

For each method call obj.m(. . .):
○ obj is the context object of type C
○ m is a method defined in class C
○ We intend to apply the code effect of method m to object obj.

e.g., jim.getOlder() vs. jonathan.getOlder()
e.g., p1.moveUp(3) vs. p2.moveUp(3)

● All objects of class C share the same definition of method m.
● However:
∵ Each object may have distinct attribute values.
∴ Applying the same definition of method m has distinct effects.

29 of 68

OOP: Methods (3)
1. Constructor

○ Same name as the class. No return type. Initializes attributes.
○ Called with the new keyword.
○ e.g., Person jim = new Person(50, "British");

2. Mutator
○ Changes (re-assigns) attributes
○ void return type
○ Cannot be used when a value is expected
○ e.g., double h = jim.setHeight(78.5) is illegal!

3. Accessor
○ Uses attributes for computations (without changing their values)
○ Any return type other than void
○ An explicit return statement (typically at the end of the method)

returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI();
e.g., println(p1.getDistanceFromOrigin());

30 of 68

OOP: The Dot Notation (1.1)

A binary operator:
○ LHS stores an address (which denotes an object)
○ RHS the name of an attribute or a method
○ LHS . RHS means:

Locate the context object whose address is stored in LHS,
then apply RHS.
What if LHS stores null? [NullPointerException]

31 of 68

OOP: The Dot Notation (1.2)

● Given a variable of some reference type that is not null:
○ We use a dot to retrieve any of its attributes .

Analogous to ’s in English
e.g., jim.nationality means jim’s nationality

○ We use a dot to invoke any of its mutator methods , in order to
change values of its attributes.
e.g., jim.changeNationality("CAN") changes the
nationality attribute of jim

○ We use a dot to invoke any of its accessor methods , in order to
use the result of some computation on its attribute values.
e.g., jim.getBMI() computes and returns the BMI calculated
based on jim’s weight and height

○ Return value of an accessor method must be stored in a variable.
e.g., double jimBMI = jim.getBMI()

32 of 68

OOP: Method Calls
1 Point p1 = new Point (3, 4);

2 Point p2 = new Point (-6, -8);

3 System.out.println(p1. getDistanceFromOrigin());

4 System.out.println(p2. getDistanceFromOrigin());

5 p1. moveUp(2) ;

6 p2. moveUp(2) ;

7 System.out.println(p1. getDistanceFromOrigin());

8 System.out.println(p2. getDistanceFromOrigin());

● Lines 1 and 2 create two different instances of Point
● Lines 3 and 4: invoking the same accessor method on two

different instances returns distinct values
● Lines 5 and 6: invoking the same mutator method on two

different instances results in independent changes
● Lines 3 and 7: invoking the same accessor method on the

same instance may return distinct values, why? Line 5
33 of 68

OOP: Class Constructors (1)

● The purpose of defining a class is to be able to create
instances out of it.

● To instantiate a class, we use one of its constructors .
● A constructor

○ declares input parameters
○ uses input parameters to initialize some or all of its attributes

34 of 68

OOP: Class Constructors (2)
public class Person {
int age;
String nationality;
double weight;
double height;
Person(int initAge, String initNat) {
age = initAge;
nationality = initNat;

}
Person (double initW, double initH) {
weight = initW;
height = initH;

}
Person(int initAge, String initNat,

double initW, double initH) {
. . . /* initialize all attributes using the parameters */

}
}

35 of 68

OOP: Class Constructors (3)

public class Point {
double x;
double y;

Point(double initX, double initY) {
x = initX;
y = initY;

}

Point(char axis, double distance) {
if (axis == ’x’) { x = distance; }
else if (axis == ’y’) { y = distance; }
else { System.out.println("Error: invalid axis.") }

}
}

36 of 68

OOP: Class Constructors (4)

● For each class, you may define one or more constructors :
○ Names of all constructors must match the class name.
○ No return types need to be specified for constructors.
○ Each constructor must have a distinct list of input parameter types.
○ Each parameter that is used to initialize an attribute must have a

matching type.
○ The body of each constructor specifies how some or all

attributes may be initialized .

37 of 68

OOP: Object Creation (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:

System.out.println("(" + p1.x + ", " + p1.y + ")");

(2.0, 4.0)

38 of 68

OOP: Object Creation (2)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PersonTester {
public static void main(String[] args) {
/* initialize age and nationality only */
Person jim = new Person(50, "BRI");
/* initialize age and nationality only */
Person jonathan = new Person(65, "CAN");
/* initialize weight and height only */
Person alan = new Person(75, 1.80);
/* initialize all attributes of a person */
Person mark = new Person(40, "CAN", 69, 1.78);

}
}

39 of 68

OOP: Object Creation (3)

50age

nationality

Person

jim

0.0

0.0

weight

height

“BRI”

Person jim = new Person(50, “BRI”)

65age

nationality

Person

jonathan

0.0

0.0

weight

height

“CAN”

Person jonathan = new Person(65, “CAN”)

0age

nationality

Person

alan

75.0

1.80

weight

height

null

Person alan = new Person(75, 1.80)

40age

nationality

Person

mark

69.0

1.78

weight

height

“CAN”

Person mark = new Person(40, “CAN”, 69, 1.78)

40 of 68

OOP: Object Creation (4)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PointTester {
public static void main(String[] args) {
Point p1 = new Point(3, 4);
Point p2 = new Point(-3 -2);
Point p3 = new Point(’x’, 5);
Point p4 = new Point(’y’, -7);

}
}

41 of 68

OOP: Object Creation (5)

3.0

4.0

x

y

Person

p1

Point p1 = new Point(3, 4)

-3.0

-2.0

x

y

Person

p2

Point p2 = new Point(-3, -2)

5.0

0

x

y

Person

p3

Point p3 = new Point(‘x’, 5)

0

-7.0

x

y

Person

p4

Point p4 = new Point(‘y’, -7)

42 of 68

OOP: Object Creation (6)

● When using the constructor, pass valid argument values:
○ The type of each argument value must match the corresponding

parameter type.
○ e.g., Person(50, "BRI") matches
Person(int initAge, String initNationality)

○ e.g., Point(3, 4) matches
Point(double initX, double initY)

● When creating an instance, uninitialized attributes implicitly get
assigned the default values .
○ Set uninitialized attributes properly later using mutator methods

Person jim = new Person(50, "British");
jim.setWeight(85);
jim.setHeight(1.81);

43 of 68

OOP: Mutator Methods

● These methods change values of attributes.
● We call such methods mutators (with void return type).

public class Person {
. . .
void gainWeight(double units) {
weight = weight + units;

}
}

public class Point {
. . .
void moveUp() {
y = y + 1;

}
}

44 of 68

OOP: Accessor Methods
● These methods return the result of computation based on

attribute values.
● We call such methods accessors (with non-void return type).
public class Person {
. . .
double getBMI() {
double bmi = height / (weight * weight);
return bmi;

}
}

public class Point {
. . .
double getDistanceFromOrigin() {
double dist = Math.sqrt(x*x + y*y);
return dist;

}
}45 of 68

OOP: Use of Mutator vs. Accessor Methods

● Calls to mutator methods cannot be used as values.
○ e.g., System.out.println(jim.setWeight(78.5)); ×

○ e.g., double w = jim.setWeight(78.5); ×

○ e.g., jim.setWeight(78.5); ✓

● Calls to accessor methods should be used as values.
○ e.g., jim.getBMI(); ×

○ e.g., System.out.println(jim.getBMI()); ✓

○ e.g., double w = jim.getBMI(); ✓

46 of 68

OOP: Method Parameters

● Principle 1: A constructor needs an input parameter for
every attribute that you wish to initialize.
e.g., Person(double w, double h) vs.
Person(String fName, String lName)

● Principle 2: A mutator method needs an input parameter for
every attribute that you wish to modify.
e.g., In Point, void moveToXAxis() vs.
void moveUpBy(double unit)

● Principle 3: An accessor method needs input parameters if
the attributes alone are not sufficient for the intended
computation to complete.
e.g., In Point, double getDistFromOrigin() vs.
double getDistFrom(Point other)

47 of 68

OOP: Object Alias (1)
1 int i = 3;
2 int j = i; System.out.println(i == j); /* true */
3 int k = 3; System.out.println(k == i && k == j); /* true */

○ Line 2 copies the number stored in i to j.
○ After Line 4, i, j, k refer to three separate integer placeholder,

which happen to store the same value 3.

1 Point p1 = new Point(2, 3);
2 Point p2 = p1; System.out.println(p1 == p2); /* true */
3 Point p3 = new Point(2, 3);
4 Systme.out.println(p3 == p1 || p3 == p2); /* false */
5 Systme.out.println(p3.x == p1.x && p3.y == p1.y); /* true */
6 Systme.out.println(p3.x == p2.x && p3.y == p2.y); /* true */

○ Line 2 copies the address stored in p1 to p2.
○ Both p1 and p2 refer to the same object in memory!
○ p3, whose contents are same as p1 and p2, refer to a different

object in memory.
48 of 68

OO Program Programming: Object Alias (2.1)

Problem: Consider assignments to primitive variables:

1 int i1 = 1;
2 int i2 = 2;
3 int i3 = 3;
4 int[] numbers1 = {i1, i2, i3};
5 int[] numbers2 = new int[numbers1.length];
6 for(int i = 0; i < numbers1.length; i ++) {
7 numbers2[i] = numbers1[i];
8 }
9 numbers1[0] = 4;

10 System.out.println(numbers1[0]);
11 System.out.println(numbers2[0]);

49 of 68

OO Program Programming: Object Alias (2.2)
Problem: Consider assignments to reference variables:
1 Person alan = new Person("Alan");
2 Person mark = new Person("Mark");
3 Person tom = new Person("Tom");
4 Person jim = new Person("Jim");
5 Person[] persons1 = {alan, mark, tom};
6 Person[] persons2 = new Person[persons1.length];
7 for(int i = 0; i < persons1.length; i ++) {
8 persons2[i] = persons1[(i + 1) % persons1.length]; }
9 persons1[0].setAge(70);

10 System.out.println(jim.age); /* 0 */
11 System.out.println(alan.age); /* 70 */
12 System.out.println(persons2[0].age); /* 0 */
13 persons1[0] = jim;
14 persons1[0].setAge(75);
15 System.out.println(jim.age); /* 75 */
16 System.out.println(alan.age); /* 70 */
17 System.out.println(persons2[0].age); /* 0 */

50 of 68

OO Program Programming: Object Alias (3)
Person tom = new Person("TomCruise");
Person ethanHunt = tom;
Person spy = ethanHunt;
tom.setWeight(77); print(tom.weight); /* 77 */
ethanHunt.gainWeight(10); print(tom.weight); /* 87 */
spy.loseWeight(10); print(tom.weight); /* 77 */
Person prof = new Person("Jackie"); prof.setWeight(80);

spy = prof ; prof = tom ; tom = spy ;

print(prof.name+" teaches 2030");/*TomCruise teaches 2030*/
print("EthanHunt is "+ethanHunt.name);/*EthanHunt is TomCruise*/
print("EthanHunt is "+spy.name);/*EthanHunt is Jackie*/
print("TomCruise is "+tom.name);/*TomCruise is Jackie*/
print("Jackie is "+prof.name);/*Jackie is TomCruise*/

● An object at runtime may have more than one identities.
Its address may be stored in multiple reference variables.

● Calling a method on one of an object’s identities has the same
effect as calling the same method on any of its other identities.

51 of 68

Anonymous Objects (1)
● What’s the difference between these two fragments of code?

1 double square(double x) {
2 double sqr = x * x;
3 return sqr; }

1 double square(double x) {
2 return x * x; }

After L2, the result of x * x:
○ LHS: it can be reused (without recalculating) via the name sqr.
○ RHS: it is not stored anywhere and returned right away.

● Same principles applies to objects:
1 Person getP(String n) {

2 Person p = new Person(n) ;
3 return p; }

1 Person getP(String n) {

2 return new Person(n) ; }

new Person(n) denotes an object without a name reference.
○ LHS: L2 stores the address of this anonymous object in p.
○ RHS: L2 returns the address of this anonymous object directly.

52 of 68

Anonymous Objects (2.1)
Anonymous objects can also be used as assignment sources
or argument values:
class Member {
Order[] orders;
int noo;
/* constructor ommitted */
void addOrder(Order o) {
orders[noo] = o;
noo ++;

}
void addOrder(String n, double p, double q) {

addOrder(new Order(n, p, q));

/* Equivalent implementation:

* orders[noo] = new Order(n, p, q);
noo ++; */

}
}

53 of 68

Anonymous Objects (2.2)

One more example on using anonymous objects:

class MemberTester {
public static void main(String[] args) {
Member m = new Member("Alan");
Order o = new Order("Americano", 4.7, 3);
m.addOrder(o);

m.addOrder(new Order("Cafe Latte", 5.1, 4));
}

}

54 of 68

Java Data Types (1)
A (data) type denotes a set of related runtime values.

1. Primitive Types
○ Integer Type
● int [set of 32-bit integers]
● long [set of 64-bit integers]

○ Floating-Point Number Type
● double [set of 64-bit FP numbers]

○ Character Type
● char [set of single characters]

○ Boolean Type
● boolean [set of true and false]

2. Reference Type : Complex Type with Attributes and Methods
○ String [set of references to character sequences]
○ Person [set of references to Person objects]
○ Point [set of references to Point objects]
○ Scanner [set of references to Scanner objects]

55 of 68

Java Data Types (2)
● A variable that is declared with a type but uninitialized is

implicitly assigned with its default value .
○ Primitive Type
● int i; [0 is implicitly assigned to i]
● double d; [0.0 is implicitly assigned to d]
● boolean b; [false is implicitly assigned to b]

○ Reference Type
● String s; [null is implicitly assigned to s]
● Person jim; [null is implicitly assigned to jim]
● Point p1; [null is implicitly assigned to p1]
● Scanner input; [null is implicitly assigned to input]

● You can use a primitive variable that is uninitialized .
Make sure the default value is what you want!

● Calling a method on a uninitialized reference variable crashes
your program. [NullPointerException]
Always initialize reference variables!

56 of 68

Java Data Types (3.1)
● An attribute may store the reference to some object.
class Person { Person spouse; }

● Methods may take as parameters references to other objects.
class Person {
void marry(Person other) { . . . } }

● Return values from methods may be references to other
objects.
class Point {
void moveUpBy(int i) { y = y + i; }
Point movedUpBy(int i) {
Point np = new Point(x, y);
np.moveUp(i);
return np;

}
}

57 of 68

Java Data Types (3.2.1)
An attribute may be of type Point[] , storing references to
Point objects.

1 class PointCollector {
2 Point[] points; int nop; /* number of points */
3 PointCollector() { points = new Point[100]; }
4 void addPoint(double x, double y) {
5 points[nop] = new Point(x, y); nop++; }
6 Point[] getPointsInQuadrantI() {
7 Point[] ps = new Point[nop];
8 int count = 0; /* number of points in Quadrant I */
9 for(int i = 0; i < nop; i ++) {

10 Point p = points[i];
11 if(p.x > 0 && p.y > 0) { ps[count] = p; count ++; } }

12 Point[] q1Points = new Point[count];

13 /* ps contains null if count < nop */

14 for(int i = 0; i < count; i ++) { q1Points[i] = ps[i] }

15 return q1Points ;

16 } }

Required Reading: Point and PointCollector
58 of 68

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/F/EECS2030/notes/EECS2030_F18_Notes_Tracing_PointCollectorTester.pdf

Java Data Types (3.2.2)

1 class PointCollectorTester {
2 public static void main(String[] args) {
3 PointCollector pc = new PointCollector();
4 System.out.println(pc.nop); /* 0 */
5 pc.addPoint(3, 4);
6 System.out.println(pc.nop); /* 1 */
7 pc.addPoint(-3, 4);
8 System.out.println(pc.nop); /* 2 */
9 pc.addPoint(-3, -4);

10 System.out.println(pc.nop); /* 3 */
11 pc.addPoint(3, -4);
12 System.out.println(pc.nop); /* 4 */
13 Point[] ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /* 1 */
15 System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
16 /* (3, 4) */
17 }
18 }

59 of 68

Static Variables (1)

class Account {
int id;
String owner;
Account(int id, String owner) {
this.id = id;
this.owner = owner;

}
}

class AccountTester {
Account acc1 = new Account(1, "Jim");
Account acc2 = new Account(2, "Jeremy");
System.out.println(acc1.id != acc2.id);

}

But, managing the unique id’s manually is error-prone !
60 of 68

Static Variables (2)
class Account {

static int globalCounter = 1;

int id; String owner;
Account(String owner) {

this.id = globalCounter ; globalCounter ++;

this.owner = owner; } }

class AccountTester {
Account acc1 = new Account("Jim");
Account acc2 = new Account("Jeremy");
System.out.println(acc1.id != acc2.id); }

● Each instance of a class (e.g., acc1, acc2) has a local copy of
each attribute or instance variable (e.g., id).
○ Changing acc1.id does not affect acc2.id.

● A static variable (e.g., globalCounter) belongs to the class.
○ All instances of the class share a single copy of the static variable.
○ Change to globalCounter via c1 is also visible to c2.

61 of 68

Static Variables (3)
class Account {

static int globalCounter = 1;

int id; String owner;
Account(String owner) {

this.id = globalCounter ;

globalCounter ++;

this.owner = owner;
} }

● Static variable globalCounter is not instance-specific like
instance variable (i.e., attribute) id is.

● To access a static variable:
○ No context object is needed.
○ Use of the class name suffices, e.g., Account.globalCounter.

● Each time Account’s constructor is called to create a new
instance, the increment effect is visible to all existing objects
of Account.

62 of 68

Static Variables (4.1): Common Error
class Client {
Account[] accounts;

static int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;

} }

class ClientTester {
Client bill = new Client("Bill");
Client steve = new Client("Steve");
Account acc1 = new Account();
Account acc2 = new Account();
bill.addAccount(acc1);
/* correctly added to bill.accounts[0] */

steve.addAccount(acc2);
/* mistakenly added to steve.accounts[1]! */

}
63 of 68

Static Variables (4.2): Common Error

● Attribute numberOfAccounts should not be declared as
static as its value should be specific to the client object.

● If it were declared as static, then every time the
addAccount method is called, although on different objects,
the increment effect of numberOfAccounts will be visible to
all Client objects.

● Here is the correct version:
class Client {
Account[] accounts;
int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;

}
}

64 of 68

Static Variables (5.1): Common Error

1 public class Bank {
2 public string branchName;
3 public static int nextAccountNumber = 1;
4 public static void useAccountNumber() {
5 System.out.println (branchName + . . .);
6 nextAccountNumber ++;
7 }
8 }

● Non-static method cannot be referenced from a static context
● Line 4 declares that we can call the method
userAccountNumber without instantiating an object of the
class Bank.

● However, in Lined 5, the static method references a non-static
attribute, for which we must instantiate a Bank object.

65 of 68

Static Variables (5.2): Common Error
1 public class Bank {
2 public string branchName;
3 public static int nextAccountNumber = 1;
4 public static void useAccountNumber() {
5 System.out.println (branchName + . . .);
6 nextAccountNumber ++;
7 }
8 }

● To call useAccountNumber(), no instances of Bank are
required:

Bank .useAccountNumber();

● Contradictorily , to access branchName, a context object is
required:
Bank b1 = new Bank(); b1.setBranch("Songdo IBK");

System.out.println(b1 .branchName);

66 of 68

Static Variables (5.3): Common Error

There are two possible ways to fix:
1. Remove all uses of non-static variables (i.e., branchName) in

the static method (i.e., useAccountNumber).
2. Declare branchName as a static variable.

○ This does not make sense.
∵ branchName should be a value specific to each Bank instance.

67 of 68

Index (1)
Separation of Concerns: App/Tester vs. Model
Object Orientation:
Observe, Model, and Execute
Object-Oriented Programming (OOP)
OO Thinking: Templates vs. Instances (1.1)
OO Thinking: Templates vs. Instances (1.2)
OO Thinking: Templates vs. Instances (2.1)
OO Thinking: Templates vs. Instances (2.2)
OO Thinking: Templates vs. Instances (3)
OOP: Classes ≈ Templates
OOP:
Define Constructors for Creating Objects (1.1)
OOP:
Define Constructors for Creating Objects (1.2)

68 of 68

Index (2)
OOP:
Define Constructors for Creating Objects (2.1)
OOP:
Define Constructors for Creating Objects (2.2)
Visualizing Objects at Runtime (1)
Visualizing Objects at Runtime (2.1)
Visualizing Objects at Runtime (2.2)
Visualizing Objects at Runtime (2.3)
Visualizing Objects at Runtime (2.4)
The this Reference (1)
The this Reference (2)
The this Reference (3)
The this Reference (4)
The this Reference (5)

69 of 68

Index (3)
The this Reference (6.1): Common Error
The this Reference (6.2): Common Error
OOP: Methods (1.1)
OOP: Methods (1.2)
OOP: Methods (2)
OOP: Methods (3)
OOP: The Dot Notation (1.1)
OOP: The Dot Notation (1.2)
OOP: Method Calls
OOP: Class Constructors (1)
OOP: Class Constructors (2)
OOP: Class Constructors (3)
OOP: Class Constructors (4)
OOP: Object Creation (1)

70 of 68

Index (4)
OOP: Object Creation (2)
OOP: Object Creation (3)
OOP: Object Creation (4)
OOP: Object Creation (5)
OOP: Object Creation (6)
OOP: Mutator Methods
OOP: Accessor Methods
OOP: Use of Mutator vs. Accessor Methods
OOP: Method Parameters
OOP: Object Alias (1)
OOP: Object Alias (2.1)
OOP: Object Alias (2.2)
OOP: Object Alias (3)
Anonymous Objects (1)

71 of 68

Index (5)
Anonymous Objects (2.1)
Anonymous Objects (2.2)
Java Data Types (1)
Java Data Types (2)
Java Data Types (3.1)
Java Data Types (3.2.1)
Java Data Types (3.2.2)
Static Variables (1)
Static Variables (2)
Static Variables (3)
Static Variables (4.1): Common Error
Static Variables (4.2): Common Error
Static Variables (5.1): Common Error
Static Variables (5.2): Common Error

72 of 68

Index (6)
Static Variables (5.3): Common Error

73 of 68

Exceptions

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Caller vs. Callee

● Within the body implementation of a method, we may call other
methods.

1 class C1 {
2 void m1() {
3 C2 o = new C2();
4 o.m2(); /* static type of o is C2 */
5 }
6 }

● From Line 4, we say:
○ Method C1.m1 (i.e., method m1 from class C1) is the caller of

method C2.m2.
○ Method C2.m2 is the callee of method C1.m1.

2 of 41

Why Exceptions? (1.1)
1 class Circle {
2 double radius;
3 Circle() { /* radius defaults to 0 */ }
4 void setRadius(double r) {

5 if (r < 0) { System.out.println("Invalid radius."); }
6 else { radius = r; }
7 }
8 double getArea() { return radius * radius * 3.14; }
9 }

● A negative radius is considered as an invalid input value to
method setRadius.

● What if the caller of Circle.setRadius passes a negative
value for r?
○ An error message is printed to the console (Line 5) to warn the

caller of setRadius.
○ However, printing an error message to the console does not force

the caller setRadius to stop and handle invalid values of r.
3 of 41

Why Exceptions? (1.2)
1 class CircleCalculator {
2 public static void main(String[] args) {
3 Circle c = new Circle();

4 c.setRadius(-10);
5 double area = c.getArea();
6 System.out.println("Area: " + area);
7 }
8 }

● L4: CircleCalculator.main is caller of Circle.setRadius
● A negative radius is passed to setRadius in Line 4.
● The execution always flows smoothly from Lines 4 to Line 5,

even when there was an error message printed from Line 4.
● It is not feasible to check if there is any kind of error message

printed to the console right after the execution of Line 4.
● Solution: A way to force CircleCalculator.main, caller of
Circle.setRadius, to realize that things might go wrong.
⇒When things do go wrong, immediate actions are needed.

4 of 41

Why Exceptions? (2.1)
class Account {
int id; double balance;
Account(int id) { this.id = id; /* balance defaults to 0 */ }
void deposit(double a) {

if (a < 0) { System.out.println("Invalid deposit."); }

else { balance += a; }
}
void withdraw(double a) {

if (a < 0 || balance - a < 0) {

System.out.println("Invalid withdraw."); }
else { balance -= a; }

}
}

● A negative deposit or withdraw amount is invalid .
● When an error occurs, a message is printed to the console.
● However, printing error messages does not force the caller of
Account.deposit or Account.withdraw to stop and
handle invalid values of a.

5 of 41

Why Exceptions? (2.2)
1 class Bank {
2 Account[] accounts; int numberOfAccounts;
3 Account(int id) { . . . }
4 void withdrawFrom(int id, double a) {
5 for(int i = 0; i < numberOfAccounts; i ++) {
6 if(accounts[i].id == id) {
7 accounts[i].withdraw(a);
8 }
9 } /* end for */

10 } /* end withdraw */
11 }

● L7: Bank.withdrawFrom is caller of Account.withdraw
● What if in Line 7 the value of a is negative?

Error message Invalid withdraw printed from method
Account.withdraw to console.

● Impossible to force Bank.withdrawFrom, the caller of
Account.withdraw , to stop and handle invalid values of a.

6 of 41

Why Exceptions? (2.3)
1 class BankApplication {
2 pubic static void main(String[] args) {
3 Scanner input = new Scanner(System.in);
4 Bank b = new Bank(); Account acc1 = new Account(23);
5 b.addAccount(acc1);
6 double a = input.nextDouble();
7 b.withdrawFrom(23, a);
8 }

● There is a chain of method calls:
○ BankApplication.main calls Bank.withdrawFrom
○ Bank.withdrawFrom calls Account.withdraw .

● The actual update of balance occurs at the Account class.
○ What if in Line 7 the value of a is negative?

Invalid withdraw printed from Bank.withdrawFrom,
printed from Account.withdraw to console.

○ Impossible to force BankApplication.main, the caller of
Bank.withdrawFrom, to stop and handle invalid values of a.

● Solution: Define error checking only once and let it propagate.
7 of 41

What is an Exception?

● An exception is an event , which
○ occurs during the execution of a program
○ disrupts the normal flow of the program’s instructions

● When an error occurs within a method:
○ the method throws an exception:
● first creates an exception object
● then hands it over to the runtime system

○ the exception object contains information about the error:
● type [e.g., NegativeRadiusException]
● the state of the program when the error occurred

8 of 41

Exceptions in Java (1.1)

public class InvalidRadiusException extends Exception {
public InvalidRadiusException(String s) {
super(s);

}
}

● A new kind of Exception: InvalidRadiusException
● For any method that can have this kind of error, we declare at

that method’s signature that it may throw an
InvalidRaidusException object.

9 of 41

Exceptions in Java (1.2)

class Circle {
double radius;
Circle() { /* radius defaults to 0 */ }
void setRadius(double r) throws InvalidRadiusException {
if (r < 0) {
throw new InvalidRadiusException("Negative radius.");

}
else { radius = r; }

}
double getArea() { return radius * radius * 3.14; }

}

● As part of the signature of setRadius, we declare that it may
throw an InvalidRadiusException object at runtime.

● Any method that calls setRadius will be forced to
deal with this potential error .

10 of 41

Exceptions in Java (1.3)
1 class CircleCalculator1 {
2 public static void main(String[] args) {
3 Circle c = new Circle();
4 try {
5 c.setRadius(-10);
6 double area = c.getArea();
7 System.out.println("Area: " + area);
8 }
9 catch(InvalidRadiusException e) {

10 System.out.println(e);
11 }
12 } }

● Lines 6 is forced to be wrapped within a try-catch block, since
it may throw an InvalidRadiusException object.

● If an InvalidRadiusException object is thrown from Line
6, then the normal flow of execution is interrupted and we go to
the catch block starting from Line 9.

11 of 41

Exceptions in Java (1.4.1)

Exercise: Extend CircleCalculator1: repetitively prompt
for a new radius value until a valid one is entered (i.e., the
InvalidRadiusException does not occur).

12 of 41

Exceptions in Java (1.4.2)

1 public class CircleCalculator2 {
2 public static void main(String[] args) {
3 Scanner input = new Scanner(System.in);

4 boolean inputRadiusIsValid = false;

5 while(!inputRadiusIsValid) {
6 System.out.println("Enter a radius:");
7 double r = input.nextDouble();
8 Circle c = new Circle();
9 try { c.setRadius(r);

10 inputRadiusIsValid = true;

11 System.out.print("Circle with radius " + r);
12 System.out.println(" has area: "+ c.getArea()); }

13 catch(InvalidRadiusException e) { print("Try again!"); }

14 } } }

● At L7, if the user’s input value is:
○ Non-Negative: L8 – L12. [inputRadiusIsValid set true]
○ Negative: L8, L9, L13. [inputRadiusIsValid remains false]

13 of 41

Exceptions in Java (2.1)

public class InvalidTransactionException extends Exception {
public InvalidTransactionException(String s) {
super(s);

}
}

● A new kind of Exception:
InvalidTransactionException

● For any method that can have this kind of error, we declare at
that method’s signature that it may throw an
InvalidTransactionException object.

14 of 41

Exceptions in Java (2.2)

class Account {
int id; double balance;
Account() { /* balance defaults to 0 */ }
void withdraw(double a) throws InvalidTransactionException {
if (a < 0 || balance - a < 0) {
throw new InvalidTransactionException("Invalid withdraw."); }

else { balance -= a; }
}

}

● As part of the signature of withdraw, we declare that it may
throw an InvalidTransactionException object at
runtime.

● Any method that calls withdraw will be forced to
deal with this potential error .

15 of 41

Exceptions in Java (2.3)
class Bank {
Account[] accounts; int numberOfAccounts;
Account(int id) { . . . }
void withdraw(int id, double a)

throws InvalidTransactionException {
for(int i = 0; i < numberOfAccounts; i ++) {
if(accounts[i].id == id) {
accounts[i].withdraw(a);

}
} /* end for */ } /* end withdraw */ }

● As part of the signature of withdraw, we declare that it may
throw an InvalidTransactionException object.

● Any method that calls withdraw will be forced to
deal with this potential error .

● We are propagating the potential error for the right party (i.e.,
BankApplication) to handle.

16 of 41

Exceptions in Java (2.4)
1 class BankApplication {
2 pubic static void main(String[] args) {
3 Bank b = new Bank();
4 Account acc1 = new Account(23);
5 b.addAccount(acc1);
6 Scanner input = new Scanner(System.in);
7 double a = input.nextDouble();
8 try {
9 b.withdraw(23, a);

10 System.out.println(acc1.balance); }
11 catch (InvalidTransactionException e) {
12 System.out.println(e); } } }

● Lines 9 is forced to be wrapped within a try-catch block, since
it may throw an InvalidTransactionException object.

● If an InvalidTransactionException object is thrown from
Line 9, then the normal flow of execution is interrupted and we
go to the catch block starting from Line 11.

17 of 41

Examples (1)

double r = . . .;
double a = . . .;
try{
Bank b = new Bank();
b.addAccount(new Account(34));
b.deposit(34, 100);
b.withdraw(34, a);
Circle c = new Circle();
c.setRadius(r);
System.out.println(r.getArea());

}
catch(NegativeRadiusException e) {
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();

}
catch(InvalidTransactionException e) {
System.out.println(r + " is not a valid transaction value.");
e.printStackTrace();

}

18 of 41

Example (2.1)

The Integer class supports a method for parsing Strings:

public static int parseInt(String s)
throws NumberFormatException

e.g., Integer.parseInt("23") returns 23
e.g., Integer.parseInt("twenty-three") throws a
NumberFormatException

Write a fragment of code that prompts the user to enter a string
(using nextLine from Scanner) that represents an integer.
If the user input is not a valid integer, then prompt them to enter
again.

19 of 41

Example (2.2)

Scanner input = new Scanner(System.in);
boolean validInteger = false;
while (!validInteger) {
System.out.println("Enter an integer:");
String userInput = input.nextLine();
try {
int userInteger = Integer.parseInt(userInput);
validInteger = true;

}
catch(NumberFormatException e) {
System.out.println(userInput + " is not a valid integer.");
/* validInteger remains false */

}
}

20 of 41

Example: to Handle or Not to Handle? (1.1)
Consider the following three classes:

class A {
ma(int i) {
if(i < 0) { /* Error */ }
else { /* Do something. */ }

} }

class B {
mb(int i) {
A oa = new A();
oa.ma(i); /* Error occurs if i < 0 */

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i); /* Where can the error be handled? */

} }
21 of 41

Example: to Handle or Not to Handle? (1.2)

● We assume the following kind of error for negative values:

class NegValException extends Exception {
NegValException(String s) { super(s); }

}

● The above kind of exception may be thrown by calling A.ma.
● We will see three kinds of possibilities of handling this

exception:
Version 1:
Handle it in B.mb
Version 2:
Pass it from B.mb and handle it in Tester.main
Version 3:
Pass it from B.mb, then from Tester.main, then throw it to the
console.

22 of 41

Example: to Handle or Not to Handle? (2.1)
Version 1: Handle the exception in B.mb.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) {
A oa = new A();
try { oa.ma(i); }
catch(NegValException nve) { /* Do something. */ }

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i); /* Error, if any, would have been handled in B.mb. */

} }

23 of 41

Example: to Handle or Not to Handle? (2.2)
Version 1: Handle the exception in B.mb.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses to handle the error
right away using a try-catch block.

Method Tester.main method
need not worry about this error.

method call

method call

throws an
exception

catches an
exception

24 of 41

Example: to Handle or Not to Handle? (3.1)
Version 2: Handle the exception in Tester.main.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(i);

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
try { ob.mb(i); }
catch(NegValException nve) { /* Do something. */ }

} }

25 of 41

Example: to Handle or Not to Handle? (3.2)

Version 2: Handle the exception in Tester.main.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses not to handle the
error and propagates it

to its caller (i.e., Tester.main).

Method Tester.main method
chooses to handle this error, so that

this NegValException is not
propagated further.

method call

method call

throws an
exception

catches an
exception

forwards/
propagates
an exception

26 of 41

Example: to Handle or Not to Handle? (4.1)
Version 3: Handle in neither of the classes.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(i);

} }

class Tester {
public static void main(String[] args) throws NegValException {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i);

} }

27 of 41

Example: to Handle or Not to Handle? (4.2)
Version 3: Handle in neither of the classes.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses not to handle the
error and propagates it

to its caller (i.e., Tester.main).

Method Tester.main method
chooses not to handle the error, so that

this NegValException is propagated
further (i.e., thrown to console).

method call

method call

throws an
exception

forwards/
propagates
an exception

forwards/
propagates
an exception

28 of 41

Stack of Method Calls

● Execution of a Java project starts from the main method of
some class (e.g., CircleTester, BankApplication).

● Each line of method call involves the execution of that method’s
body implementation
○ That method’s body implementation may also involve method

calls, which may in turn involve more method calls, and etc.
○ It is typical that we end up with a chain of method calls !
○ We call this chain of method calls a call stack . For example:
● Account.withdraw [top of stack; latest called]
● Bank.withdrawFrom
● BankApplication.main [bottom of stack; earliest called]

○ The closer a method is to the top of the call stack, the later its call
was made.

29 of 41

What to Do When an Exception Is Thrown? (1)

Method where error occurred and an
exception object thrown

(top of call stack)

Method without an exception handler

Method with an exception handler

main method
(bottom of call stack)

method call

method call

method call

throws an
exception

forwards/
propagates
an exception

catches an
exception

30 of 41

What to Do When an Exception Is Thrown? (2)
● After a method throws an exception, the runtime system

searches the corresponding call stack for a method that
contains a block of code to handle the exception.
○ This block of code is called an exception handler .
● An exception handler is appropriate if the type of the exception object

thrown matches the type that can be handled by the handler.
● The exception handler chosen is said to catch the exception.

○ The search goes from the top to the bottom of the call stack:
● The method in which the error occurred is searched first.
● The exception handler is not found in the current method being

searched⇒ Search the method that calls the current method, and etc.
● When an appropriate handler is found, the runtime system passes the

exception to the handler.
○ The runtime system searches all the methods on the call stack

without finding an appropriate exception handler
⇒ The program terminates and the exception object is directly
“thrown” to the console!

31 of 41

The Catch or Specify Requirement (1)

Code (e.g., a method call) that might throw certain exceptions
must be enclosed by one of the two ways:
1. The “Catch” Solution: A try statement that catches and

handles the exception.

main(. . .) {
Circle c = new Circle();
try {
c.setRadius(-10);

}
catch(NegativeRaidusException e) {
. . .

}
}

32 of 41

The Catch or Specify Requirement (2)

Code (e.g., a method call) that might throw certain exceptions
must be enclosed by one of the two ways:
2. The “Specify” Solution: A method that specifies as part of its

signature that it can throw the exception (without handling that
exception).

class Bank {
void withdraw (double amount)

throws InvalidTransactionException {
. . .
accounts[i].withdraw(amount);
. . .

}
}

33 of 41

The Catch or Specify Requirement (3)

There are three basic categories of exceptions

OutofMemoryError

RuntimeExceptionIOErrorVirtualMachineError

NullPointerException

Throwable

IOException

IllegalArgumentException

NoSuchElementException

. . .

EOFException

IndexOutOfBoundsException

Exception

ArrayIndexOutOfBoundsException

FileNotFoundException

. . .

NumberFormatException

Error

ClassCastException

Only one category of exceptions is subject to the
Catch or Specify Requirement .

34 of 41

Exception Category (1): Checked Exceptions
● Checked exceptions are exceptional conditions that a

well-written application should anticipate and recover from.
○ An application prompts a user for a circle radius, a

deposit/withdraw amount, or the name of a file to open.
○ Normally , the user enters a positive number for radius/deposit, a

not-too-big positive number for withdraw, and existing file to open.
○ When the user enters invalid numbers or file names,
NegativeRadiusException,
InvalidTransactionException, or
FileNotFoundException is thrown.

○ A well-written program will catch this exception and notify the user
of the mistake.

● Checked exceptions are:
○ subject to the Catch or Specify Requirement .
○ subclasses of Exception that are not descendant classes of
RuntimeException.

35 of 41

Exception Category (2): Errors

● Errors are exceptional conditions that are external to the
application, and that the application usually cannot anticipate or
recover from.
○ An application successfully opens a file for input.
○ But the file cannot be read because of a hardware or system

malfunction.
○ The unsuccessful read will throw java.io.IOError

● Errors are:
○ not subject to the Catch or Specify Requirement .
○ subclasses of Error

36 of 41

Exception Category (3): Runtime Exceptions

● Runtime exceptions are exceptional conditions that are
internal to the application, and that the application usually
cannot anticipate or recover from.
○ These usually indicate programming bugs, such as logic errors or

improper use of an API.

e.g., NullPointerException
e.g., ClassCastException
e.g., ArrayIndexOutOfBoundException

● Runtime exceptions are:

○ not subject to the Catch or Specify Requirement .
○ subclasses of RuntimeException

● Errors and Runtime exceptions are collectively known as
unchecked exceptions .

37 of 41

Catching and Handling Exceptions
● To construct an exception handler :

1. Enclose the code that might throw an exception within a try block.
2. Associate each possible kind of exception that might occur within

the try block with a catch block.
3. Append an optional finally block.
try { /* code that might throw exceptions */ }
catch(ExceptionType1 e) { . . . }
catch(ExceptionType2 e) { . . . }
. . .
finally { . . . }

● When an exception is thrown from Line i in the try block:
○ Normal flow of execution is interrupted : the rest of try block

starting from Line i + 1 is skipped.
○ Each catch block performs an instanceof check on the thrown

exception: the first matched catch block is executed.
○ The finally block is always executed after the matched catch

block is executed.38 of 41

Examples (3)
double r = . . .;
double a = . . .;
try{
Bank b = new Bank();
b.addAccount(new Account(34));
b.deposit(34, a)
Circle c = new Circle();
c.setRadius(r);
System.out.println(r.getArea());

}
catch(NegativeRadiusException e) {
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();

}
catch(InvalidTransactionException e) {
System.out.println(r + " is not a valid transaction value.");
e.printStackTrace();

}

catch(Exception e) { /* any other kinds of exceptions */

e.printStackTrace();
}39 of 41

Examples (4): Problem?
double r = . . .; double a = . . .;
try{
Bank b = new Bank();
b.addAccount(new Account(34));
b.deposit(34, 100);
b.withdraw(34, a);
Circle c = new Circle();
c.setRadius(r);
System.out.println(r.getArea());

}
/* Every exception object is a descendant of Exception. */

catch(Exception e) {

e.printStackTrace();
}
catch(NegativeRadiusException e) { /* Problem: Not reachable! */
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();

}
catch(InvalidTransactionException e) { /* Problem: Not reachable! */
System.out.println(r + " is not a valid transaction value.");
e.printStackTrace();

}
40 of 41

Index (1)
Caller vs. Callee
Why Exceptions? (1.1)
Why Exceptions? (1.2)
Why Exceptions? (2.1)
Why Exceptions? (2.2)
Why Exceptions? (2.3)
What is an Exception?
Exceptions in Java (1.1)
Exceptions in Java (1.2)
Exceptions in Java (1.3)
Exceptions in Java (1.4.1)
Exceptions in Java (1.4.2)
Exceptions in Java (2.1)
Exceptions in Java (2.2)

41 of 41

Index (2)
Exceptions in Java (2.3)
Exceptions in Java (2.4)
Examples (1)
Example (2.1)
Example (2.2)
Example: to Handle or Not to Handle? (1.1)
Example: to Handle or Not to Handle? (1.2)
Example: to Handle or Not to Handle? (2.1)
Example: to Handle or Not to Handle? (2.2)
Example: to Handle or Not to Handle? (3.1)
Example: to Handle or Not to Handle? (3.2)
Example: to Handle or Not to Handle? (4.1)
Example: to Handle or Not to Handle? (4.2)
Stack of Method Calls

42 of 41

Index (3)
What to Do When an Exception Is Thrown? (1)

What to Do When an Exception Is Thrown? (2)

The Catch or Specify Requirement (1)

The Catch or Specify Requirement (2)

The Catch or Specify Requirement (3)

Exception Category (1): Checked Exceptions

Exception Category (2): Errors

Exception Category (3): Runtime Exceptions

Catching and Handling Exceptions

Examples (3)

Examples (4): Problem?
43 of 41

Test-Driven Development (TDD) with JUnit

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Example: Two Types of Errors (1)

Consider two kinds of exceptions for a counter:

public class ValueTooLargeException extends Exception {
ValueTooLargeException(String s) { super(s); }

}
public class ValueTooSmallException extends Exception {
ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two classes must be
handled (catch-specify requirement):

○ Either specify throws . . . in the method signature
(i.e., propagating it to other caller)

○ Or handle it in a try-catch block

2 of 39

Motivating Example: Two Types of Errors (2)
Approach 1 – Specify: Indicate in the method signature that a
specific exception might be thrown.

Example 1: Method that throws the exception
class C1 {
void m1(int x) throws ValueTooSmallException {
if(x < 0) {
throw new ValueTooSmallException("val " + x);

}
}

}

Example 2: Method that calls another which throws the exception
class C2 {
C1 c1;
void m2(int x) throws ValueTooSmallException {
c1.m1(x);

}
}

3 of 39

Motivating Example: Two Types of Errors (3)

Approach 2 – Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int x = input.nextInt();
C2 c2 = new c2();
try {
c2.m2(x);

}
catch(ValueTooSmallException e) { . . . }

}
}

4 of 39

A Simple Counter (1)
Consider a class for keeping track of an integer counter value:
public class Counter {
public final static int MAX_VALUE = 3;
public final static int MIN_VALUE = 0;
private int value;
public Counter() {
this.value = Counter.MIN_VALUE;

}
public int getValue() {
return value;

}
. . . /* more later! */

○ Access private attribute value using public accessor getValue.
○ Two class-wide (i.e., static) constants (i.e., final) for lower and

upper bounds of the counter value.
○ Initialize the counter value to its lower bound.
○ Requirement :

The counter value must be between its lower and upper bounds.
5 of 39

Exceptional Scenarios

Consider the two possible exceptional scenarios:

● An attempt to increment above the counter’s upper bound.
● An attempt to decrement below the counter’s lower bound.

6 of 39

A Simple Counter (2)
/* class Counter */
public void increment() throws ValueTooLargeException {
if(value == Counter.MAX_VALUE) {
throw new ValueTooLargeException("counter value is " + value);

}
else { value ++; }

}

public void decrement() throws ValueTooSmallException {
if(value == Counter.MIN_VALUE) {
throw new ValueTooSmallException("counter value is " + value);

}
else { value --; }

}
}

○ Change the counter value via two mutator methods.
○ Changes on the counter value may trigger an exception:
● Attempt to increment when counter already reaches its maximum.
● Attempt to decrement when counter already reaches its minimum.

7 of 39

Components of a Test

● Manipulate the relevant object(s).
e.g., Initialize a counter object c, then call c.increment().

● What do you expect to happen ?
e.g., value of counter is such that Counter.MIN VALUE + 1

● What does your program actually produce ?
e.g., call c.getValue to find out.

● A test:
○ Passes if expected value matches actual value
○ Fails if expected value does not match actual value

● So far, you ran tests via a tester class with the main method.

8 of 39

Testing Counter from Console (V1): Case 1

Consider a class for testing the Counter class:

public class CounterTester1 {
public static void main(String[] args) {
Counter c = new Counter();
println("Init val: " + c.getValue());
try {
c.decrement();
println("ValueTooSmallException NOT thrown as expected.");

}
catch (ValueTooSmallException e) {
println("ValueTooSmallException thrown as expected.");

} } }

Executing it as Java Application gives this Console Output:

Init val: 0
ValueTooSmallException thrown as expected.

9 of 39

Testing Counter from Console (V1): Case 2
Consider another class for testing the Counter class:
public class CounterTester2 {
public static void main(String[] args) {
Counter c = new Counter();
println("Current val: " + c.getValue());
try { c.increment(); c.increment(); c.increment(); }
catch (ValueTooLargeException e) {
println("ValueTooLargeException thrown unexpectedly."); }

println("Current val: " + c.getValue());
try {
c.increment();
println("ValueTooLargeException NOT thrown as expected."); }

catch (ValueTooLargeException e) {
println("ValueTooLargeException thrown as expected."); } } }

Executing it as Java Application gives this Console Output:
Current val: 0
Current val: 3
ValueTooLargeException thrown as expected.

10 of 39

Testing Counter from Console (V2)
Consider a different class for testing the Counter class:
import java.util.Scanner;
public class CounterTester3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

String cmd = null; Counter c = new Counter();
boolean userWantsToContinue = true;
while(userWantsToContinue) {
println("Enter \"inc\", \"dec\", or \"val\":");
cmd = input.nextLine();
try {

if(cmd.equals("inc")) { c.increment() ; }

else if(cmd.equals("dec")) { c.decrement() ; }

else if(cmd.equals("val")) { println(c.getValue()); }

else { userWantsToContinue = false; println("Bye!"); }
}
catch(ValueTooLargeException e){ println("Value too big!"); }
catch(ValueTooSmallException e){ println("Value too small!"); }

} } }

11 of 39

Testing Counter from Console (V2): Test 1

Test Case 1: Decrement when the counter value is too small.

Enter "inc", "dec", or "val":
val
0
Enter "inc", "dec", or "val":
dec
Value too small!
Enter "inc", "dec", or "val":
exit
Bye!

12 of 39

Testing Counter from Console (V2): Test 2
Test Case 2: Increment when the counter value is too big.

Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
val
3
Enter "inc", "dec", or "val":
inc
Value too big!
Enter "inc", "dec", or "val":
exit
Bye!

13 of 39

Limitations of Testing from the Console
● Do Test Cases 1 & 2 suffice to test Counter’s correctness?

○ Is it plausible to claim that the implementation of Counter is
correct because it passes the two test cases?

● What other test cases can you think of?
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

● So in total we need 8 test cases. ⇒ 6 more separate
○ CounterTester classes to create (like CounterTester1)!
○ Console interactions with CounterTester3!

● Problems? It is inconvenient to:
○ Run each TC by executing main of a CounterTester and

comparing console outputs with your eyes.
○ Re-run manually all TCs whenever Counter is changed.

Regression Testing : Any change introduced to your software must
not compromise its established correctness.14 of 39

Why JUnit?

● Automate the testing of correctness of your Java classes.
● Once you derive the list of tests, translate it into a JUnit test

case, which is just a Java class that you can execute upon.
● JUnit tests are helpful callers/clients of your classes, where

each test may:
○ Either attempt to use a method in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected

○ Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
● Success if the expected exception

(e.g., ValueTooSmallException) occurs.
● Failure if the expected exception does not occur.

15 of 39

How to Use JUnit: Packages

Step 1:
○ In Eclipse, create a Java project ExampleTestingCounter
○ Separation of concerns :
● Group classes for implementation (i.e., Counter)

into package implementation.
● Group classes classes for testing (to be created)

into package tests.

16 of 39

How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.
⇒ If you have n Java classes to test , create n JUnit test cases.

17 of 39

How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

18 of 39

How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

19 of 39

How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.

○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .
⇒When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.

○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.

20 of 39

How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

○
21 of 39

How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○

22 of 39

How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.
● The result of running a test is considered:

○ Failure if either
● an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) occurs; or

● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.

○ Success if neither assertion failures nor unexpected exceptions
occur.

● After running all tests:
○ A green bar means that all tests succeed.
⇒ Keep challenging yourself if more tests may be added.

○ A red bar means that at least one test fails.
⇒ Keep fixing the class under test and re-runing all tests, until you
receive a green bar.

● Question: What is the easiest way to making test a success?
Answer: Delete the call fail("Not yet implemented").

23 of 39

How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.
⇒ Neither assertion failures nor exceptions will occur.
⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.
∴ We will receive a green bar!
Caution: test which passes at the moment is not useful at all!

24 of 39

How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○

25 of 39

How to Use JUnit: Adding More Tests (1)
● Recall the complete list of cases for testing Counter:

c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

● Let’s turn the two cases in the 1st row into two JUnit tests:
○ Test for the green cell succeeds if:
● No failures and exceptions occur; and
● The new counter value is 1.

○ Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).

● Common JUnit assertion methods:
○ void assertNull(Object o)
○ void assertEquals(expected, actual)
○ void assertArrayEquals(expecteds, actuals)
○ void assertTrue(boolean condition)
○ void fail(String message)

26 of 39

How to Use JUnit: Assertion Methods

27 of 39

How to Use JUnit: Adding More Tests (2.1)
1 @Test
2 public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment();
7 assertEquals(1, c.getValue());
8 } catch(ValueTooBigException e) {
9 /* Exception is not expected to be thrown. */

10 fail ("ValueTooBigException is not expected."); } }

○ Lines 5 & 8: We need a try-catch block because of Line 6.
Method increment from class Counter may throw the
ValueTooBigException.

○ Lines 4, 7 & 10 are all assertions:
● Lines 4 & 7 assert that c.getValue() returns the expected values.
● Line 10: an assertion failure ∵ unexpected ValueTooBigException

○ Line 7 can be rewritten as assertTrue(1 == c.getValue()).
28 of 39

How to Use JUnit: Adding More Tests (2.2)
● Don’t lose the big picture!
● JUnit test in previous slide automates this console interaction:

Enter "inc", "dec", or "val":
val
0
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
val
1
Enter "inc", "dec", or "val":
exit
Bye!

● Automation is exactly rationale behind using JUnit!
29 of 39

How to Use JUnit: Adding More Tests (3.1)

1 @Test
2 public void testDecFromMinValue() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.decrement();

7 fail ("ValueTooSmallException is expected."); }
8 catch(ValueTooSmallException e) {
9 /* Exception is expected to be thrown. */ } }

○ Lines 5 & 8: We need a try-catch block because of Line 6.
Method decrement from class Counter may throw the
ValueTooSmallException.

○ Lines 4 & 7 are both assertions:
● Lines 4 asserts that c.getValue() returns the expected value (i.e.,
Counter.MIN VALUE).

● Line 7: an assertion failure ∵ expected ValueTooSmallException
not thrown

30 of 39

How to Use JUnit: Adding More Tests (3.2)

● Again, don’t lose the big picture!
● JUnit test in previous slide automates CounterTester1 and

the following console interaction for CounterTester3:

Enter "inc", "dec", or "val":
val
0
Enter "inc", "dec", or "val":
dec
Value too small!
Enter "inc", "dec", or "val":
exit
Bye!

● Again, automation is exactly rationale behind using JUnit!
31 of 39

How to Use JUnit: Adding More Tests (4.1)

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment(); c.increment(); c.increment();
6 } catch (ValueTooLargeException e) {
7 fail("ValueTooLargeException was thrown unexpectedly.");
8 }
9 assertEquals(Counter.MAX_VALUE, c.getValue());

10 try {
11 c.increment();
12 fail("ValueTooLargeException was NOT thrown as expected.");
13 } catch (ValueTooLargeException e) {
14 /* Do nothing: ValueTooLargeException thrown as expected. */
15 } }

○ Lines 4 – 8:
We use a try-catch block to express that a VTLE is not expected.

○ Lines 9 – 15:
We use a try-catch block to express that a VTLE is expected.

32 of 39

How to Use JUnit: Adding More Tests (4.2)
● JUnit test in previous slide automates CounterTester2 and

the following console interaction for CounterTester3:

Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
val
3
Enter "inc", "dec", or "val":
inc
Value too big!
Enter "inc", "dec", or "val":
exit
Bye!

33 of 39

How to Use JUnit: Adding More Tests (4.3)

Q: Can we rewrite testIncFromMaxValue to:

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment();
6 c.increment();
7 c.increment();
8 assertEquals(Counter.MAX_VALUE, c.getValue());
9 c.increment();

10 fail("ValueTooLargeException was NOT thrown as expected.");
11 } catch (ValueTooLargeException e) { }
12 }

No!
At Line 9, we would not know which line throws the VTLE:
○ If it was any of the calls in L5 – L7, then it’s not right .
○ If it was L9, then it’s right .

34 of 39

How to Use JUnit: Adding More Tests (5)
Loops can make it effective on generating test cases:

1 @Test
2 public void testIncDecFromMiddleValues() {
3 Counter c = new Counter();
4 try {
5 for(int i = Counter.MIN_VALUE; i < Counter.MAX_VALUE; i ++) {
6 int currentValue = c.getValue();
7 c.increment();
8 assertEquals(currentValue + 1, c.getValue());
9 }

10 for(int i = Counter.MAX_VALUE; i > Counter.MIN_VALUE; i --) {
11 int currentValue = c.getValue();
12 c.decrement();
13 assertEquals(currentValue - 1, c.getValue());
14 }
15 } catch(ValueTooLargeException e) {
16 fail("ValueTooLargeException is thrown unexpectedly");
17 } catch(ValueTooSmallException e) {
18 fail("ValueTooSmallException is thrown unexpectedly");
19 } }

35 of 39

Exercises

1. Run all 8 tests and make sure you receive a green bar.
2. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.
○ Re-run all 8 tests and you should receive a red bar. [Why?]
○ Undo the error injection, and re-run all 8 tests. [What happens?]

36 of 39

Test-Driven Development (TDD)

JUnit
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

extend, maintain

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.
● Red bar reported: Fix the class under test (CUT) until green bar.
● Green bar reported: Add more tests and Fix CUT when necessary.

37 of 39

Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml

38 of 39

http://junit.org/junit4/
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml

Index (1)
Motivating Example: Two Types of Errors (1)
Motivating Example: Two Types of Errors (2)
Motivating Example: Two Types of Errors (3)
A Simple Counter (1)
Exceptional Scenarios
A Simple Counter (2)
Components of a Test
Testing Counter from Console (V1): Case 1
Testing Counter from Console (V1): Case 2
Testing Counter from Console (V2)
Testing Counter from Console (V2): Test 1
Testing Counter from Console (V2): Test 2
Limitations of Testing from the Console
Why JUnit?

39 of 39

Index (2)
How to Use JUnit: Packages
How to Use JUnit: New JUnit Test Case (1)
How to Use JUnit: New JUnit Test Case (2)
How to Use JUnit: Adding JUnit Library
How to Use JUnit: Generated Test Case
How to Use JUnit: Running Test Case
How to Use JUnit: Generating Test Report
How to Use JUnit: Interpreting Test Report
How to Use JUnit: Revising Test Case
How to Use JUnit: Re-Running Test Case
How to Use JUnit: Adding More Tests (1)
How to Use JUnit: Assertion Methods
How to Use JUnit: Adding More Tests (2.1)
How to Use JUnit: Adding More Tests (2.2)

40 of 39

Index (3)
How to Use JUnit: Adding More Tests (3.1)

How to Use JUnit: Adding More Tests (3.2)

How to Use JUnit: Adding More Tests (4.1)

How to Use JUnit: Adding More Tests (4.2)

How to Use JUnit: Adding More Tests (4.3)

How to Use JUnit: Adding More Tests (5)

Exercises

Test-Driven Development (TDD)

Resources
41 of 39

Advanced Topics on Classes and Objects

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Equality (1)
● Recall that

○ A primitive variable stores a primitive value
e.g., double d1 = 7.5; double d2 = 7.5;

○ A reference variable stores the address to some object (rather
than storing the object itself)
e.g., Point p1 = new Point(2, 3) assigns to p1 the
address of the new Point object
e.g., Point p2 = new Point(2, 3) assigns to p2 the
address of another new Point object

● The binary operator == may be applied to compare:
○ Primitive variables: their contents are compared

e.g., d1 == d2 evaluates to true
○ Reference variables: the addresses they store are compared

(rather than comparing contents of the objects they refer to)
e.g., p1 == p2 evaluates to false because p1 and p2 are
addresses of different objects, even if their contents are identical .

2 of 60

Equality (2.1)
● Implicitly:

○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.

● There is a useful accessor method that every class inherits
from the Object class:
○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.
● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other);

}

e.g., Say p1 and p2 are of type PointV1 without the equals method
redefined, then p1.equals(p2) boils down to (p1 == p2).

○ Very often when you define new classes, you want to
redefine / override the inherited definition of equals.

3 of 60

Equality (2.2): Common Error

int i = 10;
int j = 12;
boolean sameValue = i.equals(j);

Compilation Error :
the equals method is only applicable to reference types.
Fix : write i == j instead.

4 of 60

Equality (3)

class PointV1 {
double x; double y;
PointV1(double x, double y) { this.x = x; this.y = y; }

}

1 PointV1 p1 = new PointV1(2, 3);
2 PointV1 p2 = new PointV1(2, 3);

3 System.out.println(p1 == p2); /* false */

4 System.out.println(p1.equals(p2)); /* false */

● At L4, given that the equals method is not explicitly
redefined/overridden in class PointV1, the default version
inherited from class Object is called.
Executing p1.equals(p2) boils down to (p1 == p2).

● If we wish to compare contents of two PointV1 objects, need
to explicitly redefine/override the equals method in that class.

5 of 60

Requirements of equals
Given that reference variables x, y, z are not null:
●

¬ x .equals(null)

● Reflexive :
x .equals(x)

● Symmetric
x .equals(y) ⇐⇒ y .equals(x)

● Transitive

x .equals(y) ∧ y .equals(z)⇒ x .equals(z)

API of equals Inappropriate Def. of equals using hashCode
6 of 60

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-

Equality (4.1)
● How do we compare contents rather than addresses?
● Define the accessor method equals, e.g.,

class PointV2 {
double x; double y;

public boolean equals (Object obj) {

if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
PointV2 other = (PointV2) obj;
return this.x == other.x && this.y == other.y; } }

String s = "(2, 3)";
PointV2 p1 = new PointV2(2, 3); PointV2 p2 = new PointV2(2, 3);

System.out.println(p1. equals (p1)); /* true */

System.out.println(p1.equals(null)); /* false */
System.out.println(p1.equals(s)); /* false */
System.out.println(p1 == p2); /* false */

System.out.println(p1. equals (p2)); /* true */

7 of 60

Equality (4.2)
● When making a method call p.equals(o):

○ Variable p is declared of type PointV2
○ Variable o can be declared of any type (e.g., PointV2, String)

● We define p and o as equal if:
○ Either p and o refer to the same object;
○ Or:

● o is not null.
● p and o at runtime point to objects of the same type.
● The x and y coordinates are the same.

● Q: In the equals method of Point, why is there no such a line:

class PointV2 {

boolean equals (Object obj) {

if(this == null) { return false; }

A: If this was null, a NullPointerException would have
occurred and prevent the body of equals from being executed.

8 of 60

Equality (4.3)
1 class PointV2 {

2 boolean equals (Object obj) { . . .

3 if(this.getClass() != obj.getClass()) { return false; }
4 PointV2 other = (PointV2) obj;
5 return this.x == other.x && this.y == other.y; } }

○ Object obj at L2 declares a parameter obj of type Object.
○ PointV2 other at L4 declares a variable p of type PointV2.

We call such types declared at compile time as static type.
○ The list of applicable attributes/methods that we may call on a

variable depends on its static type.
e.g., We may only call the small list of methods defined in Object
class on obj, which does not include x and y (specific to Point).

○ If we are SURE that an object’s “actual” type is different from its
static type, then we can cast it.

e.g., Given that this.getClass() == obj.getClass(), we are
sure that obj is also a Point, so we can cast it to Point.

○ Such cast allows more attributes/methods to be called upon
(Point) obj at L5.9 of 60

Equality (5)
Two notions of equality for variables of reference types:

● Reference Equality : use == to compare addresses

● Object Equality : define equals method to compare contents

1 PointV2 p1 = new PointV2(3, 4);
2 PointV2 p2 = new PointV2(3, 4);
3 PointV2 p3 = new PointV2(4, 5);
4 System.out.println(p1 == p1); /* true */
5 System.out.println(p1.equals(p1)); /* true */
6 System.out.println(p1 == p2); /* false */
7 System.out.println(p1.equals(p2)); /* true */
8 System.out.println(p2 == p3); /* false */
9 System.out.println(p2.equals(p3)); /* false */

● Being reference-equal implies being object-equal.
● Being object-equal does not imply being reference-equal.
10 of 60

Equality (6.1)
Exercise: Persons are equal if names and measures are equal.
1 class Person {
2 String firstName; String lastName; double weight; double height;

3 boolean equals (Object obj) {

4 if(this == obj) { return true; }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName); } }

Q: At L5, will we get NullPointerException if obj is Null?
A: No ∵ Short-Circuit Effect of ||

obj is null, then obj == null evaluates to true
⇒ no need to evaluate the RHS

The left operand obj == null acts as a guard constraint for
the right operand this.getClass() != obj.getClass().

11 of 60

Equality (6.2)
Exercise: Persons are equal if names and measures are equal.

1 class Person {
2 String firstName; String lastName; double weight; double height;

3 boolean equals (Object obj) {

4 if(this == obj) { return true; }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName); } }

Q: At L5, if swapping the order of two operands of disjunction:
this.getClass() != obj.getClass() || obj == null

Will we get NullPointerException if obj is Null?
A: Yes ∵ Evaluation of operands is from left to right.

12 of 60

Equality (6.3)
Exercise: Persons are equal if names and measures are equal.

1 class Person {
2 String firstName; String lastName; double weight; double height;

3 boolean equals (Object obj) {

4 if(this == obj) { return true; }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName); } }

L10 & L11 call equals method defined in the String class.
When defining equals method for your own class, reuse
equals methods defined in other classes wherever possible.

13 of 60

Equality (6.4)
Person collectors are equal if containing equal lists of persons.
class PersonCollector {
Person[] persons; int nop; /* number of persons */
public PersonCollector() { . . . }
public void addPerson(Person p) { . . . }

}

Redefine/Override the equals method in PersonCollector.
1 boolean equals (Object obj) {

2 if(this == obj) { return true; }
3 if(obj == null || this.getClass() != obj.getClass()) {
4 return false; }
5 PersonCollector other = (PersonCollector) obj;
6 boolean equal = false;
7 if(this.nop == other.nop) {
8 equal = true;
9 for(int i = 0; equal && i < this.nop; i ++) {

10 equal = this.persons[i].equals(other.persons[i]); } }
11 return equal;
12 }

14 of 60

Equality in JUnit (7.1)
● assertSame(obj1, obj2)

○ Passes if obj1 and obj2 are references to the same object
○ ≈ assertTrue(obj1 == obj2)
○ ≈ assertFalse(obj1 != obj2)

PointV1 p1 = new PointV1(3, 4); PointV1 p2 = new PointV1(3, 4);
PointV1 p3 = p1;
assertSame(p1, p3); /* pass */ assertSame(p2, p3); /* fail */

● assertEquals(exp1, exp2)
○ ≈ exp1 == exp2 if exp1 and exp2 are primitive type

int i = 10; int j = 20; assertEquals(i, j); /* fail */

○ ≈ exp1.equals(exp2) if exp1 and exp2 are reference type
Q: What if equals is not explicitly defined in obj1’s declared type?
A: ≈ assertSame(obj1, obj2)

PointV2 p4 = new PointV2(3, 4); PointV2 p5 = new PointV2(3, 4);
assertEquals(p4, p5); /* pass */
assertEquals(p1, p2); /* fail ∵ different PointV1 objects */
assertEquals(p4, p2); /* fail ∵ different types */

15 of 60

Equality in JUnit (7.2)
@Test
public void testEqualityOfPointV1() {
PointV1 p1 = new PointV1(3, 4); PointV1 p2 = new PointV1(3, 4);
assertFalse(p1 == p2); assertFalse(p2 == p1);
/* assertSame(p1, p2); assertSame(p2, p1); */ /* both fail */
assertFalse(p1.equals(p2)); assertFalse(p2.equals(p1));
assertTrue(p1.x == p2.x && p2.y == p2.y);

}
@Test
public void testEqualityOfPointV2() {
PointV2 p3 = new PointV2(3, 4); PointV2 p4 = new PointV2(3, 4);
assertFalse(p3 == p4); assertFalse(p4 == p3);
/* assertSame(p3, p4); assertSame(p4, p4); */ /* both fail */
assertTrue(p3.equals(p4)); assertTrue(p4.equals(p3));
assertEquals(p3, p4); assertEquals(p4, p3);

}
@Test
public void testEqualityOfPointV1andPointv2() {
PointV1 p1 = new PointV1(3, 4); PointV2 p2 = new PointV2(3, 4);
/* These two assertions do not compile because p1 and p2 are of different types. */
/* assertFalse(p1 == p2); assertFalse(p2 == p1); */
/* assertSame can take objects of different types and fail. */
/* assertSame(p1, p2); */ /* compiles, but fails */
/* assertSame(p2, p1); */ /* compiles, but fails */
/* version of equals from Object is called */
assertFalse(p1.equals(p2));
/* version of equals from PointP2 is called */
assertFalse(p2.equals(p1));

}
16 of 60

Equality in JUnit (7.3)
@Test
public void testPersonCollector() {
Person p1 = new Person("A", "a", 180, 1.8); Person p2 = new Person("A", "a", 180, 1.8);
Person p3 = new Person("B", "b", 200, 2.1); Person p4 = p3;
assertFalse(p1 == p2); assertTrue(p1.equals(p2));
assertTrue(p3 == p4); assertTrue(p3.equals(p4));

PersonCollector pc1 = new PersonCollector(); PersonCollector pc2 = new PersonCollector();
assertFalse(pc1 == pc2); assertTrue(pc1.equals(pc2));

pc1.addPerson(p1);
assertFalse(pc1.equals(pc2));

pc2.addPerson(p2);
assertFalse(pc1.persons[0] == pc2.persons[0]);
assertTrue(pc1.persons[0].equals(pc2.persons[0]));
assertTrue(pc1.equals(pc2));

pc1.addPerson(p3); pc2.addPerson(p4);
assertTrue(pc1.persons[1] == pc2.persons[1]);
assertTrue(pc1.persons[1].equals(pc2.persons[1]));
assertTrue(pc1.equals(pc2));

pc1.addPerson(new Person("A", "a", 175, 1.75));
pc2.addPerson(new Person("A", "a", 165, 1.55));
assertFalse(pc1.persons[2] == pc2.persons[2]);
assertFalse(pc1.persons[2].equals(pc2.persons[2]));
assertFalse(pc1.equals(pc2));

}
17 of 60

Why Ordering Between Objects? (1)

Each employee has their numerical id and salary.
e.g., (alan, 2, 4500.34), (mark , 3, 3450.67), (tom, 1, 3450.67)

● Problem: To facilitate an annual review on their statuses, we
want to arrange them so that ones with smaller id’s come
before ones with larger id’s.s

e.g., ⟨tom,alan,mark⟩
● Even better, arrange them so that ones with larger salaries

come first; only compare id’s for employees with equal salaries.
e.g., ⟨alan, tom,mark⟩

● Solution :
○ Define ordering of Employee objects.

[Comparable interface, compareTo method]
○ Use the library method Arrays.sort.

18 of 60

Why Ordering Between Objects? (2)
class Employee {
int id; double salary;
Employee(int id) { this.id = id; }
void setSalary(double salary) { this.salary = salary; } }

1 @Test
2 public void testUncomparableEmployees() {
3 Employee alan = new Employee(2);
4 Employee mark = new Employee(3);
5 Employee tom = new Employee(1);
6 Employee[] es = {alan, mark, tom};

7 Arrays.sort(es);

8 Employee[] expected = {tom, alan, mark};
9 assertArrayEquals(expected, es); }

L8 triggers a java.lang.ClassCastException:
Employee cannot be cast to java.lang.Comparable
∵ Arrays.sort expects an array whose element type defines
a precise ordering of its instances/objects.

19 of 60

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#sort-java.lang.Object:A-

Defining Ordering Between Objects (1.1)

class CEmployee1 implements Comparable <CEmployee1> {

. . . /* attributes, constructor, mutator similar to Employee */
@Override
public int compareTo(CEmployee1 e) { return this.id - e.id; }

}

● Given two CEmployee1 objects ce1 and ce2:
○ ce1.compareTo(ce2) > 0 [ce1 “is greater than” ce2]
○ ce1.compareTo(ce2) == 0 [ce1 “is equal to” ce2]
○ ce1.compareTo(ce2) < 0 [ce1 “is smaller than” ce2]

● Say ces is an array of CEmployee1 (CEmployee1[] ces),
calling Arrays.sort(ces) re-arranges ces, so that:

ces[0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CEmployee1 object

≤ ces[1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CEmployee1 object

≤ . . . ≤ ces[ces.length - 1]
´¹¹¹¸¹¹¶

CEmployee1 object

20 of 60

Defining Ordering Between Objects (1.2)
@Test
public void testComparableEmployees_1() {
/*
* CEmployee1 implements the Comparable interface.

* Method compareTo compares id’s only.

*/
CEmployee1 alan = new CEmployee1(2);
CEmployee1 mark = new CEmployee1(3);
CEmployee1 tom = new CEmployee1(1);
alan.setSalary(4500.34);
mark.setSalary(3450.67);
tom.setSalary(3450.67);
CEmployee1[] es = {alan, mark, tom};
/* When comparing employees,

* their salaries are irrelevant.

*/

Arrays.sort(es);

CEmployee1[] expected = {tom, alan, mark};
assertArrayEquals(expected, es);

}

21 of 60

Defining Ordering Between Objects (2.1)
Let’s now make the comparison more sophisticated:
● Employees with higher salaries come before those with lower salaries.
● When two employees have same salary, whoever with lower id comes first.

1 class CEmployee2 implements Comparable <CEmployee2> {

2 . . . /* attributes, constructor, mutator similar to Employee */
3 @Override
4 public int compareTo(CEmployee2 other) {
5 int salaryDiff = Double.compare(this.salary, other.salary);
6 int idDiff = this.id - other.id;
7 if(salaryDiff != 0) { return - salaryDiff; }
8 else { return idDiff; } } }

● L5: Double.compare(d1, d2) returns
- (d1 < d2), 0 (d1 == d2), or + (d1 > d2).

● L7: Why inverting the sign of salaryDiff?
○ this.salary > other .salary ⇒ Double.compare(this.salary ,other .salary) > 0
○ But we should consider employee with higher salary as “smaller”.
∵ We want that employee to come before the other one!

22 of 60

https://docs.oracle.com/javase/8/docs/api/java/lang/Double.html#compare-double-double-

Defining Ordering Between Objects (2.2)

Alternatively, we can use extra if statements to express the logic
more clearly.

1 class CEmployee2 implements Comparable <CEmployee2> {

2 . . . /* attributes, constructor, mutator similar to Employee */
3 @Override
4 public int compareTo(CEmployee2 other) {
5 if(this.salary > other.salary) {
6 return -1;
7 }
8 else if (this.salary < other.salary) {
9 return 1;

10 }
11 else { /* equal salaries */
12 return this.id - other.id;
13 }
14 }

23 of 60

Defining Ordering Between Objects (2.3)

1 @Test
2 public void testComparableEmployees_2() {
3 /*
4 * CEmployee2 implements the Comparable interface.
5 * Method compareTo first compares salaries, then
6 * compares id’s for employees with equal salaries.
7 */
8 CEmployee2 alan = new CEmployee2(2);
9 CEmployee2 mark = new CEmployee2(3);

10 CEmployee2 tom = new CEmployee2(1);
11 alan.setSalary(4500.34);
12 mark.setSalary(3450.67);
13 tom.setSalary(3450.67);
14 CEmployee2[] es = {alan, mark, tom};

15 Arrays.sort(es);

16 CEmployee2[] expected = {alan, tom, mark};
17 assertArrayEquals(expected, es);
18 }

24 of 60

Defining Ordering Between Objects (3)
When you have your class C implement the interface
Comparable<C>, you should design the compareTo method,
such that given objects c1, c2, c3 of type C:
● Asymmetric :

¬(c1.compareTo(c2) < 0 ∧ c2.compareTo(c1) < 0)
¬(c1.compareTo(c2) > 0 ∧ c2.compareTo(c1) > 0)

∴ We don’t have c1 < c2 and c2 < c1 at the same time!
● Transitive :

c1.compareTo(c2) < 0 ∧ c2.compareTo(c3) < 0 ⇒ c1.compareTo(c3) < 0
c1.compareTo(c2) > 0 ∧ c2.compareTo(c3) > 0 ⇒ c1.compareTo(c3) > 0

∴ We have c1 < c2 ∧ c2 < c3⇒ c1 < c3
Q. How would you define the compareTo method for the
Player class of a rock-paper-scissor game? [Hint: Transitivity]

25 of 60

Hashing: What is a Map?
● A map (a.k.a. table or dictionary) stores a collection of entries.

key

value
Map

entry

ENTRY

(SEARCH) KEY VALUE

1 D
25 C
3 F
14 Z
6 A
39 C
7 Q

● Each entry is a pair: a value and its (search) key .

● Each search key :
○ Uniquely identifies an object in the map
○ Should be used to efficiently retrieve the associated value

● Search keys must be unique (i.e., do not contain duplicates).
26 of 60

Hashing: Arrays are Maps
● Each array entry is a pair: an object and its numerical index.

e.g., say String[] a = {"A", "B", "C"} , how many entries?
3 entries: (0, "A") , (1, "B") , (2, "C")

● Search keys are the set of numerical index values.
● The set of index values are unique [e.g., 0 .. (a.length − 1)]
● Given a valid index value i , we can

○ Uniquely determines where the object is [(i + 1)th item]
○ Efficiently retrieves that object [a[i] ≈ fast memory access]

● Maps in general may have non-numerical key values:
○ Student ID [student record]
○ Social Security Number [resident record]
○ Passport Number [citizen record]
○ Residential Address [household record]
○ Media Access Control (MAC) Address [PC/Laptop record]
○ Web URL [web page]

. . .
27 of 60

Hashing: Naive Implementation of Map

● Problem: Support the construction of this simple map:

ENTRY

(SEARCH) KEY VALUE

1 D
25 C
3 F
14 Z
6 A
39 C
7 Q

Let’s just assume that the maximum map capacity is 100.
● Naive Solution:

Let’s understand the expected runtime structures before seeing
the Java code!

28 of 60

Hashing: Naive Implementation of Map (0)

After executing ArrayedMap m = new ArrayedMap() :

● Attribute m.entries initialized as an array of 100 null slots.
● Attribute m.noe is 0, meaning:

○ Current number of entries stored in the map is 0.
○ Index for storing the next new entry is 0.

ArrayedMap

m
entries null

0

null

1
m.entries

null

2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

0noe

noe

29 of 60

Hashing: Naive Implementation of Map (1)
After executing m.put(new Entry(1, "D")) :

● Attribute m.entries has 99 null slots.
● Attribute m.noe is 1, meaning:

○ Current number of entries stored in the map is 1.
○ Index for storing the next new entry is 1.

ArrayedMap

m
entries

0

null

1
m.entries

1

Entry

key

“D”value

null

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0]

null

99

1noe

noe

30 of 60

Hashing: Naive Implementation of Map (2)
After executing m.put(new Entry(25, "C")) :

● Attribute m.entries has 98 null slots.
● Attribute m.noe is 2, meaning:

○ Current number of entries stored in the map is 2.
○ Index for storing the next new entry is 2.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

1

Entry

key

“D”value

null

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1]

null

99

2noe

noe

31 of 60

Hashing: Naive Implementation of Map (3)
After executing m.put(new Entry(3, "F")) :

● Attribute m.entries has 97 null slots.
● Attribute m.noe is 3, meaning:

○ Current number of entries stored in the map is 3.
○ Index for storing the next new entry is 3.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

1

Entry

key

“D”value

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2]

null

99

3noe

noe

32 of 60

Hashing: Naive Implementation of Map (4)
After executing m.put(new Entry(14, "Z")) :

● Attribute m.entries has 96 null slots.
● Attribute m.noe is 4, meaning:

○ Current number of entries stored in the map is 4.
○ Index for storing the next new entry is 4.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

2 3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3]

null

99

4noe

noe

33 of 60

Hashing: Naive Implementation of Map (5)
After executing m.put(new Entry(6, "A")) :

● Attribute m.entries has 95 null slots.
● Attribute m.noe is 5, meaning:

○ Current number of entries stored in the map is 5.
○ Index for storing the next new entry is 5.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

2 3 4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4]

null

99

5noe

noe

34 of 60

Hashing: Naive Implementation of Map (6)
After executing m.put(new Entry(39, "C")) :

● Attribute m.entries has 94 null slots.
● Attribute m.noe is 6, meaning:

○ Current number of entries stored in the map is 6.
○ Index for storing the next new entry is 6.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

39

Entry

key

“C”value

2 3 4 5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4] m.entries[5]

null

99

6noe

noe

35 of 60

Hashing: Naive Implementation of Map (7)

After executing m.put(new Entry(7, "Q")) :

● Attribute m.entries has 93 null slots.
● Attribute m.noe is 7, meaning:

○ Current number of entries stored in the map is 7.
○ Index for storing the next new entry is 7.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

39

Entry

key

“C”value

7

Entry

key

“Q”value

2 3 4 5 6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4] m.entries[5] m.entries[6]

null

99

7noe

noe

36 of 60

Hashing: Naive Implementation of Map (8.1)

public class Entry {
private int key;
private String value;

public Entry(int key, String value) {
this.key = key;
this.value = value;

}
/* Getters and Setters for key and value */

}

37 of 60

Hashing: Naive Implementation of Map (8.2)

public class ArrayedMap {
private final int MAX_CAPCAITY = 100;
private Entry[] entries;
private int noe; /* number of entries */
public ArrayedMap() {
entries = new Entry[MAX_CAPCAITY];
noe = 0;

}
public int size() {
return noe;

}
public void put(int key, String value) {
Entry e = new Entry(key, value);
entries[noe] = e;
noe ++;

}

Required Reading: Point and PointCollector
38 of 60

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/F/EECS2030/notes/EECS2030_F18_Notes_Tracing_PointCollectorTester.pdf

Hashing: Naive Implementation of Map (8.3)
@Test
public void testArrayedMap() {
ArrayedMap m = new ArrayedMap();
assertTrue(m.size() == 0);
m.put(1, "D");
m.put(25, "C");
m.put(3, "F");
m.put(14, "Z");
m.put(6, "A");
m.put(39, "C");
m.put(7, "Q");
assertTrue(m.size() == 7);
/* inquiries of existing key */
assertTrue(m.get(1).equals("D"));
assertTrue(m.get(7).equals("Q"));
/* inquiry of non-existing key */
assertTrue(m.get(31) == null);

}

39 of 60

Hashing: Naive Implementation of Map (8.4)
public class ArrayedMap {
private final int MAX_CAPCAITY = 100;
public String get (int key) {

for(int i = 0; i < noe; i ++) {
Entry e = entries[i];
int k = e.getKey();
if(k == key) { return e.getValue(); }

}
return null;

}

Say entries is: {(1, D), (25, C), (3, F), (14, Z), (6, A), (39, C), (7, Q), null, . . .}
○ How efficient is m.get(1)? [1 iteration]
○ How efficient is m.get(7)? [7 iterations]
○ If m is full, worst case of m.get(k)? [100 iterations]
○ If m with 106 entries, worst case of m.get(k)? [106 iterations]
⇒ get’s worst-case performance is linear on size of m.entries!

A much faster (and correct) solution is possible!
40 of 60

Hashing: Hash Table (1)

0 …

A[hc(k)]

hc(k) … A.length - 1

A

k
hashing

● Given a (numerical or non-numerical) search key k :
○ Apply a function hc so that hc(k) returns an integer.

● We call hc(k) the hash code of key k .

● Value of hc(k) denotes a valid index of some array A.
○ Rather than searching through array A, go directly to A[hc(k)] to

get the associated value.
● Both computations are fast:

○ Converting k to hc(k)
○ Indexing into A[hc(k)]

41 of 60

Hashing: Hash Table as a Bucket Array (2.1)
For illustration, assume A.length is 11 and hc(k) = k%11.

hc(k) = k%11 (SEARCH) KEY VALUE

1 1 D
3 25 C
3 3 F
3 14 Z
6 6 A
6 39 C
7 7 Q

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

● Collision: unequal keys have same hash code (e.g., 25, 3, 14)
⇒ Unavoidable as number of entries ↑, but a good hash
function should have sizes of the buckets uniformly distributed.

42 of 60

Hashing: Hash Table as a Bucket Array (2.2)
For illustration, assume A.length is 10 and hc(k) = k%11.

hc(k) = k%11 (SEARCH) KEY VALUE

1 1 D
3 25 C
3 3 F
3 14 Z
6 6 A
6 39 C
7 7 Q

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

● Collision: unequal keys have same hash code (e.g., 25, 3, 14)
⇒When there are multiple entries in the same bucket , we
distinguish between them using their unequal keys.

43 of 60

Hashing: Contract of Hash Function
● Principle of defining a hash function hc:

k1.equals(k2)⇒ hc(k1) == hc(k2)

Equal keys always have the same hash code.
● Equivalently, according to contrapositive:

hc(k1) ≠ hc(k2)⇒ ¬k1.equals(k2)

Different hash codes must be generated from unequal keys.
● What if ¬k1.equals(k2)?

○ hc(k1) == hc(k2) [collision e.g., 25 and 3]
○ hc(k1) ≠ hc(k2) [no collision e.g., 25 and 1]

● What if hc(k1) == hc(k2)?
○ ¬k1.equals(k2) [collision e.g., 25 and 3]
○ k1.equals(k2) [sound hash function]

inconsistent hashCode and equals
44 of 60

Hashing: Defining Hash Function in Java (1)
The Object class (common super class of all classes) has the
method for redefining the hash function for your own class:

1 public class IntegerKey {
2 private int k;
3 public IntegerKey(int k) { this.k = k; }
4 @Override
5 public int hashCode() { return k % 11; }
6 @Override
7 public boolean equals(Object obj) {
8 if(this == obj) { return true; }
9 if(obj == null) { return false; }

10 if(this.getClass() != obj.getClass()) { return false; }
11 IntegerKey other = (IntegerKey) obj;
12 return this.k == other.k;
13 } }

Q: Can we replace L12 by return this.hashCode() ==
other.hashCode()?
A: No ∵ When collision happens, keys with same hash code (i.e.,
in the same bucket) cannot be distinguished.

45 of 60

Hashing: Defining Hash Function in Java (2)

@Test
public void testCustomizedHashFunction() {
IntegerKey ik1 = new IntegerKey(1);
/* 1 % 11 == 1 */
assertTrue(ik1.hashCode() == 1);

IntegerKey ik39_1 = new IntegerKey(39); /* 39 % 11 == 6 */
IntegerKey ik39_2 = new IntegerKey(39);
IntegerKey ik6 = new IntegerKey(6); /* 6 % 11 == 6 */

assertTrue(ik39_1.hashCode() == 6);
assertTrue(ik39_2.hashCode() == 6);
assertTrue(ik6.hashCode() == 6);

assertTrue(ik39_1.hashCode() == ik39_2.hashCode());
assertTrue(ik39_1.equals(ik39_2));

assertTrue(ik39_1.hashCode() == ik6.hashCode());
assertFalse(ik39_1.equals(ik6));

}

46 of 60

Hashing: Using Hash Table in Java

@Test
public void testHashTable() {
Hashtable<IntegerKey, String> table = new Hashtable<>();
IntegerKey k1 = new IntegerKey(39);
IntegerKey k2 = new IntegerKey(39);
assertTrue(k1.equals(k2));
assertTrue(k1.hashCode() == k2.hashCode());
table.put(k1, "D");
assertTrue(table.get(k2).equals("D"));

}

47 of 60

Hashing: Defining Hash Function in Java (3)

● When you are given instructions as to how the hashCode
method of a class should be defined, override it manually.

● Otherwise, use Eclipse to generate the equals and hashCode
methods for you.
○ Right click on the class.
○ Select Source.
○ Select Generate hashCode() and equals().
○ Select the relevant attributes that will be used to compute the hash

value.

48 of 60

Hashing:
Defining Hash Function in Java (4.1.1)

Caveat : Always make sure that the hashCode and equals
are redefined/overridden to work together consistently.
e.g., Consider an alternative version of the IntegerKey class:

public class IntegerKey {
private int k;
public IntegerKey(int k) { this.k = k; }
/* hashCode() inherited from Object NOT overridden. */
@Override
public boolean equals(Object obj) {
if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
IntegerKey other = (IntegerKey) obj;
return this.k == other.k;

} }

49 of 60

Hashing:
Defining Hash Function in Java (4.1.2)

public class IntegerKey {
private int k;
public IntegerKey(int k) { this.k = k; }
/* hashCode() inherited from Object NOT overridden. */
@Override
public boolean equals(Object obj) {
if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
IntegerKey other = (IntegerKey) obj;
return this.k == other.k;

} }

○ Problem?
● Default implementation of hashCode() from the Object class:

Objects with distinct addresses have distinct hash code values.
● Violation of the Contract of hashCode():

hc(k1) ≠ hc(k2)⇒ ¬k1.equals(k2)
○ What about equal objects with different addresses?

50 of 60

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

Hashing: Defining Hash Function in Java (4.2)
1 @Test
2 public void testDefaultHashFunction() {
3 IntegerKey ik39_1 = new IntegerKey(39);
4 IntegerKey ik39_2 = new IntegerKey(39);
5 assertTrue(ik39_1.equals(ik39_2));
6 assertTrue(ik39_1.hashCode() != ik39_2.hashCode()); }
7 @Test
8 public void testHashTable() {
9 Hashtable<IntegerKey, String> table = new Hashtable<>();

10 IntegerKey k1 = new IntegerKey(39);
11 IntegerKey k2 = new IntegerKey(39);
12 assertTrue(k1.equals(k2));
13 assertTrue(k1.hashCode() != k2.hashCode());
14 table.put(k1, "D");

15 assertTrue(table.get(k2) == null); }

L3, 4, 10, 11: Default version of hashCode, inherited from
Object, returns a distinct integer for every new object, despite
its contents. [Fix : Override hashCode of your classes!]

51 of 60

Call by Value (1)

● Consider the general form of a call to some mutator method
m, with context object co and argument value arg:

co.m (arg)

○ Argument variable arg is not passed directly for the method call.
○ Instead, argument variable arg is passed indirectly : a copy of

the value stored in arg is made and passed for the method call.

● What can be the type of variable arg? [Primitive or Reference]
○ arg is primitive type (e.g., int, char, boolean, etc.):

Call by Value : Copy of arg’s stored value
(e.g., 2, ‘j’, true) is made and passed.

○ arg is reference type (e.g., String, Point, Person, etc.):
Call by Value : Copy of arg’s stored reference/address

(e.g., Point@5cb0d902) is made and passed.

52 of 60

Call by Value (2.1)

For illustration, let’s assume the following variant of the Point
class:

class Point {
int x;
int y;
Point(int x, int y) {
this.x = x;
this.y = y;

}
void moveVertically(int y){
this.y += y;

}
void moveHorizontally(int x){
this.x += x;

}
}

53 of 60

Call by Value (2.2.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByVal() {
3 Util u = new Util();
4 int i = 10;
5 assertTrue(i == 10);
6 u.reassignInt(i);
7 assertTrue(i == 10);
8 }

● Before the mutator call at L6, primitive variable i stores 10.

● When executing the mutator call at L6, due to call by value , a
copy of variable i is made.
⇒ The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

● ∴ After the mutator call at L6, variable i still stores 10.
54 of 60

Call by Value (2.2.2)

Before reassignInt During reassignInt After reassignInt

10inti

10inti

10intj

10inti

11intj

55 of 60

Call by Value (2.3.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_1() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.reassignRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==3 && p.y==4);
9 }

● Before the mutator call at L6, reference variable p stores the
address of some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made.
⇒ The assignment p = np is only effective on this copy, not the
original variable p itself.

● ∴ After the mutator call at L6, variable p still stores the original
address (i.e., same as refOfPBefore).

56 of 60

Call by Value (2.3.2)

Before reassignRef During reassignRef After reassignRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

3

4

x

y

Point

p

q
6

8

x

y

Point

57 of 60

Call by Value (2.4.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_2() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.changeViaRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==6 && p.y==8);
9 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made. [Alias: p and q store same address.]

⇒ Calls to q.moveHorizontally and q.moveVertically are
effective on both p and q.

● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore), but its x and y have been modified via q.

58 of 60

Call by Value (2.4.2)

Before changeViaRef During changeViaRef After changeViaRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

6

8

x

y

Point

p

q

59 of 60

Index (1)
Equality (1)
Equality (2.1)
Equality (2.2): Common Error
Equality (3)
Requirements of equals
Equality (4.1)
Equality (4.2)
Equality (4.3)
Equality (5)
Equality (6.1)
Equality (6.2)
Equality (6.3)
Equality (6.4)
Equality in JUnit (7.1)

60 of 60

Index (2)
Equality in JUnit (7.2)
Equality in JUnit (7.3)
Why Ordering Between Objects? (1)
Why Ordering Between Objects? (2)
Defining Ordering Between Objects (1.1)
Defining Ordering Between Objects (1.2)
Defining Ordering Between Objects (2.1)
Defining Ordering Between Objects (2.2)
Defining Ordering Between Objects (2.3)
Defining Ordering Between Objects (3)
Hashing: What is a Map?
Hashing: Arrays are Maps
Hashing: Naive Implementation of Map
Hashing: Naive Implementation of Map (0)

61 of 60

Index (3)
Hashing: Naive Implementation of Map (1)
Hashing: Naive Implementation of Map (2)
Hashing: Naive Implementation of Map (3)
Hashing: Naive Implementation of Map (4)
Hashing: Naive Implementation of Map (5)
Hashing: Naive Implementation of Map (6)
Hashing: Naive Implementation of Map (7)
Hashing: Naive Implementation of Map (8.1)
Hashing: Naive Implementation of Map (8.2)
Hashing: Naive Implementation of Map (8.3)
Hashing: Naive Implementation of Map (8.4)
Hashing: Hash Table (1)
Hashing: Hash Table as a Bucket Array (2.1)
Hashing: Hash Table as a Bucket Array (2.2)

62 of 60

Index (4)
Hashing: Contract of Hash Function
Hashing: Defining Hash Function in Java (1)
Hashing: Defining Hash Function in Java (2)
Hashing: Using Hash Table in Java
Hashing: Defining Hash Function in Java (3)
Hashing:
Defining Hash Function in Java (4.1.1)
Hashing:
Defining Hash Function in Java (4.1.2)
Hashing: Defining Hash Function in Java (4.2)
Call by Value (1)
Call by Value (2.1)
Call by Value (2.2.1)
Call by Value (2.2.2)

63 of 60

Index (5)
Call by Value (2.3.1)

Call by Value (2.3.2)

Call by Value (2.4.1)

Call by Value (2.4.2)

64 of 60

Asymptotic Analysis of Algorithms

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Algorithm and Data Structure
● A data structure is:

○ A systematic way to store and organize data in order to facilitate
access and modifications

○ Never suitable for all purposes: it is important to know its strengths
and limitations

● A well-specified computational problem precisely describes
the desired input/output relationship.
○ Input: A sequence of n numbers ⟨a1, a2, . . . , an⟩

○ Output: A permutation (reordering) ⟨a′1, a′2, . . . , a′n⟩ of the input
sequence such that a′1 ≤ a′2 ≤. . . ≤ a′n

○ An instance of the problem: ⟨3, 1, 2, 5, 4⟩
● An algorithm is:

○ A solution to a well-specified computational problem
○ A sequence of computational steps that takes value(s) as input

and produces value(s) as output
● Steps in an algorithm manipulate well-chosen data structure(s).
2 of 40

Measuring “Goodness” of an Algorithm

1. Correctness :
○ Does the algorithm produce the expected output?
○ Use JUnit to ensure this.

2. Efficiency:
○ Time Complexity : processor time required to complete
○ Space Complexity : memory space required to store data

Correctness is always the priority.
How about efficiency? Is time or space more of a concern?

3 of 40

Measuring Efficiency of an Algorithm

● Time is more of a concern than is storage.
● Solutions that are meant to be run on a computer should run as

fast as possible.
● Particularly, we are interested in how running time depends on

two input factors:
1. size

e.g., sorting an array of 10 elements vs. 1m elements
2. structure

e.g., sorting an already-sorted array vs. a hardly-sorted array

● How do you determine the running time of an algorithm?
1. Measure time via experiments
2. Characterize time as a mathematical function of the input size

4 of 40

Measure Running Time via Experiments

● Once the algorithm is implemented in Java:
○ Execute the program on test inputs of various sizes and structures.
○ For each test, record the elapsed time of the execution.

long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;

○ Visualize the result of each test.

● To make sound statistical claims about the algorithm’s running
time, the set of input tests must be “reasonably” complete.

5 of 40

Example Experiment

● Computational Problem:
○ Input: A character c and an integer n
○ Output: A string consisting of n repetitions of character c

e.g., Given input ‘*’ and 15, output ***************.
● Algorithm 1 using String Concatenations:

public static String repeat1(char c, int n) {
String answer = "";
for (int i = 0; i < n; i ++) { answer += c; }

return answer; }

● Algorithm 2 using StringBuilder append’s:
public static String repeat2(char c, int n) {
StringBuilder sb = new StringBuilder();

for (int i = 0; i < n; i ++) { sb.append(c); }

return sb.toString(); }

6 of 40

Example Experiment: Detailed Statistics

n repeat1 (in ms) repeat2 (in ms)
50,000 2,884 1

100,000 7,437 1
200,000 39,158 2
400,000 170,173 3
800,000 690,836 7

1,600,000 2,847,968 13
3,200,000 12,809,631 28
6,400,000 59,594,275 58

12,800,000 265,696,421 (≈ 3 days) 135

● As input size is doubled, rates of increase for both algorithms
are linear :
○ Running time of repeat1 increases by ≈ 5 times.
○ Running time of repeat2 increases by ≈ 2 times.

7 of 40

Example Experiment: Visualization

n

repeat1

repeat2

104 105 106 107

108

107

106

105

104

103

102

101

100

R
u
n
n
in

g
T

im
e

(m
s)

109

8 of 40

Experimental Analysis: Challenges

1. An algorithm must be fully implemented (i.e., translated into
valid Java syntax) in order study its runtime behaviour
experimentally .
○ What if our purpose is to choose among alternative data structures

or algorithms to implement?
○ Can there be a higher-level analysis to determine that one

algorithm or data structure is superior than others?
2. Comparison of multiple algorithms is only meaningful when

experiments are conducted under the same environment of:
○ Hardware: CPU, running processes
○ Software: OS, JVM version

3. Experiments can be done only on a limited set of test inputs.
○ What if “important” inputs were not included in the experiments?

9 of 40

Moving Beyond Experimental Analysis

● A better approach to analyzing the efficiency (e.g., running
times) of algorithms should be one that:
○ Allows us to calculate the relative efficiency (rather than absolute

elapsed time) of algorithms in a ways that is independent of the
hardware and software environment.

○ Can be applied using a high-level description of the algorithm
(without fully implementing it).

○ Considers all possible inputs.
● We will learn a better approach that contains 3 ingredients:

1. Counting primitive operations
2. Approximating running time as a function of input size
3. Focusing on the worst-case input (requiring the most running time)

10 of 40

Counting Primitive Operations

A primitive operation corresponds to a low-level instruction with
a constant execution time .
○ Assignment [e.g., x = 5;]
○ Indexing into an array [e.g., a[i]]
○ Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
○ Accessing an attribute of an object [e.g., acc.balance]
○ Returning from a method [e.g., return result;]

Q: Why is a method call in general not a primitive operation?
A: It may be a call to:
● a “cheap” method (e.g., printing Hello World), or
● an “expensive” method (e.g., sorting an array of integers)

11 of 40

Example: Counting Primitive Operations
1 findMax (int[] a, int n) {
2 currentMax = a[0];
3 for (int i = 1; i < n;) {
4 if (a[i] > currentMax) {
5 currentMax = a[i]; }
6 i ++ }
7 return currentMax; }

of times i < n in Line 3 is executed? [n]
of times the loop body (Line 4 to Line 6) is executed? [n − 1]

● Line 2: 2 [1 indexing + 1 assignment]
● Line 3: n + 1 [1 assignment + n comparisons]
● Line 4: (n − 1) ⋅ 2 [1 indexing + 1 comparison]
● Line 5: (n − 1) ⋅ 2 [1 indexing + 1 assignment]
● Line 6: (n − 1) ⋅ 2 [1 addition + 1 assignment]
● Line 7: 1 [1 return]
● Total # of Primitive Operations: 7n - 2
12 of 40

From Absolute RT to Relative RT

● Each primitive operation (PO) takes approximately the same,
constant amount of time to execute. [say t]

● The number of primitive operations required by an algorithm
should be proportional to its actual running time on a specific
environment.
e.g., findMax (int[] a, int n) has 7n − 2 POs

RT = (7n - 2) ⋅ t

Say two algorithms with RT (7n - 2) ⋅ t and RT (10n + 3) ⋅ t.
⇒ It suffices to compare their relative running time:

7n - 2 vs. 10n + 3.
● To determine the time efficiency of an algorithm, we only

focus on their number of POs .
13 of 40

Example: Approx. # of Primitive Operations
● Given # of primitive operations counted precisely as 7n1 − 2,

we view it as
7 ⋅ n − 2 ⋅ n0

● We say
○ n is the highest power
○ 7 and 2 are the multiplicative constants
○ 2 is the lower term

● When approximating a function (considering that input size may
be very large):
○ Only the highest power matters.
○ multiplicative constants and lower terms can be dropped.
⇒ 7n − 2 is approximately n
Exercise: Consider 7n + 2n ⋅ log n + 3n2:
○ highest power? [n2]
○ multiplicative constants? [7, 2, 3]
○ lower terms? [7n + 2n ⋅ log n]

14 of 40

Approximating Running Time
as a Function of Input Size

Given the high-level description of an algorithm, we associate it
with a function f , such that f (n) returns the number of
primitive operations that are performed on an input of size n.
○ f (n) = 5 [constant]
○ f (n) = log2n [logarithmic]
○ f (n) = 4 ⋅ n [linear]
○ f (n) = n2 [quadratic]
○ f (n) = n3 [cubic]
○ f (n) = 2n [exponential]

15 of 40

Focusing on the Worst-Case Input
R

u
n

n
in

g
T

im
e

B C D E F G

best-case time

A

}

Input Instance

1 ms

2 ms

3 ms

4 ms

5 ms worst-case time

average-case time?

● Average-case analysis calculates the expected running times
based on the probability distribution of input values.

● worst-case analysis or best-case analysis?
16 of 40

What is Asymptotic Analysis?

Asymptotic analysis
● Is a method of describing behaviour in the limit :

○ How the running time of the algorithm under analysis changes as
the input size changes without bound

○ e.g., contrast RT1(n) = n with RT2(n) = n2

● Allows us to compare the relative performance of alternative
algorithms:
○ For large enough inputs, the multiplicative constants and

lower-order terms of an exact running time can be disregarded.
○ e.g., RT1(n) = 3n2 + 7n + 18 and RT1(n) = 100n2 + 3n − 100 are

considered equally efficient, asymptotically .
○ e.g., RT1(n) = n3 + 7n + 18 is considered less efficient than

RT1(n) = 100n2 + 100n + 2000, asymptotically .

17 of 40

Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the running
time of an algorithm:
● Asymptotic upper bound [O]
● Asymptotic lower bound [Ω]
● Asymptotic tight bound [Θ]

18 of 40

Asymptotic Upper Bound: Definition
● Let f (n) and g(n) be functions mapping positive integers (input

size) to positive real numbers (running time).
○ f (n) characterizes the running time of some algorithm.
○ O(g(n)) denotes a collection of functions.

● O(g(n)) consists of all functions that can be upper bounded
by g(n), starting at some point, using some constant factor.

● f (n) ∈ O(g(n)) if there are:
○ A real constant c > 0
○ An integer constant n0 ≥ 1
such that:

f(n) ≤ c ⋅ g(n) for n ≥ n0

● For each member function f (n) in O(g(n)) , we say that:
○ f (n) ∈ O(g(n)) [f(n) is a member of “big-Oh of g(n)”]
○ f (n) is O(g(n)) [f(n) is “big-Oh of g(n)”]
○ f (n) is order of g(n)

19 of 40

Asymptotic Upper Bound: Visualization

Input Size

R
u
n
n
i
n
g

T

i
m

e

cg(n)

f(n)

n
0

From n0, f (n) is upper bounded by c ⋅ g(n), so f (n) is O(g(n)) .

20 of 40

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

8n + 5 ≤ c ⋅ n

Can we choose c = 9? What should the corresponding n0 be?
n 8n + 5 9n
1 13 9
2 21 18
3 29 27
4 37 36
5 45 45
6 53 54

. . .

Therefore, we prove it by choosing c = 9 and n0 = 5.
We may also prove it by choosing c = 13 and n0 = 1. Why?

21 of 40

Asymptotic Upper Bound: Example (2)

Prove: The function f (n) = 5n4 + 3n3 + 2n2 + 4n + 1 is O(n4).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

5n4
+ 3n3

+ 2n2
+ 4n + 1 ≤ c ⋅ n4

f (1) = 5 + 3 + 2 + 4 + 1 = 15
Choose c = 15 and n0 = 1!

22 of 40

Asymptotic Upper Bound: Proposition (1)
If f (n) is a polynomial of degree d , i.e.,

f (n) = a0 ⋅ n0
+ a1 ⋅ n1

+ ⋅ ⋅ ⋅ + ad ⋅ nd

and a0,a1, . . . ,ad are integers (i.e., negative, zero, or positive),
then f (n) is O(nd) .
○ We prove by choosing

c = ∣a0∣ + ∣a1∣ + ⋅ ⋅ ⋅ + ∣ad ∣

n0 = 1

○ We know that for n ≥ 1: n0 ≤ n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nd

○ Upper-bound effect starts when n0 = 1? [f (1) ≤ 1d]

a0 ⋅ 10
+ a1 ⋅ 11

+ ⋅ ⋅ ⋅ + ad ⋅ 1d
≤ ∣a0∣ ⋅ 1d

+ ∣a1∣ ⋅ 1d
+ ⋅ ⋅ ⋅ + ∣ad ∣ ⋅ 1d

○ Upper-bound effect holds? [f (n) ≤ nd]

a0 ⋅ n0
+ a1 ⋅ n1

+ ⋅ ⋅ ⋅ + ad ⋅ nd
≤ ∣a0∣ ⋅ nd

+ ∣a1∣ ⋅ nd
+ ⋅ ⋅ ⋅ + ∣ad ∣ ⋅ nd

23 of 40

Asymptotic Upper Bound: Proposition (2)

O(n0
) ⊂ O(n1

) ⊂ O(n2
) ⊂ . . .

If a function f (n) is upper bounded by another function g(n) of
degree d , d ≥ 0, then f (n) is also upper bounded by all other
functions of a strictly higher degree (i.e., d + 1, d + 2, etc.).
e.g., Family of O(n) contains:

n0, 2n0, 3n0, . . . [functions with degree 0]
n, 2n, 3n, . . . [functions with degree 1]

e.g., Family of O(n2) contains:
n0, 2n0, 3n0, . . . [functions with degree 0]
n, 2n, 3n, . . . [functions with degree 1]
n2, 2n2, 3n2, . . . [functions with degree 2]

24 of 40

Asymptotic Upper Bound: More Examples

● 5n2 + 3n ⋅ logn + 2n + 5 is O(n2) [c = 15, n0 = 1]
● 20n3 + 10n ⋅ logn + 5 is O(n3) [c = 35, n0 = 1]
● 3 ⋅ logn + 2 is O(logn) [c = 5, n0 = 2]

○ Why can’t n0 be 1?
○ Choosing n0 = 1 means⇒ f (1) is upper-bounded by c ⋅ log 1 :

● We have f (1) = 3 ⋅ log1 + 2, which is 2.
● We have c ⋅ log 1 , which is 0.

⇒ f (1) is not upper-bounded by c ⋅ log 1 [Contradiction!]

● 2n+2 is O(2n) [c = 4, n0 = 1]
● 2n + 100 ⋅ logn is O(n) [c = 102, n0 = 1]

25 of 40

Using Asymptotic Upper Bound Accurately

● Use the big-Oh notation to characterize a function (of an
algorithm’s running time) as closely as possible.
For example, say f (n) = 4n3 + 3n2 + 5:
○ Recall: O(n3) ⊂ O(n4) ⊂ O(n5) ⊂ . . .

○ It is the most accurate to say that f (n) is O(n3).
○ It is true, but not very useful, to say that f (n) is O(n4) and that

f (n) is O(n5).
○ It is false to say that f (n) is O(n2), O(n), or O(1).

● Do not include constant factors and lower-order terms in the
big-Oh notation.
For example, say f (n) = 2n2 is O(n2), do not say f (n) is
O(4n2 + 6n + 9).

26 of 40

Classes of Functions

upper bound class cost
O(1) constant cheapest

O(log(n)) logarithmic
O(n) linear

O(n ⋅ log(n)) “n-log-n”
O(n2) quadratic
O(n3) cubic

O(nk), k ≥ 1 polynomial
O(an), a > 1 exponential most expensive

27 of 40

Rates of Growth: Comparison
f
(n
)

10

7

10

6

n

10

5

10

4

10

3

10

2

Linear

Exponential

Constant

Logarithmic

N-Log-N

Quadratic

Cubic

10

15

10

14

10

13

10

12

10

11

10

10

10

9

10

8

10

1

10

0

10

4

10

8

10

12

10

16

10

20

10

28

10

32

10

36

10

40

10

44

10

0

10

24

28 of 40

Upper Bound of Algorithm: Example (1)

1 maxOf (int x, int y) {
2 int max = x;
3 if (y > x) {
4 max = y;
5 }
6 return max;
7 }

● # of primitive operations: 4
2 assignments + 1 comparison + 1 return = 4

● Therefore, the running time is O(1) .
● That is, this is a constant-time algorithm.

29 of 40

Upper Bound of Algorithm: Example (2)

1 findMax (int[] a, int n) {
2 currentMax = a[0];
3 for (int i = 1; i < n;) {
4 if (a[i] > currentMax) {
5 currentMax = a[i]; }
6 i ++ }
7 return currentMax; }

● From last lecture, we calculated that the # of primitive
operations is 7n − 2.

● Therefore, the running time is O(n) .
● That is, this is a linear-time algorithm.

30 of 40

Upper Bound of Algorithm: Example (3)

1 containsDuplicate (int[] a, int n) {
2 for (int i = 0; i < n;) {
3 for (int j = 0; j < n;) {
4 if (i != j && a[i] == a[j]) {
5 return true; }
6 j ++; }
7 i ++; }
8 return false; }

● Worst case is when we reach Line 8.
● # of primitive operations ≈ c1 + n ⋅ n ⋅ c2, where c1 and c2 are

some constants.
● Therefore, the running time is O(n2) .
● That is, this is a quadratic algorithm.
31 of 40

Upper Bound of Algorithm: Example (4)

1 sumMaxAndCrossProducts (int[] a, int n) {
2 int max = a[0];
3 for(int i = 1; i < n;) {
4 if (a[i] > max) { max = a[i]; }
5 }
6 int sum = max;
7 for (int j = 0; j < n; j ++) {
8 for (int k = 0; k < n; k ++) {
9 sum += a[j] * a[k]; } }

10 return sum; }

● # of primitive operations ≈ (c1 ⋅ n + c2) + (c3 ⋅ n ⋅ n + c4), where
c1, c2, c3, and c4 are some constants.

● Therefore, the running time is O(n + n2) = O(n2) .
● That is, this is a quadratic algorithm.
32 of 40

Upper Bound of Algorithm: Example (5)

1 triangularSum (int[] a, int n) {
2 int sum = 0;
3 for (int i = 0; i < n; i ++) {

4 for (int j = i ; j < n; j ++) {

5 sum += a[j]; } }
6 return sum; }

● # of primitive operations ≈ n + (n − 1) + ⋅ ⋅ ⋅ + 2 + 1 =
n⋅(n+1)

2

● Therefore, the running time is O(n2+n
2) = O(n2) .

● That is, this is a quadratic algorithm.

33 of 40

Basic Data Structure: Arrays

● An array is a sequence of indexed elements.
● Size of an array is fixed at the time of its construction.
● Supported operations on an array:

○ Accessing: e.g., int max = a[0];

Time Complexity: O(1) [constant operation]
○ Updating: e.g., a[i] = a[i + 1];

Time Complexity: O(1) [constant operation]
○ Inserting/Removing:

String[] insertAt(String[] a, int n, String e, int i)
String[] result = new String[n + 1];
for(int j = 0; j <= i - 1; j ++){ result[j] = a[j]; }
result[i] = e;
for(int j = i + 1; j <= n - 1; j ++){ result[j] = a[j-1]; }
return result;

Time Complexity: O(n) [linear operation]
34 of 40

Array Case Study:
Comparing Two Sorting Strategies

● Problem:
Input: An array a of n numbers ⟨a1, a2, . . . , an⟩

Output: A permutation (reordering) ⟨a′1, a′2, . . . , a′n⟩ of the
input sequence such that a′1 ≤ a′2 ≤. . . ≤ a′n

● We propose two alternative implementation strategies for
solving this problem.

● At the end, we want to know which one to choose, based on
time complexity .

35 of 40

Sorting: Strategy 1 – Selection Sort
● Maintain a (initially empty) sorted portion of array a.
● From left to right in array a, select and insert the minimum

element to the end of this sorted portion, so it remains sorted.
1 selectionSort(int[] a, int n)
2 for (int i = 0; i <= (n - 2); i ++)
3 int minIndex = i;
4 for (int j = i; j <= (n - 1); j ++)
5 if (a[j] < a[minIndex]) { minIndex = j; }
6 int temp = a[i];
7 a[i] = a[minIndex];
8 a[minIndex] = temp;

● How many times does the body of for loop (Line 4) run?
● Running time? [O(n2)]

n´¸¶
find {a[0], ..., a[n-1]}

+ (n − 1)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

find {a[1], ..., a[n-1]}

+ ⋅ ⋅ ⋅ + 2´¸¶
find {a[n - 2], a[a[n - 1]]}

● So selection sort is a quadratic-time algorithm.
36 of 40

Sorting: Strategy 2 – Insertion Sort
● Maintain a (initially empty) sorted portion of array a.
● From left to right in array a, insert one element at a time into the

“right” spot in this sorted portion, so it remains sorted.
1 insertionSort(int[] a, int n)
2 for (int i = 1; i < n; i ++)
3 int current = a[i];
4 int j = i;
5 while (j > 0 && a[j - 1] > current)
6 a[j] = a[j - 1];
7 j --;
8 a[j] = current;

● while loop (L5) exits when? j <= 0 or a[j - 1] <= current

● Running time? [O(n2)]
O(1´¸¶

insert into {a[0]}

+ 2´¸¶
insert into {a[0], a[1]}

+ ⋅ ⋅ ⋅+ (n − 1)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

insert into {a[0], ..., a[n-2]}

)

● So insertion sort is a quadratic-time algorithm.
37 of 40

Sorting: Alternative Implementations?

● In the Java implementations for selection sort and insertion
sort, we maintain the “sorted portion” from the left end.
○ For selection sort, we select the minimum element from the

“unsorted portion” and insert it to the end in the “sorted portion”.

● For insertion sort, we choose the left-most element from the
“unsorted portion” and insert it at the “right spot” in the “sorted
portion”.

● Question: Can we modify the Java implementations, so that
the “sorted portion” is maintained and grown from the right
end instead?

38 of 40

Comparing Insertion & Selection Sorts

● Asymptotically , running times of selection sort and insertion

sort are both O(n2) .
● We will later see that there exist better algorithms that can

perform better than quadratic: O(n ⋅ logn).

39 of 40

Index (1)
Algorithm and Data Structure
Measuring “Goodness” of an Algorithm
Measuring Efficiency of an Algorithm
Measure Running Time via Experiments
Example Experiment
Example Experiment: Detailed Statistics
Example Experiment: Visualization
Experimental Analysis: Challenges
Moving Beyond Experimental Analysis
Counting Primitive Operations
Example: Counting Primitive Operations
From Absolute RT to Relative RT
Example: Approx. # of Primitive Operations

40 of 40

Index (2)
Approximating Running Time
as a Function of Input Size
Focusing on the Worst-Case Input
What is Asymptotic Analysis?
Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)
Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately
Classes of Functions

41 of 40

Index (3)
Rates of Growth: Comparison
Upper Bound of Algorithm: Example (1)
Upper Bound of Algorithm: Example (2)
Upper Bound of Algorithm: Example (3)
Upper Bound of Algorithm: Example (4)
Upper Bound of Algorithm: Example (5)
Basic Data Structure: Arrays
Array Case Study:
Comparing Two Sorting Strategies
Sorting: Strategy 1 – Selection Sort
Sorting: Strategy 2 – Insertion Sort
Sorting: Alternative Implementations?
Comparing Insertion & Selection Sorts

42 of 40

Aggregation and Composition

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Call by Value (1)
● Consider the general form of a call to some mutator method
m1, with context object s and argument value arg:
class Supplier {
void m1(T par) {
/* manipulate par */

}
}

class Client {
Supplier s = new Supplier();
T arg = . . .;
s.m1(arg)

}

○ To execute s.m1(arg) , an implicit par := arg is done.
⇒ A copy of value stored in arg is passed for the method call.

● What can the type T be? [Primitive or Reference]
○ T is primitive type (e.g., int, char, boolean, etc.):

Call by Value : Copy of arg’s value (e.g., 2, ‘j’) is passed.

○ T is reference type (e.g., String, Point, Person, etc.):
Call by Value : Copy of arg’s stored reference/address

(e.g., Point@5cb0d902) is passed.
2 of 31

Call by Value (2.1)

For illustration, let’s assume the following variant of the Point
class:

class Point {
int x;
int y;
Point(int x, int y) {
this.x = x;
this.y = y;

}
void moveVertically(int y){
this.y += y;

}
void moveHorizontally(int x){
this.x += x;

}
}

3 of 31

Call by Value (2.2.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByVal() {
3 Util u = new Util();
4 int i = 10;
5 assertTrue(i == 10);
6 u.reassignInt(i);
7 assertTrue(i == 10);
8 }

● Before the mutator call at L6, primitive variable i stores 10.

● When executing the mutator call at L6, due to call by value , a
copy of variable i is made.
⇒ The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

● ∴ After the mutator call at L6, variable i still stores 10.
4 of 31

Call by Value (2.2.2)

Before reassignInt During reassignInt After reassignInt

10inti

10inti

10intj

10inti

11intj

5 of 31

Call by Value (2.3.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_1() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.reassignRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==3 && p.y==4);
9 }

● Before the mutator call at L6, reference variable p stores the
address of some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made.
⇒ The assignment p = np is only effective on this copy, not the
original variable p itself.

● ∴ After the mutator call at L6, variable p still stores the original
address (i.e., same as refOfPBefore).

6 of 31

Call by Value (2.3.2)

Before reassignRef During reassignRef After reassignRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

3

4

x

y

Point

p

q
6

8

x

y

Point

7 of 31

Call by Value (2.4.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_2() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.changeViaRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==6 && p.y==8);
9 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made. [Alias: p and q store same address.]

⇒ Calls to q.moveHorizontally and q.moveVertically are
effective on both p and q.

● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore), but its x and y have been modified via q.

8 of 31

Call by Value (2.4.2)

Before changeViaRef During changeViaRef After changeViaRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

6

8

x

y

Point

p

q

9 of 31

Aggregation vs. Composition: Terminology
Container object: an object that contains others.
Containee object: an object that is contained within another.

● e.g., Each course has a faculty member as its instructor.
○ Container : Course Containee: Faculty.

● e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
○ Container : Student, Faculty Containees: Course.

e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
⇒ Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
⇒ Containees may exist independently without their containers.

● e.g., In a file system, each directory contains a list of files.
○ Container : Directory Containees: File.

e.g., Each file has exactly one parent directory.
⇒ A containee may be owned by only one container .
e.g., Deleting a directory also deletes the files it contains.
⇒ Containees may co-exist with their containers.

10 of 31

Aggregation: Independent Containees
Shared by Containers (1.1)

Course Faculty
prof
1

class Course {
String title;
Faculty prof;
Course(String title) {
this.title = title;

}
void setProf(Faculty prof) {
this.prof = prof;

}
Faculty getProf() {
return this.prof;

}
}

class Faculty {
String name;
Faculty(String name) {
this.name = name;

}
void setName(String name) {
this.name = name;

}
String getName() {
return this.name;

}
}

11 of 31

Aggregation: Independent Containees
Shared by Containers (1.2)
@Test
public void testAggregation1() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf(prof);
eecs3311.setProf(prof);
assertTrue(eecs2030.getProf() == eecs3311.getProf());
/* aliasing */
prof.setName("Jeff");
assertTrue(eecs2030.getProf() == eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);
assertTrue(eecs2030.getProf() != eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));
assertTrue(eecs3311.getProf().getName().equals("Jonathan"));

}

12 of 31

Aggregation: Independent Containees
Shared by Containers (2.1)

Student
cs
*

Course Faculty
te

*

class Student {
String id; ArrayList<Course> cs; /* courses */
Student(String id) { this.id = id; cs = new ArrayList<>(); }
void addCourse(Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }

}

class Course { String title; }

class Faculty {
String name; ArrayList<Course> te; /* teaching */
Faculty(String name) { this.name = name; te = new ArrayList<>(); }
void addTeaching(Course c) { te.add(c); }
ArrayList<Course> getTE() { return te; }

}

13 of 31

Aggregation: Independent Containees
Shared by Containers (2.2)
@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030);
p.addTeaching(eecs3311);
s.addCourse(eecs2030);
s.addCourse(eecs3311);

assertTrue(eecs2030.getProf() == s.getCS().get(0).getProf());
assertTrue(s.getCS().get(0).getProf() == s.getCS().get(1).getProf());
assertTrue(eecs3311 == s.getCS().get(1));
assertTrue(s.getCS().get(1) == p.getTE().get(1));

}

14 of 31

The Dot Notation (3.1)
In real life, the relationships among classes are sophisticated.

Student
cs
*

Course Faculty
te

*

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class Student:
○ Writing cs denotes the list of registered courses.
○ Writing cs[i] (where i is a valid index) navigates to the class
Course, which changes the context to class Course.

15 of 31

The Dot Notation (3.2)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Student {
. . . /* attributes */
/* Get the student’s id */
String getID() { return this.id; }
/* Get the title of the ith course */
String getCourseTitle(int i) {
return this.cs.get(i).title;

}
/* Get the instructor’s name of the ith course */
String getInstructorName(int i) {
return this.cs.get(i).prof.name;

}
}

16 of 31

The Dot Notation (3.3)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Course {
. . . /* attributes */
/* Get the course’s title */
String getTitle() { return this.title; }
/* Get the instructor’s name */
String getInstructorName() {
return this.prof.name;

}
/* Get title of ith teaching course of the instructor */
String getCourseTitleOfInstructor(int i) {
return this.prof.te.get(i).title;

}
}

17 of 31

The Dot Notation (3.4)

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Faculty {
. . . /* attributes */
/* Get the instructor’s name */
String getName() {
return this.name;

}
/* Get the title of ith teaching course */
String getCourseTitle(int i) {
return this.te.get(i).title;

}
}

18 of 31

Composition: Dependent Containees
Owned by Containers (1.1)

Directory File
files
*

parent
1

Assumption: Files are not shared among directories.

class File {
String name;
File(String name) {
this.name = name;

}
}

class Directory {
String name;
File[] files;
int nof; /* num of files */
Directory(String name) {
this.name = name;
files = new File[100];

}
void addFile(String fileName) {
files[nof] = new File(fileName);
nof ++;

}
}

19 of 31

Composition: Dependent Containees
Owned by Containers (1.2.1)

1 @Test
2 public void testComposition() {
3 Directory d1 = new Directory("D");
4 d1.addFile("f1.txt");
5 d1.addFile("f2.txt");
6 d1.addFile("f3.txt");
7 assertTrue(
8 d1.files[0].name.equals("f1.txt"));
9 }

● L4: 1st File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L5: 2nd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

20 of 31

Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name
“D”

“f1.txt” “f2.txt” “f3.txt”

21 of 31

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.
A copy constructor is a constructor which initializes attributes
from the argument object other.

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */

}
}

Hints:
● The implementation should be consistent with the effect of

copying and pasting a directory.
● Separate copies of files are created.
22 of 31

Composition: Dependent Containees
Owned by Containers (1.4.1)

Version 1: Shallow Copy by copying all attributes using =.
class Directory {
Directory(Directory other) {
/* value copying for primitive type */
nof = other.nof;
/* address copying for reference type */
name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [NO]
@Test
void testShallowCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files == d2.files); /* violation of composition */
d2.files[0].changeName("f11.txt");
assertFalse(d1.files[0].name.equals("f1.txt")); }

23 of 31

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f11.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name

d2.filesd2

d2.files[0] d2.files[1] d2.files[2]

d2.name

24 of 31

Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < nof; i ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf); } }

void addFile(File f) { . . . } }

@Test
void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files != d2.files); /* composition preserved */
d2.files[0].changeName("f11.txt");
assertTrue(d1.files[0].name.equals("f1.txt")); }

25 of 31

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f1.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name
d2.files

d2

d2.files[0] d2.files[1] d2.files[2]

0 1 2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

“D”

File

name

File

name

File

name

“f11.txt” “f2.txt” “f3.txt”

nof

d2.name

26 of 31

Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < nof; i ++) {
File src = other.files[i];
this.addFile(src); } }

void addFile(File f) { . . . } }

@Test
void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files != d2.files); /* composition preserved */
d2.files[0].changeName("f11.txt");
assertTrue(d1.files[0] == d2.files[0]); /* composition violated! */ }

27 of 31

Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;
int nof;
File[] getFiles() {
/* Your Task */

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

28 of 31

Aggregation vs. Composition (1)

Terminology:
○ Container object: an object that contains others.
○ Containee object: an object that is contained within another.

Aggregation :
○ Containees (e.g., Course) may be shared among containers

(e.g., Student, Faculty).
○ Containees exist independently without their containers.
○ When a container is destroyed, its containees still exist.

Composition :
○ Containers (e.g, Directory, Department) own exclusive

access to their containees (e.g., File, Faculty).
○ Containees cannot exist without their containers.
○ Destroying a container destroys its containeees cascadingly .

29 of 31

Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:
○ Each workstation owns CPU, monitor, keyword. [compositions]
○ All workstations share the same network. [aggregations]

30 of 31

Index (1)
Call by Value (1)
Call by Value (2.1)
Call by Value (2.2.1)
Call by Value (2.2.2)
Call by Value (2.3.1)
Call by Value (2.3.2)
Call by Value (2.4.1)
Call by Value (2.4.2)
Aggregation vs. Composition: Terminology
Aggregation: Independent Containees
Shared by Containers (1.1)
Aggregation: Independent Containees
Shared by Containers (1.2)
Aggregation: Independent Containees
Shared by Containers (2.1)

31 of 31

Index (2)
Aggregation: Independent Containees
Shared by Containers (2.2)
The Dot Notation (3.1)
The Dot Notation (3.2)
The Dot Notation (3.3)
The Dot Notation (3.4)
Composition: Dependent Containees
Owned by Containers (1.1)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
Composition: Dependent Containees
Owned by Containers (1.3)

32 of 31

Index (3)
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)
Composition: Dependent Containees
Owned by Containers (1.5.1)
Composition: Dependent Containees
Owned by Containers (1.5.2)
Composition: Dependent Containees
Owned by Containers (1.5.3)
Composition: Dependent Containees
Owned by Containers (1.6)

Aggregation vs. Composition (1)

Aggregation vs. Composition (2)
33 of 31

Inheritance

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

2 of 86

No Inheritance: ResidentStudent Class
class ResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double premiumRate; /* there’s a mutator method for this */

ResidentStudent (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * premiumRate ;

}
}3 of 86

No Inheritance: NonResidentStudent Class
class NonResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double discountRate; /* there’s a mutator method for this */

NonResidentStudent (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * discountRate ;
}

}4 of 86

No Inheritance: Testing Student Classes
class Course {
String title;
double fee;
Course(String title, double fee) {
this.title = title; this.fee = fee; } }

class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

5 of 86

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.

6 of 86

No Inheritance: Maintainability of Code (1)

What if the way for registering a course changes?
e.g.,

void register(Course c) {
if (numberOfCourses >= MAX_ALLOWANCE) {
throw new IllegalArgumentException("Maximum allowance reached.");

}
else {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
}

We need to change the register method in both student
classes!

7 of 86

No Inheritance: Maintainability of Code (2)

What if the way for calculating the base tuition changes?
e.g.,

double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
/* . . . can be premiumRate or discountRate */
return tuition * inflationRate * . . .;

}

We need to change the getTuition method in both student
classes.

8 of 86

No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
ResidentStudent[] rss;
NonResidentStudent[] nrss;
int nors; /* number of resident students */
int nonrs; /* number of non-resident students */
void addRS (ResidentStudent rs){ rss[nors]=rs; nors++; }
void addNRS (NonResidentStudent nrs){ nrss[nonrs]=nrs; nonrs++; }
void registerAll (Course c) {
for(int i = 0; i < nors; i ++) { rss[i].register(c); }
for(int i = 0; i < nonrs; i ++) { nrss[i].register(c); }

} }

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately !

a polymorphic collection of students
9 of 86

Inheritance Architecture

ResidentStudent NonResidentStudent

Student

extends
extends

10 of 86

Inheritance: The Student Parent/Super Class
class Student {
String name;
Course[] registeredCourses;
int numberOfCourses;

Student (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
return tuition; /* base amount only */

}
}

11 of 86

Inheritance:
The ResidentStudent Child/Sub Class

1 class ResidentStudent extends Student {

2 double premiumRate; /* there’s a mutator method for this */

3 ResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * premiumRate ;

8 }
9 }

● L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
12 of 86

Inheritance:
The NonResidentStudent Child/Sub Class

1 class NonResidentStudent extends Student {

2 double discountRate; /* there’s a mutator method for this */

3 NonResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * discountRate ;
8 }
9 }

● L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
13 of 86

Inheritance Architecture Revisited

ResidentStudent NonResidentStudent

Student

extends
extends

● The class that defines the common attributes and methods is
called the parent or super class.

● Each “extended” class is called a child or sub class.
14 of 86

Using Inheritance for Code Reuse

Inheritance in Java allows you to:
○ Define common attributes and methods in a separate class.

e.g., the Student class
○ Define an “extended” version of the class which:

● inherits definitions of all attributes and methods
e.g., name, registeredCourses, numberOfCourses
e.g., register
e.g., base amount calculation in getTuition

This means code reuse and elimination of code duplicates!
● defines new attributes and methods if necessary

e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent

● redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

15 of 86

Visualizing Parent/Child Objects (1)

● A child class inherits all attributes from its parent class.
⇒ A child instance has at least as many attributes as an
instance of its parent class.
Consider the following instantiations:

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

● How will these initial objects look like?

16 of 86

Visualizing Parent/Child Objects (2)

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

null

0

null

1

… null

8

null

9

0

Student

name

numberOfCourses

registeredCourses

“Stella”
s

null

0

null

1

… null

8

null

9

0

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

null

0

null

1

… null

8

null

9

discountRate

premiumRate

17 of 86

Testing the Two Student Sub-Classes
class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

● The software can be used in exactly the same way as before
(because we did not modify method signatures).

● But now the internal structure of code has been made
maintainable using inheritance .

18 of 86

Inheritance Architecture: Static Types &
Expectations

NonResidentStudent

Student

ResidentStudent

String name
Course[] registeredCourses
int numberOfCourses

Student(String name)
void register(Course c)
double getTuition()

/* new attributes, new methods */
ResidentStudent(String name)
double premiumRate
void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* new attributes, new methods */
NonResidentStudent(String name)
double discountRate
void setDiscountRate(double r)
/* redefined/overridden methods */
double getTuition()

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

name rcs noc reg getT pr setPR dr setDR

s. ✓ ×

rs. ✓ ✓ ×

nrs. ✓ × ✓

19 of 86

Polymorphism: Intuition (1)

1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● Which one of L4 and L5 is valid? Which one is invalid?
● Hints:

○ L1: What kind of address can s store? [Student]
∴ The context object s is expected to be used as:
● s.register(eecs2030) and s.getTuition()

○ L2: What kind of address can rs store? [ResidentStudent]
∴ The context object rs is expected to be used as:
● rs.register(eecs2030) and rs.getTuition()
● rs.setPremiumRate(1.50) [increase premium rate]

20 of 86

Polymorphism: Intuition (2)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● rs = s (L5) should be invalid :

“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since rs is declared of type ResidentStudent, a subsequent
call rs.setPremiumRate(1.50) can be expected.

● rs is now pointing to a Student object.
● Then, what would happen to rs.setPremiumRate(1.50)?

CRASH ∵ rs.premiumRate is undefined !!
21 of 86

Polymorphism: Intuition (3)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● s = rs (L4) should be valid :
“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since s is declared of type Student, a subsequent call
s.setPremiumRate(1.50) is never expected.

● s is now pointing to a ResidentStudent object.
● Then, what would happen to s.getTuition()?

OK ∵ s.premiumRate is never directly used !!
22 of 86

Dynamic Binding: Intuition (1)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println(s .getTuition());/* output: 125.0 */

8 s = nrs; System.out.println(s .getTuition());/* output: 75.0 */

After s = rs (L7), s points to a ResidentStudent object.
⇒ Calling s .getTuition() applies the premiumRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

23 of 86

Dynamic Binding: Intuition (2)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println(s .getTuition()); /* output: 125.0 */

8 s = nrs; System.out.println(s .getTuition()); /* output: 75.0 */

After s = nrs (L8), s points to a NonResidentStudent object.
⇒ Calling s .getTuition() applies the discountRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

24 of 86

Multi-Level Inheritance Architecture

DomesticResidentStudent DomesticNonResidentStudent ForeignResidentStudent ForeignNonResidentStudent

DomesticStudent ForeignStudent

Student

25 of 86

Multi-Level Inheritance Hierarchy:
Smart Phones

IPhone6s IPhone6sPlus Samsung HTC

IOS Android

SmartPhone

GalaxyS6EdgePlus GalaxyS6Edge HTCOneA9 HTCOneM9

dial /* basic function */
surfWeb /* basic function */

surfWeb /* redefined using safari */
facetime /* new method */

surfWeb /* redefined using firefox */
skype /* new method */

threeDTouch /* new method */

sideSync /* new method */

26 of 86

Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.

○ Every class can be used as a type: the set of runtime objects.
● Use of inheritance creates a hierarchy of classes:

○ (Implicit) Root of the hierarchy is Object.
○ Each extends declaration corresponds to an upward arrow.
○ The extends relationship is transitive: when A extends B and B

extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.

● Ancestor vs. Descendant classes:
○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, extends.
● A inherits all code (attributes and methods) from its ancestor classes.
∴ A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.

○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends A.
● Code defined in A is inherited to all its descendant classes.

27 of 86

Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:
○ A descendant class inherits all code from its ancestor classes.
○ A descendant class may also:

● Declare new attributes
● Define new methods
● Redefine / Override inherited methods

● Consequently:
○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).

○ When expecting an object of a particular class, we may substitute
it with (re-assign it to) an object of any of its descendant classes.

○ e.g., When expecting a Student object, we may substitute it with
either a ResidentStudent or a NonResidentStudent object.

○ Justification: A descendant class contains at least as many
methods as defined in its ancestor classes (but not vice versa!).

28 of 86

Reference Variable: Static Type
● A reference variable’s static type is what we declare it to be.

○ Student jim declares jim’s ST as Student.
○ SmartPhone myPhone declares myPhone’s ST as SmartPhone.

○ The static type of a reference variable never changes .

● For a reference variable v , its static type C defines the

expected usages of v as a context object .
● A method call v.m(. . .) is compilable if m is defined in C .

○ e.g., After declaring Student jim , we
● may call register and getTuition on jim
● may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim

○ e.g., After declaring SmartPhone myPhone , we
● may call dial and surfWeb on myPhone
● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on myPhone
29 of 86

Substitutions via Assignments
● By declaring C1 v1, reference variable v1 will store the

address of an object “of class C1” at runtime.
● By declaring C2 v2, reference variable v2 will store the

address of an object “of class C2” at runtime.
● Assignment v1 = v2 copies address stored in v2 into v1.

○ v1 will instead point to wherever v2 is pointing to. [object alias]

……

…C1 v1

……

…C2 v2

● In such assignment v1 = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type C2.

● Substitutions are subject to rules!
30 of 86

Rules of Substitution
When expecting an object of static type A:
○ It is safe to substitute it with an object whose static type is any

of the descendant class of A (including A).
● ∵ Each descendant class of A, being the new substitute, is

guaranteed to contain all (non-private) attributes/methods defined in A.
● e.g., When expecting an IOS phone, you can substitute it with either

an IPhone6s or IPhone6sPlus.
○ It is unsafe to substitute it with an object whose static type is

any of the ancestor classes of A’s parent (excluding A).
● ∵ Class A may have defined new methods that do not exist in any of its

parent’s ancestor classes .
● e.g., When expecting IOS phone, unsafe to substitute it with a
SmartPhone ∵ facetime not supported in Android phone.

○ It is also unsafe to substitute it with an object whose static type
is neither an ancestor nor a descendant of A.
● e.g., When expecting IOS phone, unsafe to substitute it with an HTC ∵
facetime not supported in Android phone.

31 of 86

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.
○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
○ There are two ways to re-assigning a reference variable.

32 of 86

Visualizing Static Type vs. Dynamic Type

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”Student s

premiumRate

...

● Each segmented box denotes a runtime object.
● Arrow denotes a variable (e.g., s) storing the object’s address.

Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

● Title of box indicates type of runtime object, which denotes the
dynamic type of the variable (ResidentStudent).

33 of 86

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.
○ e.g., Student jim = new ResidentStudent(. . .)

changes the dynamic type of jim to ResidentStudent.

○ e.g., Student jim = new NonResidentStudent(. . .)
changes the dynamic type of jim to NonResidentStudent.

○ e.g., ResidentStudent jim = new Student(. . .) is illegal

because Studnet is not a descendant class of the static type of
jim (i.e., ResidentStudent).

34 of 86

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v = other):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.
○ e.g., Say we declare

Student jim = new Student(. . .);
ResidentStudent rs = new ResidentStudnet(. . .);
NonResidentStudnet nrs = new NonResidentStudent(. . .);

● rs = jim ×

● nrs = jim ×

● jim = rs ✓

changes the dynamic type of jim to the dynamic type of rs
● jim = nrs ✓

changes the dynamic type of jim to the dynamic type of nrs
35 of 86

Polymorphism and Dynamic Binding (1)

● Polymorphism : An object variable may have “multiple possible
shapes” (i.e., allowable dynamic types).
○ Consequently, there are multiple possible versions of each method

that may be called.
● e.g., A Student variable may have the dynamic type of Student ,

ResidentStudent , or NonResidentStudent ,
● This means that there are three possible versions of the
getTuition() that may be called.

● Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
Student jim = new ResidentStudent(. . .);
jim.getTuition(); /* version in ResidentStudent */
jim = new NonResidentStudent(. . .);
jim.getTuition(); /* version in NonResidentStudent */

36 of 86

Polymorphism and Dynamic Binding (2.1)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester1 {
public static void main(String[] args) {
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
jim = rs; /* legal */
rs = jim; /* illegal */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
jim = nrs; /* legal */
nrs = jim; /* illegal */

}
}

37 of 86

Polymorphism and Dynamic Binding (2.2)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
rs.setPremiumRate(1.5);

jim = rs ;

System.out.println(jim.getTuition()); /* 750.0 */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
nrs.setDiscountRate(0.5);

jim = nrs ;

System.out.println(jim.getTuition()); /* 250.0 */

}
}

38 of 86

Polymorphism and Dynamic Binding (3.1)

IPhone6s IPhone6sPlus Samsung HTC

IOS Android

SmartPhone

GalaxyS6EdgePlus GalaxyS6Edge HTCOneA9 HTCOneM9

dial /* basic function */
surfWeb /* basic function */

surfWeb /* redefined using safari */
facetime /* new method */

surfWeb /* redefined using firefox */
skype /* new method */

threeDTouch /* new method */

sideSync /* new method */

39 of 86

Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTest1 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone6sPlus();
Samsung ss = new GalaxyS6Edge();
myPhone = ip; /* legal */
myPhone = ss; /* legal */

IOS presentForHeeyeon;
presentForHeeyeon = ip; /* legal */
presentForHeeyeon = ss; /* illegal */

}
}

40 of 86

Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone6sPlus();
myPhone = ip;

myPhone. surfWeb (); /* version of surfWeb in IPhone6sPlus */

Samsung ss = new GalaxyS6Edge();
myPhone = ss;

myPhone. surfWeb (); /* version of surfWeb in GalaxyS6Edge */
}

}

41 of 86

Reference Type Casting: Motivation (1.1)
1 Student jim = new ResidentStudent("J. Davis");
2 ResidentStudent rs = jim;
3 rs.setPremiumRate(1.5);

● L1 is legal : ResidentStudent is a descendant class of the
static type of jim (i.e., Student).

● L2 is illegal : jim’s ST (i.e., Student) is not a descendant
class of rs’s ST (i.e., ResidentStudent).

Java compiler is unable to infer that jim’s dynamic type in L2 is
ResidentStudent!

● Force the Java compiler to believe so via a cast in L2:
ResidentStudent rs = (ResidentStudent) jim;

● The cast (ResidentStudent) jim on the RHS of = temporarily modifies
jim’s ST to ResidentStudent.

● Alias rs of ST ResidentStudent is then created via an assignment.
● dynamic binding : After the cast , L3 will execute the correct

version of setPremiumRate.
42 of 86

Reference Type Casting: Motivation (1.2)
ST: ResidentStudent

³¹¹·¹¹¹µ

ResidentStudent rs

valid substitution

³·µ
= (ResidentStudent)

´¹¹¹¸¹¹¶
temporaily modify ST

ST: Student

³·µ

jim

´¹¹¸¹¹¶
ST: ResidentStudent

;

○ Variable rs is declared of static type (ST) ResidentStudent.
○ Variable jim is declared of ST Student.
○ The cast expression (ResidentStudent) jim temporarily modifies
jim’s ST to ResidentStudent.
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (ResidentStudent) is a descendant of LHS’s ST
(ResidentStudent).
⇒ The assignment creates an alias rs with ST ResidentStudent.

○ No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.

○ After the assignment, jim’s ST remains Student.
43 of 86

Reference Type Casting: Motivation (2.1)
1 SmartPhone aPhone = new IPhone6sPlus();
2 IOS forHeeyeon = aPhone;
3 forHeeyeon.facetime();

● L1 is legal : IPhone6sPlus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

● L2 is illegal : aPhone’s ST (i.e., SmartPhone) is not a
descendant class of forHeeyeon’s ST (i.e., IOS).

Java compiler is unable to infer that aPhone’s dynamic type in L2
is IPhone6sPlus!

● Force Java compiler to believe so via a cast in L2:
IOS forHeeyeon = (IPhone6sPlus) aPhone;

● The cast (IPhone6sPlus) aPhone on the RHS of = temporarily
modifies aPhone’s ST to IPhone6sPlus.

● Alias forHeeyeon of ST IOS is then created via an assignment.
● dynamic binding : After the cast , L3 will execute the correct

version of facetime.
44 of 86

Reference Type Casting: Motivation (2.2)
ST: IOS

³¹¹¹·¹¹¹µ

IOS forHeeyeon

valid substitution

³·µ
= (IPhone6sPlus)

´¹¹¹¸¹¹¹¶
temporaily modify ST

ST: SmartPhone

³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

aPhone

´¹¹¹¸¹¹¹¶
ST: IPhone6sPlus

;

○ Variable forHeeyeon is declared of static type (ST) IOS.
○ Variable aPhone is declared of ST SmartPhone.
○ The cast expression (IPhone6sPlus) aPhone temporarily modifies
aPhone’s ST to IPhone6sPlus.
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (IPhone6sPlus) is a descendant of LHS’s ST (IOS).
⇒ The assignment creates an alias forHeeyeon with ST IOS.

○ No new object is created.
Only an alias forHeeyeon with a different ST (IOS) is created.

○ After the assignment, aPhone’s ST remains SmartPhone.
45 of 86

Type Cast: Named or Anonymous
Named Cast: Use intermediate variable to store the cast result.
SmartPhone aPhone = new IPhone6sPlus();
IOS forHeeyeon = (IPhone6sPlus) aPhone;
forHeeyeon.facetime();

Anonymous Cast: Use the cast result directly.
SmartPhone aPhone = new IPhone6sPlus();
((IPhone6sPlus) aPhone).facetime();

Common Mistake:

1 SmartPhone aPhone = new IPhone6sPlus();
2 (IPhone6sPlus) aPhone.facetime();

L2 ≡ (IPhone6sPlus) (aPhone.facetime()) : Call, then cast.
⇒ This does not compile ∵ facetime() is not declared in the
static type of aPhone (SmartPhone).

46 of 86

Notes on Type Cast (1)
○ Given variable v of static type STv , it is compilable to cast v to

C , as long as C is an ancestor or descendant of STv .
○ Without cast, we can only call methods defined in STv on v .
○ Casting v to C temporarily changes the ST of v from STv to C .
⇒ All methods that are defined in C can be called.

Android myPhone = new GalaxyS6EdgePlus();
/* can call methods declared in Android on myPhone

* dial, surfweb, skype ✓ sideSync × */
SmartPhone sp = (SmartPhone) myPhone;
/* Compiles OK ∵ SmartPhone is an ancestor class of Android
* expectations on sp narrowed to methods in SmartPhone
* sp.dial, sp.surfweb ✓ sp.skype, sp.sideSync × */
GalaxyS6EdgePlus ga = (GalaxyS6EdgePlus) myPhone;
/* Compiles OK ∵ GalaxyS6EdgePlus is a descendant class of Android
* expectations on ga widened to methods in GalaxyS6EdgePlus
* ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

47 of 86

Reference Type Casting: Danger (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 ResidentStudent rs = (ResidentStudent) jim;

3 rs.setPremiumRate(1.5);

● L1 is legal : NonResidentStudent is a descendant of the
static type of jim (Student).

● L2 is legal (where the cast type is ResidentStudent):
○ cast type is descendant of jim’s ST (Student).
○ cast type is descendant of rs’s ST (ResidentStudent).

● L3 is legal ∵ setPremiumRate is in rs’ ST
ResidentStudent.

● Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

● Executing L2 will result in a ClassCastException .
∵ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.

48 of 86

Reference Type Casting: Danger (2)
1 SmartPhone aPhone = new GalaxyS6EdgePlus();
2 IPhone6sPlus forHeeyeon = (IPhone6sPlus) aPhone;

3 forHeeyeon.threeDTouch();

● L1 is legal : GalaxyS6EdgePlus is a descendant of the static
type of aPhone (SmartPhone).

● L2 is legal (where the cast type is Iphone6sPlus):
○ cast type is descendant of aPhone’s ST (SmartPhone).
○ cast type is descendant of forHeeyeon’s ST (IPhone6sPlus).

● L3 is legal ∵ threeDTouch is in forHeeyeon’ ST
IPhone6sPlus.

● Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually NonResidentStudent.

● Executing L2 will result in a ClassCastException .
∵ Methods facetime, threeDTouch (expected from an
IPhone6sPlus) is undefined on the GalaxyS6EdgePlus object
being cast.49 of 86

Notes on Type Cast (2.1)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 GalaxyS6EdgePlus ga = (GalaxyS6EdgePlus) myPhone;
4 /* Compiles OK ∵ GalaxyS6EdgePlus is a descendant class of SmartPhone
5 * can now call methods declared in GalaxyS6EdgePlus on ga

6 * ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS6EdgePlus (e.g., sideSync).

50 of 86

Notes on Type Cast (2.2)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 IPhone6sPlus ip = (IPhone6sPlus) myPhone;
4 /* Compiles OK ∵ IPhone6sPlus is a descendant class of SmartPhone
5 * can now call methods declared in IPhone6sPlus on ip

6 * ip.dial, ip.surfweb, ip.facetime, ip.threeDTouch ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhone6sPlus (e.g., threeDTouch).

51 of 86

Notes on Type Cast (2.3)

A cast (C) v is compilable and runtime-error-free if C is
located along the ancestor path of DTv .

e.g., Given Android myPhone = new Samsung();
○ Cast myPhone to a class along the ancestor path of its DT

Samsung.
○ Casting myPhone to a class with more expectations than its DT

Samsung (e.g., GalaxyS6EdgePlus) will cause
ClassCastException.

○ Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HTCOneA9) will cause ClassCastException.

52 of 86

Required Reading:
Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2018/F/EECS2030/notes/EECS2030_F18_
Notes_Static_Types_Cast.pdf

53 of 86

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/F/EECS2030/notes/EECS2030_F18_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/F/EECS2030/notes/EECS2030_F18_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/F/EECS2030/notes/EECS2030_F18_Notes_Static_Types_Cast.pdf

Compilable Cast vs. Exception-Free Cast

class A { }
class B extends A { }
class C extends B { }
class D extends A { }

1 B b = new C();
2 D d = (D) b;

● After L1:
○ ST of b is B
○ DT of b is C

● Does L2 compile? [NO]
∵ cast type D is neither an ancestor nor a descendant of b’s ST B

● Would D d = (D) ((A) b) fix L2? [YES]
∵ cast type D is an ancestor of b’s cast, temporary ST A

● ClassCastException when executing this fixed L2? [YES]
∵ cast type D is not an ancestor of b’s DT C

54 of 86

Reference Type Casting: Runtime Check (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 if (jim instanceof ResidentStudent) {

3 ResidentStudent rs = (ResidentStudent) jim;
4 rs.setPremiumRate(1.5);
5 }

● L1 is legal : NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

● L2 checks if jim’s dynamic type is ResidentStudent.

FALSE ∵ jim’s dynamic type is NonResidentStudent!
● L3 is legal : jim’s cast type (i.e., ResidentStudent) is a

descendant class of rs’s static type (i.e.,
ResidentStudent).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

55 of 86

Reference Type Casting: Runtime Check (2)

1 SmartPhone aPhone = new GalaxyS6EdgePlus();
2 if (aPhone instanceof IPhone6sPlus) {

3 IOS forHeeyeon = (IPhone6sPlus) aPhone;
4 forHeeyeon.facetime();
5 }

● L1 is legal : GalaxyS6EdgePlus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

● L2 checks if aPhone’s dynamic type is IPhone6sPlus.

FALSE ∵ aPhone’s dynamic type is GalaxyS6EdgePlus!

● L3 is legal : aPhone’s cast type (i.e., IPhone6sPlus) is a
descendant class of forHeeyeon’s static type (i.e., IOS).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

56 of 86

Notes on the instanceof Operator (1)
Given a reference variable v and a class C, you write

v instanceof C

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that (C) v is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Android);
/* true ∵ Samsung is a descendant of Android */}
println(myPhone instanceof Samsung);
/* true ∵ Samsung is a descendant of Samsung */}
println(myPhone instanceof GalaxyS6Edge);
/* false ∵ Samsung is not a descendant of GalaxyS6Edge */
println(myPhone instanceof IOS);
/* false ∵ Samsung is not a descendant of IOS */
println(myPhone instanceof IPhone6sPlus);
/* false ∵ Samsung is not a descendant of IPhone6sPlus */

⇒ Samsung is the most specific type which myPhone can be
safely cast to.

57 of 86

Notes on the instanceof Operator (2)
Given a reference variable v and a class C,
v instanceof C checks if the dynamic type of v, at the

moment of being checked, is a descendant class of C.
1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 if(myPhone instanceof Samsung) {
4 Samsung samsung = (Samsung) myPhone;
5 }
6 if(myPhone instanceof GalaxyS6EdgePlus) {
7 GalaxyS6EdgePlus galaxy = (GalaxyS6EdgePlus) myPhone;
8 }
9 if(myphone instanceof HTC) {

10 HTC htc = (HTC) myPhone;
11 }

● L3 evaluates to true. [safe to cast]
● L6 and L9 evaluate to false. [unsafe to cast]

This prevents L7 and L10, causing ClassCastException if
executed, from being executed.

58 of 86

Static Type and Polymorphism (1.1)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 SmartPhone sp = new IPhone6sPlus(); ✓
2 sp.dial(); ✓
3 sp.facetime(); ×
4 sp.threeDTouch(); ×

Static type of sp is SmartPhone
⇒ can only call methods defined in SmartPhone on sp

59 of 86

Static Type and Polymorphism (1.2)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 IOS ip = new IPhone6sPlus(); ✓
2 ip.dial(); ✓
3 ip.facetime(); ✓
4 ip.threeDTouch(); ×

Static type of ip is IOS
⇒ can only call methods defined in IOS on ip

60 of 86

Static Type and Polymorphism (1.3)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 IPhone6sPlus ip6sp = new IPhone6sPlus(); ✓
2 ip6sp.dial(); ✓
3 ip6sp.facetime(); ✓
4 ip6sp.threeDTouch(); ✓

Static type of ip6sp is IPhone6sPlus
⇒ can call all methods defined in IPhone6sPlus on ip6sp

61 of 86

Static Type and Polymorphism (1.4)
class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 SmartPhone sp = new IPhone6sPlus(); ✓
2 ((IPhone6sPlus) sp).dial(); ✓
3 ((IPhone6sPlus) sp).facetime(); ✓
4 ((IPhone6sPlus) sp).threeDTouch(); ✓

L4 is equivalent to the following two lines:

IPhone6sPlus ip6sp = (IPhone6sPlus) sp;

ip6sp.threeDTouch();

62 of 86

Static Type and Polymorphism (2)
Given a reference variable declaration
C v;

○ Static type of reference variable v is class C
○ A method call v.m is valid if m is a method defined in class C.
○ Despite the dynamic type of v , you are only allowed to call

methods that are defined in the static type C on v .
○ If you are certain that v ’s dynamic type can be expected more than

its static type, then you may use an insanceof check and a cast.

Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent("Jim");
s.register(eecs2030);
if(s instanceof ResidentStudent) {

((ResidentStudent) s).setPremiumRate(1.75);

System.out.println(((ResidentStudent) s).getTuition());

}

63 of 86

Polymorphism: Method Call Arguments (1)
1 class StudentManagementSystem {

2 Student [] ss; /* ss[i] has static type Student */ int c;
3 void addRS(ResidentStudent rs) { ss[c] = rs; c ++; }
4 void addNRS(NonResidentStudent nrs) { ss[c] = nrs; c++; }
5 void addStudent(Student s) { ss[c] = s; c++; } }

● L3: ss[c] = rs is valid. ∵ RHS’s ST ResidentStudent is a
descendant class of LHS’s ST Student.

● Say we have a StudentManagementSystem object sms:
○ sms.addRS(o) attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:
rs = o;

○ Whether this argument passing is valid depends on o’s static type.
● In the signature of a method m, if the type of a parameter is

class C, then we may call method m by passing objects whose
static types are C’s descendants.

64 of 86

Polymorphism: Method Call Arguments (2.1)

In the StudentManagementSystemTester:

Student s1 = new Student();
Student s2 = new ResidentStudent();
Student s3 = new NonResidentStudent();
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(s1); ×
sms.addRS(s2); ×
sms.addRS(s3); ×
sms.addRS(rs); ✓
sms.addRS(nrs); ×
sms.addStudent(s1); ✓
sms.addStudent(s2); ✓
sms.addStudent(s3); ✓
sms.addStudent(rs); ✓
sms.addStudent(nrs); ✓

65 of 86

Polymorphism: Method Call Arguments (2.2)
In the StudentManagementSystemTester:

1 Student s = new Student("Stella");
2 /* s’ ST: Student; s’ DT: Student */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (Student) is not a descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

66 of 86

Polymorphism: Method Call Arguments (2.3)
In the StudentManagementSystemTester:

1 Student s = new NonResidentStudent("Nancy");
2 /* s’ ST: Student; s’ DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (NonResidentStudent) not descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

67 of 86

Polymorphism: Method Call Arguments (2.4)
In the StudentManagementSystemTester:

1 Student s = new ResidentStudent("Rachael");
2 /* s’ ST: Student; s’ DT: ResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ And, there will be no ClassCastException at runtime!
∵ s’ DT (ResidentStudent) is descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to true, meaning it is
safe to cast.

68 of 86

Polymorphism: Method Call Arguments (2.5)

In the StudentManagementSystemTester:

1 NonResidentStudent nrs = new NonResidentStudent();
2 /* ST: NonResidentStudent; DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(nrs); ×

Will L4 with a cast compile?

sms.addRS((ResidentStudent) nrs)

NO ∵ (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).

69 of 86

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent(Student s) {
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i < numberOfStudents; i ++) {
students[i].register(c)

}
}

}

a collection of students without inheritance70 of 86

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)

1 ResidentStudent rs = new ResidentStudent("Rachael");
2 rs.setPremiumRate(1.5);
3 NonResidentStudent nrs = new NonResidentStudent("Nancy");
4 nrs.setDiscountRate(0.5);
5 StudentManagementSystem sms = new StudentManagementSystem();
6 sms.addStudent(rs); /* polymorphism */
7 sms.addStudent(nrs); /* polymorphism */
8 Course eecs2030 = new Course("EECS2030", 500.0);
9 sms.registerAll(eecs2030);

10 for(int i = 0; i < sms.numberOfStudents; i ++) {
11 /* Dynamic Binding:
12 * Right version of getTuition will be called */

13 System.out.println(sms.students[i]. getTuition());

14 }

71 of 86

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent
StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

72 of 86

Polymorphism: Return Values (1)

1 class StudentManagementSystem {
2 Student[] ss; int c;
3 void addStudent(Student s) { ss[c] = s; c++; }

4 Student getStudent(int i) {
5 Student s = null;
6 if(i < 0 || i >= c) {
7 throw new IllegalArgumentException("Invalid index.");
8 }
9 else {

10 s = ss[i];
11 }
12 return s;
13 } }

L4: Student is static type of getStudent’s return value.
L10: ss[i]’s ST (Student) is descendant of s’ ST (Student).
Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of Student.

73 of 86

Polymorphism: Return Values (2)
1 Course eecs2030 = new Course("EECS2030", 500);
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.5); rs.register(eecs2030);
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 nrs.setDiscountRate(0.5); nrs.register(eecs2030);
6 StudentManagementSystem sms = new StudentManagementSystem();
7 sms.addStudent(rs); sms.addStudent(nrs);
8 Student s = sms.getStudent(0)

´¹¹¹¸¹¹¶
static return type: Student

; /* dynamic type of s? */

9 print(s instanceof Student && s instanceof ResidentStudent);/*true*/
10 print(s instanceof NonResidentStudent); /* false */

11 print(s.getTuition());/*Version in ResidentStudent called:750*/

12 ResidentStudent rs2 = sms.getStudent(0); ×
13 s = sms.getStudent(1)

´¹¹¹¸¹¹¶
static return type: Student

; /* dynamic type of s? */

14 print(s instanceof Student && s instanceof NonResidentStudent);/*true*/
15 print(s instanceof ResidentStudent); /* false */

16 print(s.getTuition());/*Version in NonResidentStudent called:250*/

17 NonResidentStudent nrs2 = sms.getStudent(1); ×
74 of 86

Polymorphism: Return Values (3)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent

StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

75 of 86

Static Type vs. Dynamic Type:
When to consider which?

● Whether or not Java code compiles depends only on the
static types of relevant variables.

∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Java code being executed at runtime (e.g.,
which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

76 of 86

Summary: Type Checking Rules

CODE CONDITION TO BE TYPE CORRECT

x = y Is y’s ST a descendant of x’s ST ?

x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?

z = x.m(y)

Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?
Is ST of m’s return value a descendant of z’s ST ?

(C) y Is C an ancestor or a descendant of y’s ST ?

x = (C) y
Is C an ancestor or a descendant of y’s ST ?
Is C a descendant of x’s ST ?

x.m((C) y)

Is C an ancestor or a descendant of y’s ST ?
Is method m defined in x’s ST ?
Is C a descendant of m’s parameter’s ST ?

Even if (C) y compiles OK, there will be a runtime
ClassCastException if C is not an ancestor of y’s DT !

77 of 86

Root of the Java Class Hierarchy
● Implicitly:

○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.

● There are two useful accessor methods that every class
inherits from the Object class:
○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.
● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.

● Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and
toString.

78 of 86

Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.
○ Every class inherits the default version of equals
○ Say a reference variable v has dynamic type D:

● Case 1 D overrides equals
⇒ v.equals(. . .) invokes the overridden version in D

● Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
⇒ v.equals(. . .) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
⇒ v.equals(. . .) invokes default version inherited from Object.

○ Same principle applies to the toString method, and all
overridden methods in general.

79 of 86

Overriding and Dynamic Binding (2.1)

Object

A

B

C

boolean equals (Object obj) {
 return this == obj;
} class A {

/*equals not overridden*/
}
class B extends A {
/*equals not overridden*/

}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [Object]

80 of 86

Overriding and Dynamic Binding (2.2)

Object

A

B

C

boolean equals (Object obj) {
 return this == obj;
}

boolean equals (Object obj) {
 /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
/*equals not overridden*/

}
class C extends B {
boolean equals(Object obj) {
/* overridden version */

}
}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [C]

81 of 86

Overriding and Dynamic Binding (2.3)

Object

A

B

C

boolean equals (Object obj) {
 return this == obj;
}

boolean equals (Object obj) {
 /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
boolean equals(Object obj) {
/* overridden version */

}
}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [B]

82 of 86

Behaviour of Inherited toString Method (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

● Implicitly, the toString method is called inside the println
method.

● By default, the address stored in p1 gets printed.
● We need to redefine / override the toString method,

inherited from the Object class, in the Point class.

83 of 86

Behaviour of Inherited toString Method (2)

class Point {
double x;
double y;
public String toString() {
return "(" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the toString method:

Point p1 = new Point(2, 4);
System.out.println(p1);

(2, 4)

84 of 86

Behaviour of Inherited toString Method (3)

Exercise: Override the equals and toString methods for
the ResidentStudent and NonResidentStudent classes.

85 of 86

Index (1)
Why Inheritance: A Motivating Example
No Inheritance: ResidentStudent Class
No Inheritance: NonResidentClass
No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes
No Inheritance: Maintainability of Code (1)
No Inheritance: Maintainability of Code (2)
No Inheritance:
A Collection of Various Kinds of Students
Inheritance Architecture
Inheritance: The Student Parent/Super Class
Inheritance:
The ResidentStudent Child/Sub Class

86 of 86

Index (2)
Inheritance:
The NonResidentStudent Child/Sub Class
Inheritance Architecture Revisited
Using Inheritance for Code Reuse
Visualizing Parent/Child Objects (1)
Visualizing Parent/Child Objects (2)
Testing the Two Student Sub-Classes
Inheritance Architecture: Static Types & Expectations
Polymorphism: Intuition (1)
Polymorphism: Intuition (2)
Polymorphism: Intuition (3)
Dynamic Binding: Intuition (1)
Dynamic Binding: Intuition (2)
Multi-Level Inheritance Architecture

87 of 86

Index (3)
Multi-Level Inheritance Hierarchy:
Smart Phones
Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse
Reference Variable: Static Type
Substitutions via Assignments
Rules of Substitution
Reference Variable: Dynamic Type
Visualizing Static Type vs. Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)
Polymorphism and Dynamic Binding (1)
Polymorphism and Dynamic Binding (2.1)

88 of 86

Index (4)
Polymorphism and Dynamic Binding (2.2)
Polymorphism and Dynamic Binding (3.1)
Polymorphism and Dynamic Binding (3.2)
Polymorphism and Dynamic Binding (3.3)
Reference Type Casting: Motivation (1.1)
Reference Type Casting: Motivation (1.2)
Reference Type Casting: Motivation (2.1)
Reference Type Casting: Motivation (2.2)
Type Cast: Named or Anonymous
Notes on Type Cast (1)
Reference Type Casting: Danger (1)
Reference Type Casting: Danger (2)
Notes on Type Cast (2.1)
Notes on Type Cast (2.2)

89 of 86

Index (5)
Notes on Type Cast (2.3)
Required Reading:
Static Types, Dynamic Types, Casts
Compilable Cast vs. Exception-Free Cast
Reference Type Casting: Runtime Check (1)
Reference Type Casting: Runtime Check (2)
Notes on the instanceof Operator (1)
Notes on the instanceof Operator (2)
Static Type and Polymorphism (1.1)
Static Type and Polymorphism (1.2)
Static Type and Polymorphism (1.3)
Static Type and Polymorphism (1.4)
Static Type and Polymorphism (2)
Polymorphism: Method Call Arguments (1)

90 of 86

Index (6)
Polymorphism: Method Call Arguments (2.1)
Polymorphism: Method Call Arguments (2.2)
Polymorphism: Method Call Arguments (2.3)
Polymorphism: Method Call Arguments (2.4)
Polymorphism: Method Call Arguments (2.5)
Why Inheritance:
A Polymorphic Collection of Students
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)
Polymorphism: Return Values (1)
Polymorphism: Return Values (2)
Polymorphism: Return Values (3)

91 of 86

Index (7)
Static Type vs. Dynamic Type:
When to consider which?

Summary: Type Checking Rules

Root of the Java Class Hierarchy

Overriding and Dynamic Binding (1)

Overriding and Dynamic Binding (2.1)

Overriding and Dynamic Binding (2.2)

Overriding and Dynamic Binding (2.3)

Behaviour of Inherited toString Method (1)

Behaviour of Inherited toString Method (2)

Behaviour of Inherited toString Method (3)
92 of 86

Abstract Classes and Interfaces

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Abstract Class (1)
Problem: A polygon may be either a triangle or a rectangle.
Given a polygon, we may either
○ Grow its shape by incrementing the size of each of its sides;
○ Compute and return its perimeter ; or
○ Compute and return its area.

● For a rectangle with length and width, its area is length ×width.
● For a triangle with sides a, b, and c, its area, according to

Heron’s formula, is
√

s(s − a)(s − b)(s − c)

where
s =

a + b + c
2

● How would you solve this problem in Java, while
minimizing code duplicates ?

2 of 19

Abstract Class (2)
public abstract class Polygon {
double[] sides;
Polygon(double[] sides) { this.sides = sides; }
void grow() {
for(int i = 0; i < sides.length; i ++) { sides[i] ++; }

}
double getPerimeter() {
double perimeter = 0;
for(int i = 0; i < sides.length; i ++) {
perimeter += sides[i];

}
return perimeter;

}
abstract double getArea();

}

● Method getArea not implemented and shown signature only.

● ∴ Polygon cannot be used as a dynamic type
● Writing new Polygon(. . .) is forbidden!
3 of 19

Abstract Class (3)

public class Rectangle extends Polygon {
Rectangle(double length, double width) {
super(new double[4]);
sides[0] = length; sides[1] = width;
sides[2] = length; sides[3] = width;

}
double getArea() { return sides[0] * sides[1]; }

}

● Method getPerimeter is inherited from the super-class
Polygon.

● Method getArea is implemented in the sub-class Rectangle.
● ∴ Rectangle can be used as a dynamic type
● Writing Polygon p = new Rectangle(3, 4) allowed!

4 of 19

Abstract Class (4)
public class Triangle extends Polygon {
Triangle(double side1, double side2, double side3) {
super(new double[3]);
sides[0] = side1; sides[1] = side2; sides[2] = side3;

}
double getArea() {
/* Heron’s formula */
double s = getPerimeter() * 0.5;
double area = Math.sqrt(

s * (s - sides[0]) * (s - sides[1]) * (s - sides[2]));
return area;

}
}

● Method getPerimeter is inherited from Polygon.
● Method getArea is implemented in the sub-class Triangle.
● ∴ Triangle can be used as a dynamic type
● Writing Polygon p = new Triangle(3, 4, 5) allowed!
5 of 19

Abstract Class (5)
1 public class PolygonCollector {
2 Polygon[] polygons;
3 int numberOfPolygons;
4 PolygonCollector() { polygons = new Polygon[10]; }
5 void addPolygon(Polygon p) {
6 polygons[numberOfPolygons] = p; numberOfPolygons ++;
7 }
8 void growAll() {
9 for(int i = 0; i < numberOfPolygons; i ++) {

10 polygons[i].grow();
11 }
12 }
13 }

● Polymorphism: Line 5 may accept as argument any object
whose static type is Polygon or any of its sub-classes.

● Dynamic Binding: Line 10 calls the version of grow inherited
to the dynamic type of polygons[i].

6 of 19

Abstract Class (6)
1 public class PolygonConstructor {
2 Polygon getPolygon(double[] sides) {
3 Polygon p = null;
4 if(sides.length == 3) {
5 p = new Triangle(sides[0], sides[1], sides[2]);
6 }
7 else if(sides.length == 4) {
8 p = new Rectangle(sides[0], sides[1]);
9 }

10 return p;
11 }
12 void grow(Polygon p) { p.grow(); }
13 }

● Polymorphism:
○ Line 2 may accept as return value any object whose static type is
Polygon or any of its sub-classes.

○ Line 5 returns an object whose dynamic type is Triangle; Line

8 returns an object whose dynamic type is Rectangle.
7 of 19

Abstract Class (7.1)
1 public class PolygonTester {
2 public static void main(String[] args) {
3 Polygon p;
4 p = new Rectangle(3, 4); /* polymorphism */
5 System.out.println(p.getPerimeter()); /* 14.0 */
6 System.out.println(p.getArea()); /* 12.0 */
7 p = new Triangle(3, 4, 5); /* polymorphism */
8 System.out.println(p.getPerimeter()); /* 12.0 */
9 System.out.println(p.getArea()); /* 6.0 */

10
11 PolygonCollector col = new PolygonCollector();
12 col.addPolygon(new Rectangle(3, 4)); /* polymorphism */
13 col.addPolygon(new Triangle(3, 4, 5)); /* polymorphism */

14 System.out.println(col.polygons[0]. getPerimeter ()); /* 14.0 */

15 System.out.println(col.polygons[1]. getPerimeter ()); /* 12.0 */

16 col.growAll();

17 System.out.println(col.polygons[0]. getPerimeter ()); /* 18.0 */

18 System.out.println(col.polygons[1]. getPerimeter ()); /* 15.0 */

8 of 19

Abstract Class (7.2)
1 PolygonConstructor con = new PolygonConstructor();

2 double[] recSides = {3, 4, 3, 4}; p = con. getPolygon (recSides);

3 System.out.println(p instanceof Polygon); ✓

4 System.out.println(p instanceof Rectangle); ✓

5 System.out.println(p instanceof Triangle); ×

6 System.out.println(p.getPerimeter()); /* 14.0 */
7 System.out.println(p.getArea()); /* 12.0 */
8 con.grow(p);

9 System.out.println(p.getPerimeter()); /* 18.0 */
10 System.out.println(p.getArea()); /* 20.0 */

11 double[] triSides = {3, 4, 5}; p = con. getPolygon (triSides);

12 System.out.println(p instanceof Polygon); ✓

13 System.out.println(p instanceof Rectangle); ×

14 System.out.println(p instanceof Triangle); ✓

15 System.out.println(p.getPerimeter()); /* 12.0 */
16 System.out.println(p.getArea()); /* 6.0 */
17 con.grow(p);

18 System.out.println(p.getPerimeter()); /* 15.0 */
19 System.out.println(p.getArea()); /* 9.921 */
20 } }

9 of 19

Abstract Class (8)
● An abstract class :

○ Typically has at least one method with no implementation body
○ May define common implementations inherited to sub-classes.

● Recommended to use an abstract class as the static type of:
○ A variable

e.g., Polygon p
○ A method parameter

e.g., void grow(Polygon p)
○ A method return value

e.g., Polygon getPolygon(double[] sides)
● It is forbidden to use an abstract class as a dynamic type

e.g., Polygon p = new Polygon(. . .) is not allowed!
● Instead, create objects whose dynamic types are descendant

classes of the abstract class ⇒ Exploit dynamic binding !
e.g., Polygon p = con.getPolygon(recSides)
This is is as if we did Polygon p = new Rectangle(. . .)

10 of 19

Interface (1.1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.
○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● As far as users of a Point object p is concerned, being able to
call p.getX() and getY() is what matters.

● How p.getX() and p.getY() are internally computed,
depending on the dynamic type of p, do not matter to users.

11 of 19

Interface (1.2)
Recall: sin30○ = 1

2 and cos30○ = 1
2 ⋅
√

3

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
p

32a · cos30� = a ·
p

3

2a2a

30�30�

(a ·
p

3, a)(a ·
p

3, a)

We consider the same point represented differently as:
● r = 2a, ψ = 30○ [polar system]
● x = 2a ⋅ cos30○ = a ⋅

√
3, y = 2a ⋅ sin30○ = a [cartesian system]

12 of 19

Interface (2)

interface Point {
double getX();
double getY();

}

● An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

● Methods getX and getY similar to getArea in Polygon, have
no implementations, but signatures only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!

13 of 19

Interface (3)
public class CartesianPoint implements Point {
double x;
double y;
CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.
● Attributes x and y declared according to the Cartesian system
● All method from the interface Point are implemented in the

sub-class CartesianPoint.
● ∴ CartesianPoint can be used as a dynamic type
● Point p = new CartesianPoint(3, 4) allowed!
14 of 19

Interface (4)
public class PolarPoint implements Point {
double phi;
double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.
● Attributes phi and r declared according to the Polar system
● All method from the interface Point are implemented in the

sub-class PolarPoint.
● ∴ PolarPoint can be used as a dynamic type
● Point p = new PolarPoint(3, π

6) allowed! [360○ = 2π]
15 of 19

Interface (5)

1 public class PointTester {
2 public static void main(String[] args) {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p;
7 p = new CartisianPoint(X, Y); /* polymorphism */

8 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */

9 p = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

10 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */

11 }
12 }

● Lines 7 and 9 illustrate polymorphism, how?
● Lines 8 and 10 illustrate dynamic binding, how?

16 of 19

Interface (6)
● An interface :

○ Has all its methods with no implementation bodies.
○ Leaves complete freedom to its implementors.

● Recommended to use an interface as the static type of:
○ A variable

e.g., Point p
○ A method parameter

e.g., void moveUp(Point p)
○ A method return value

e.g., Point getPoint(double v1, double v2, boolean
isCartesian)

● It is forbidden to use an interface as a dynamic type
e.g., Point p = new Point(. . .) is not allowed!

● Instead, create objects whose dynamic types are descendant
classes of the interface ⇒ Exploit dynamic binding !

17 of 19

Abstract Classes vs. Interfaces:
When to Use Which?
● Use interfaces when:

○ There is a common set of functionalities that can be implemented
via a variety of strategies.
e.g., Interface Point declares signatures of getX() and getY().

○ Each descendant class represents a different implementation
strategy for the same set of functionalities.

○ CartesianPoint and PolarPoinnt represent different
strategies for supporting getX() and getY().

● Use abstract classes when:
○ Some (not all) implementations can be shared by descendants,

and some (not all) implementations cannot be shared .
e.g., Abstract class Polygon:
● Defines implementation of getPerimeter, to be shared by
Rectangle and Triangle.

● Declares signature of getArea, to be implemented by Rectangle
and Triangle.

18 of 19

Index (1)
Abstract Class (1)
Abstract Class (2)
Abstract Class (3)
Abstract Class (4)
Abstract Class (5)
Abstract Class (6)
Abstract Class (7.1)
Abstract Class (7.2)
Abstract Class (8)
Interface (1.1)
Interface (1.2)
Interface (2)
Interface (3)
Interface (4)

19 of 19

Index (2)
Interface (5)

Interface (6)

Abstract Classes vs. Interfaces:
When to Use Which?

20 of 19

Recursion

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Beyond this lecture . . .

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2

● The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

2 of 47

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:
○ Base Cases: Small problem instances immediately solvable.
○ Recursive Cases:

● Large problem instances not immediately solvable.
● Solve by reusing solution(s) to strictly smaller problem instances.

● Similar idea learnt in high school: [mathematical induction]
● Recursion can be easily expressed programmatically in Java:

m (i) {
if(i == . . .) { /* base case: do something directly */ }
else {

m (j);/* recursive call with strictly smaller value */
}

}

○ In the body of a method m, there might be a call or calls to m itself .
○ Each such self-call is said to be a recursive call .
○ Inside the execution of m(i), a recursive call m(j) must be that j < i.

3 of 47

Tracing Method Calls via a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.

⇒ The stack contains activation records of all active methods.
○ Top of stack denotes the current point of execution .
○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

4 of 47

Recursion: Factorial (1)
● Recall the formal definition of calculating the n factorial:

n! =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 0
n ⋅ (n − 1) ⋅ (n − 2) ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1 if n ≥ 1

● How do you define the same problem recursively?

n! =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 0
n ⋅ (n − 1)! if n ≥ 1

● To solve n!, we combine n and the solution to (n - 1)!.

int factorial (int n) {
int result;
if(n == 0) { /* base case */ result = 1; }
else { /* recursive case */

result = n * factorial (n - 1);
}
return result;

}

5 of 47

Common Errors of Recursive Methods
● Missing Base Case(s).

int factorial (int n) {

return n * factorial (n - 1);
}

Base case(s) are meant as points of stopping growing the
runtime stack.

● Recursive Calls on Non-Smaller Problem Instances.

int factorial (int n) {
if(n == 0) { /* base case */ return 1; }

else { /* recursive case */ return n * factorial (n); }
}

Recursive calls on strictly smaller problem instances are
meant for moving gradually towards the base case(s).

● In both cases, a StackOverflowException will be thrown.
6 of 47

Recursion: Factorial (2)

return 4 ∗ 6 = 24

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(5)

factorial(4)

return 1

return 1 ∗ 1 = 1

return 2 ∗ 1 = 2

return 3 ∗ 2 = 6

return 5 ∗ 24 = 120

7 of 47

Recursion: Factorial (3)

○ When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.

○ When running factorial(4), a recursive call factorial(3) is made.
Call to factorial(4) suspended until factorial(3) returns a value.
. . .

○ factorial(0) returns 1 back to suspended call factorial(1).
○ factorial(1) receives 1 from factorial(0), multiplies 1 to it, and

returns 1 back to the suspended call factorial(2).
○ factorial(2) receives 1 from factorial(1), multiplies 2 to it, and

returns 2 back to the suspended call factorial(3).
○ factorial(3) receives 2 from factorial(1), multiplies 3 to it, and

returns 6 back to the suspended call factorial(4).
○ factorial(4) receives 6 from factorial(3), multiplies 4 to it, and

returns 24 back to the suspended call factorial(5).
○ factorial(5) receives 24 from factorial(4), multiplies 5 to it, and

returns 120 as the result.
8 of 47

Recursion: Factorial (4)

● When the execution of a method (e.g., factorial(5)) leads to a
nested method call (e.g., factorial(4)):
○ The execution of the current method (i.e., factorial(5)) is

suspended , and a structure known as an activation record or
activation frame is created to store information about the

progress of that method (e.g., values of parameters and local
variables).

○ The nested methods (e.g., factorial(4)) may call other nested
methods (factorial(3)).

○ When all nested methods complete, the activation frame of the
latest suspended method is re-activated, then continue its
execution.

● What kind of data structure does this activation-suspension
process correspond to? [LIFO Stack]

9 of 47

Recursion: Fibonacci (1)

Recall the formal definition of calculating the nth number in a
Fibonacci series (denoted as Fn), which is already itself
recursive:

Fn =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

int fib (int n) {
int result;
if(n == 1) { /* base case */ result = 1; }
else if(n == 2) { /* base case */ result = 1; }
else { /* recursive case */

result = fib (n - 1) + fib (n - 2);
}
return result;

}

10 of 47

Recursion: Fibonacci (2)fib(5)

= {fib(5) = fib(4) + fib(3); push(fib(5)); suspended: ⟨fib(5)⟩; active: fib(4)}
fib(4) + fib(3)

= {fib(4) = fib(3) + fib(2); suspended: ⟨fib(4), fib(5)⟩; active: fib(3)}
(fib(3) + fib(2)) + fib(3)

= {fib(3) = fib(2) + fib(1); suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(2)}
((fib(2) + fib(1)) + fib(2)) + fib(3)

= {fib(2) returns 1; suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(1)}
((1 + fib(1)) + fib(2)) + fib(3)

= {fib(1) returns 1; suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(3)}
((1 + 1) + fib(2)) + fib(3)

= {fib(3) returns 1 + 1; pop(); suspended: ⟨fib(4), fib(5)⟩; active: fib(2)}
(2 + fib(2)) + fib(3)

= {fib(2) returns 1; suspended: ⟨fib(4), fib(5)⟩; active: fib(4)}
(2 + 1) + fib(3)

= {fib(4) returns 2 + 1; pop(); suspended: ⟨fib(5)⟩; active: fib(3)}
3 + fib(3)

= {fib(3) = fib(2) + fib(1); suspended: ⟨fib(3),fib(5)⟩; active: fib(2)}
3 + (fib(2) + fib(1))

= {fib(2) returns 1; suspended: ⟨fib(3), fib(5)⟩; active: fib(1)}
3 + (1 + fib(1))

= {fib(1) returns 1; suspended: ⟨fib(3), fib(5)⟩; active: fib(3)}
3 + (1 + 1)

= {fib(3) returns 1 + 1; pop() ; suspended: ⟨fib(5)⟩; active: fib(5)}
3 + 2

= {fib(5) returns 3 + 2; suspended: ⟨⟩}
511 of 47

Java Library: String
public class StringTester {
public static void main(String[] args) {
String s = "abcd";
System.out.println(s.isEmpty()); /* false */
/* Characters in index range [0, 0) */
String t0 = s.substring(0, 0);
System.out.println(t0); /* "" */
/* Characters in index range [0, 4) */
String t1 = s.substring(0, 4);
System.out.println(t1); /* "abcd" */
/* Characters in index range [1, 3) */
String t2 = s.substring(1, 3);
System.out.println(t2); /* "bc" */
String t3 = s.substring(0, 2) + s.substring(2, 4);
System.out.println(s.equals(t3)); /* true */
for(int i = 0; i < s.length(); i ++) {
System.out.print(s.charAt(i));

}
System.out.println();

}
}

12 of 47

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards
and backwards. Write a method that takes a string and
determines whether or not it is a palindrome.

System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string Ð→ Return true immediately.
Base Case 2: String of length 1 Ð→ Return true immediately.
Recursive Case: String of length ≥ 2 Ð→
○ 1st and last characters match, and
○ the rest (i.e., middle) of the string is a palindrome .

13 of 47

Recursion: Palindrome (2)

boolean isPalindrome (String word) {
if(word.length() == 0 || word.length() == 1) {
/* base case */
return true;

}
else {
/* recursive case */
char firstChar = word.charAt(0);
char lastChar = word.charAt(word.length() - 1);
String middle = word.substring(1, word.length() - 1);
return

firstChar == lastChar
/* See the API of java.lang.String.substring. */

&& isPalindrome (middle);
}

}

14 of 47

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.

System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf("ab")); "ba"
System.out.println(reverseOf("abc")); "cba"
System.out.println(reverseof("abcd")); "dcba"

Base Case 1: Empty string Ð→ Return empty string.
Base Case 2: String of length 1 Ð→ Return that string.
Recursive Case: String of length ≥ 2 Ð→

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 1) and 2).

15 of 47

Recursion: Reverse of a String (2)

String reverseOf (String s) {
if(s.isEmpty()) { /* base case 1 */
return "";

}
else if(s.length() == 1) { /* base case 2 */
return s;

}
else { /* recursive case */
String tail = s.substring(1, s.length());

String reverseOfTail = reverseOf (tail);
char head = s.charAt(0);
return reverseOfTail + head;

}
}

16 of 47

Recursion: Number of Occurrences (1)
Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of c in s.

System.out.println(occurrencesOf("", ’a’)); /* 0 */
System.out.println(occurrencesOf("a", ’a’)); /* 1 */
System.out.println(occurrencesOf("b", ’a’)); /* 0 */
System.out.println(occurrencesOf("baaba", ’a’)); /* 3 */
System.out.println(occurrencesOf("baaba", ’b’)); /* 2 */
System.out.println(occurrencesOf("baaba", ’c’)); /* 0 */

Base Case: Empty string Ð→ Return 0.
Recursive Case: String of length ≥ 1 Ð→

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)
If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

17 of 47

Recursion: Number of Occurrences (2)

int occurrencesOf (String s, char c) {
if(s.isEmpty()) {
/* Base Case */
return 0;

}
else {
/* Recursive Case */
char head = s.charAt(0);
String tail = s.substring(1, s.length());
if(head == c) {

return 1 + occurrencesOf (tail, c);
}
else {

return 0 + occurrencesOf (tail, c);
}

}
}

18 of 47

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.
● Naively , explicitly create a new, smaller array:

void m(int[] a) {
if(a.length == 0) { /* base case */ }
else if(a.length == 1) { /* base case */ }
else {
int[] sub = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { sub[0] = a[i - 1]; }
m(sub) } }

● For efficiency , we pass the reference of the same array and
specify the range of indices to be considered:
void m(int[] a, int from, int to) {
if(from > to) { /* base case */ }
else if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]
● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]
● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]

19 of 47

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /* true */
System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */
System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a number not positive) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st element positive, and
○ the rest of the array is all positive .
Exercise: Write a method boolean somePostive(int[]
a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]
∵ No witness (i.e., a positive number) from an empty array

20 of 47

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);

}

boolean allPositiveHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return a[from] > 0;

}
else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);

}
}

21 of 47

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.
System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st and 2nd elements are sorted in a non-descending order, and
○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending positive .
22 of 47

Recursion: Is an Array Sorted? (2)

boolean isSorted(int[] a) {

return isSortedHelper (a, 0, a.length - 1);

}

boolean isSortedHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return true;

}
else {
return a[from] <= a[from + 1]

&& isSortedHelper (a, from + 1, to);

}
}

23 of 47

Recursive Methods: Correctness Proofs
1 boolean allPositive(int[] a) { return allPosH (a, 0, a.length - 1); }

2 boolean allPosH (int[] a, int from, int to) {
3 if (from > to) { return true; }
4 else if(from == to) { return a[from] > 0; }

5 else { return a[from] > 0 && allPosH (a, from + 1, to); } }

● Via mathematical induction, prove that allPosH is correct:
Base Cases
● In an empty array, there is no non-positive number ∴ result is true. [L3]
● In an array of size 1, the only one elements determines the result. [L4]

Inductive Cases
● Inductive Hypothesis: allPosH(a, from + 1, to) returns true if

a[from + 1], a[from + 2], . . . , a[to] are all positive; false otherwise.
● allPosH(a, from, to) should return true if: 1) a[from] is positive;

and 2) a[from + 1], a[from + 2], . . . , a[to] are all positive.
● By I.H. , result is a[from] > 0 ∧ allPosH(a, from + 1, to) . [L5]

● allPositive(a) is correct by invoking
allPosH(a, 0, a.length - 1) , examining the entire array. [L1]

24 of 47

Recursion: Binary Search (1)
● Searching Problem

Input: A number a and a sorted list of n numbers
⟨a1, a2, . . . , an⟩ such that a′1 ≤ a′2 ≤. . . ≤ a′n
Output: Whether or not a exists in the input list

● An Efficient Recursive Solution
Base Case: Empty list Ð→ False.
Recursive Case: List of size ≥ 1 Ð→
○ Compare the middle element against a.

● All elements to the left of middle are ≤ a
● All elements to the right of middle are ≥ a

○ If the middle element is equal to a Ð→ True.
○ If the middle element is not equal to a:

● If a < middle, recursively find a on the left half.
● If a > middle, recursively find a on the right half.

25 of 47

Recursion: Binary Search (2)
boolean binarySearch(int[] sorted, int key) {

return binarySearchHelper (sorted, 0, sorted.length - 1, key);

}

boolean binarySearchHelper (int[] sorted, int from, int to, int key) {

if (from > to) { /* base case 1: empty range */
return false; }

else if(from == to) { /* base case 2: range of one element */
return sorted[from] == key; }

else {
int middle = (from + to) / 2;
int middleValue = sorted[middle];
if(key < middleValue) {

return binarySearchHelper (sorted, from, middle - 1, key);

}
else if (key > middleValue) {

return binarySearchHelper (sorted, middle + 1, to, key);

}
else { return true; }

}
}

26 of 47

Running Time: Binary Search (1)

We use T(n) to denote the running time function of a binary
search, where n is the size of the input array.

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T (0) = 1
T (1) = 1
T (n) = T (n

2) + 1 where n ≥ 2

To solve this recurrence relation, we study the pattern of T(n) and
observe how it reaches the base case(s).

27 of 47

Running Time: Binary Search (2)
Without loss of generality, assume n = 2i for some non-negative i .

T (n) = T (n
2) + 1

= (T (
n
4
) + 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T(n

2)

) + 1
´¸¶

1 time

= ((T (
n
8
) + 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T(n

4)

) + 1) + 1
´¹¹¹¸¹¹¹¹¶

2 times

= . . .
= (((1

´¸¶
T(n

2log n)=T(1)

) + 1) . . .) + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
log n times

∴ T (n) is O(log n)
28 of 47

Tower of Hanoi: Specification
The Tower of Hanoi

Tower of Hanoi puzzle is attributed to the French
mathematician Edouard Lucas, who came up with it in 1883.

His formulation involved three pegs and eight distinctly-sized
disks stacked on one of the pegs from the biggest on the
bottom to the smallest on the top, like so:

● Given: A tower of 8 disks, initially
stacked in decreasing size on
one of 3 pegs

● Rules:
○ Move only one disk at a time
○ Never move a larger disk onto a

smaller one

● Problem: Transfer the entire
tower to one of the other pegs.

29 of 47

Tower of Hanoi: A Recursive Solution

The general, recursive solution requires 3 steps:

1. Transfer the n - 1 smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the n - 1 disks back onto the largest disk.

30 of 47

Tower of Hanoi in Java (1)
void towerOfHanoi(String[] disks) {

tohHelper (disks, 0, disks.length - 1, 1, 3);

}
void tohHelper(String[] disks, int from, int to, int ori, int des){
if(from > to) { }
else if(from == to) {
print("move " + disks[to] + " from " + ori + " to " + des);

}
else {
int intermediate = 6 - ori - des;

tohHelper (disks, from, to - 1, ori, intermediate);

print("move " + disks[to] + " from " + ori + " to " + des);

tohHelper (disks, from, to - 1, intermediate, des);

}
}

● tohHelper(disks, from, to, ori, des) moves disks
{disks[from],disks[from + 1],. . . ,disks[to]} from peg ori to peg des.

● Peg id’s are 1, 2, and 3⇒ The intermediate one is 6 − ori − des.
31 of 47

Tower of Hanoi in Java (2)

Say ds (disks) is {A,B,C}, where A < B < C.

tohH(ds, 0, 2
´¸¶

{A,B,C}

, p1, p3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

tohH(ds, 0, 1
´¸¶

{A,B}

, p1, p2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

tohH(ds, 0, 0
´¸¶

{A}

, p1, p3) = { Move A: p1 to p3

Move B: p1 to p2

tohH(ds, 0, 0
´¸¶

{A}

, p3, p2) = { Move A: p3 to p2

Move C: p1 to p3

tohH(ds, 0, 1
´¸¶

{A,B}

, p2, p3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

tohH(ds, 0, 0
´¸¶

{A}

, p2, p1) = { Move A: p2 to p1

Move B: p2 to p3

tohH(ds, 0, 0
´¸¶

{A}

, p1, p3) = { Move A: p1 to p3

32 of 47

Tower of Hanoi in Java (3)

towerOfHanio({A, B, C})

tohHelper({A, B, C}, 0, 2, p1, p3)

tohHelper({A, B, C}, 0, 1, p1, p2) tohHelper({A, B, C}, 0, 1, p2, p3)move C from p1 to p3

tohHelper({A, B, C}, 0, 0, p1, p3) move B from p1 to p2 tohHelper({A, B, C}, 0, 0, p3, p2)

move A from p1 to p3 move A from p3 to p2

tohHelper({A, B, C}, 0, 0, p2, p1) move B from p2 to p3 tohHelper({A, B, C}, 0, 0, p1, p3)

move A from p2 to p1 move A from p1 to p3

33 of 47

Running Time: Tower of Hanoi (1)

● Generalize the problem by considering n disks.
● Let T (n) denote the number of moves required to to transfer n

disks from one to another under the rules.
● Recall the general solution pattern:

1. Transfer the n - 1 smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the n - 1 disks back onto the largest disk.

● We end up with the following recurrence relation that allows us
to compute Tn for any n we like:

{
T (1) = 1
T (n) = 2 × T (n − 1) + 1 where n > 0

● To solve this recurrence relation, we study the pattern of T(n)
and observe how it reaches the base case(s).

34 of 47

Running Time: Tower of Hanoi (2)
T (n) = 2 × T (n − 1) + 1

= 2 × (2 × T (n − 2) + 1
´¹¹¸¹¹¹¶

T(n−1)

) + 1

= 2 × (2 × (2 × T (n − 3) + 1
´¹¹¸¹¹¹¶

T(n−2)

) + 1) + 1

= . . .

= 2 × (2 × (2 × (⋅ ⋅ ⋅ × (

T(2)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2 × T (1) + 1) + . . .
´¹¹¹¸¹¹¹¶

T(n−3)

) + 1) + 1) + 1

= 2n−1 + (n − 1)

∴ T (n) is O(2n)
35 of 47

Recursion: Merge Sort

● Sorting Problem
Input: A list of n numbers ⟨a1, a2, . . . , an⟩

Output: A permutation (reordering) ⟨a′1, a′2, . . . , a′n⟩ of the
input list such that a′1 ≤ a′2 ≤. . . ≤ a′n

● Recursive Solution
Base Case 1: Empty list Ð→ Automatically sorted.
Base Case 2: List of size 1 Ð→ Automatically sorted.
Recursive Case: List of size ≥ 2 Ð→
○ Split the list into two (unsorted) halves: L and R;
○ Recursively sort L and R: sortedL and sortedR;
○ Return the merge of sortedL and sortedR.

36 of 47

Recursion: Merge Sort in Java (1)
/* Assumption: L and R are both already sorted. */

private List<Integer> merge(List<Integer> L, List<Integer> R) {
List<Integer> merge = new ArrayList<>();
if(L.isEmpty()||R.isEmpty()) { merge.addAll(L); merge.addAll(R); }
else {
int i = 0;
int j = 0;
while(i < L.size() && j < R.size()) {

if(L.get(i) <= R.get(j)) { merge.add(L.get(i)); i ++; }

else { merge.add(R.get(j)); j ++; }
}
/* If i >= L.size(), then this for loop is skipped. */
for(int k = i; k < L.size(); k ++) { merge.add(L.get(k)); }
/* If j >= R.size(), then this for loop is skipped. */
for(int k = j; k < R.size(); k ++) { merge.add(R.get(k)); }

}
return merge;

}

RT(merge)? [O(n)]
37 of 47

Recursion: Merge Sort in Java (2)
public List<Integer> sort (List<Integer> list) {
List<Integer> sortedList;
if(list.size() == 0) { sortedList = new ArrayList<>(); }
else if(list.size() == 1) {
sortedList = new ArrayList<>();
sortedList.add(list.get(0));

}
else {
int middle = list.size() / 2;
List<Integer> left = list.subList(0, middle);
List<Integer> right = list.subList(middle, list.size());
List<Integer> sortedLeft = sort (left);

List<Integer> sortedRight = sort (right);
sortedList = merge (sortedLeft, sortedRight);

}
return sortedList;

}

RT(sort) = RT (merge)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O(n)

× # splits until size 0 or 1
´¹¹¹¸¹¹¹¶

O(log n)38 of 47

Recursion: Merge Sort Example (1)
(1) Start with input list of size 8 (2) Split and recur on L of size 4

9645632485 17 31 50 31 96 50

85 24 63 45

17

(3) Split and recur on L of size 2 (4) Split and recur on L of size 1, return

50

4563

85

17 31 96

24

4563

17

24

85

31 96 50

39 of 47

Recursion: Merge Sort Example (2)
(5) Recur on R of size 1 and return (6) Merge sorted L and R of sizes 1

45

50

85

63

24

17 31 96

24

63

50963117

85

45

(7) Return merged list of size 2 (8) Recur on R of size 2

24 85 63

50963117

45

63 45

17 31 96 50

24 85

40 of 47

Recursion: Merge Sort Example (3)
(9) Split and recur on L of size 1, return (10) Recur on R of size 1, return

45

63

17 31 96 50

24 85

63

45

17 31 96 50

24 85

(11) Merge sorted L and R of sizes 1, return (12) Merge sorted L and R of sizes 2

45 63

17 31 96 50

24 85

17 31 96 50

24 6345 85

41 of 47

Recursion: Merge Sort Example (4)
(13) Recur on R of size 4 (14) Return a sorted list of size 4

24

17 31 96 50

856345

17 31 50 96

85634524

(15) Merge sorted L and R of sizes 4 (16) Return a sorted list of size 8

63 85 96501724 3145 45312417 50 63 85 96

42 of 47

Recursion: Merge Sort Example (5)

(1) Recursion trees of unsorted lists (2) Recursion trees of sorted lists

45

85

5031

24 17 3163 45 96 50

45632485 17 31 96 50

17 31 96 5085 24 63 45

85 63 17 9624 31 50

24

96

85 17 3145 63 50 96

17 31 50 9624 45 63 85

45312417 50 63 85 96

85 63 1724 45

43 of 47

Recursion: Merge Sort Running Time (1)

Base Case 1: Empty list Ð→ Automatically sorted. [O(1)]
Base Case 2: List of size 1 Ð→ Automatically sorted. [O(1)]
Recursive Case: List of size ≥ 2 Ð→
○ Split the list into two (unsorted) halves: L and R; [O(1)]
○ Recursively sort L and R: sortedL and sortedR;

How many times to split until L and R have size 0 or 1? [O(log n)]
○ Return the merge of sortedL and sortedR. [O(n)]

RT
= (RT each RC) × (# RCs)
= (RT merging sortedL and sortedR) × (# splits until bases)
= n ⋅ log n

44 of 47

Recursion: Merge Sort Running Time (2)

Height Time per level

Total time: O(n logn)

O(n)

O(n)

O(logn)
O(n)

n

n/2

n/4n/4n/4n/4

n/2

45 of 47

Beyond this lecture . . .

● Notes on Recursion:
http://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2017/F/EECS2030/slides/EECS2030_F17_
Notes_Recursion.pdf

● API for String:
https://docs.oracle.com/javase/8/docs/api/
java/lang/String.html

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2
● The best approach to learning about recursion is via a

functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

46 of 47

http://www.eecs.yorku.ca/~jackie/teaching/lectures/2017/F/EECS2030/slides/EECS2030_F17_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2017/F/EECS2030/slides/EECS2030_F17_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2017/F/EECS2030/slides/EECS2030_F17_Notes_Recursion.pdf
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

Index (1)
Beyond this lecture . . .

Recursion: Principle
Tracing Method Calls via a Stack
Recursion: Factorial (1)
Common Errors of Recursive Methods
Recursion: Factorial (2)
Recursion: Factorial (3)
Recursion: Factorial (4)
Recursion: Fibonacci (1)
Recursion: Fibonacci (2)
Java Library: String
Recursion: Palindrome (1)
Recursion: Palindrome (2)
Recursion: Reverse of a String (1)

47 of 47

Index (2)
Recursion: Reverse of a String (2)
Recursion: Number of Occurrences (1)
Recursion: Number of Occurrences (2)
Making Recursive Calls on an Array
Recursion: All Positive (1)
Recursion: All Positive (2)
Recursion: Is an Array Sorted? (1)
Recursion: Is an Array Sorted? (2)
Recursive Methods: Correctness Proofs
Recursion: Binary Search (1)
Recursion: Binary Search (2)
Running Time: Binary Search (1)
Running Time: Binary Search (2)
Tower of Hanoi: Specification

48 of 47

Index (3)
Tower of Hanoi: A Recursive Solution
Tower of Hanoi in Java (1)
Tower of Hanoi in Java (2)
Tower of Hanoi in Java (3)
Running Time: Tower of Hanoi (1)
Running Time: Tower of Hanoi (2)
Recursion: Merge Sort
Recursion: Merge Sort in Java (1)
Recursion: Merge Sort in Java (2)
Recursion: Merge Sort Example (1)
Recursion: Merge Sort Example (2)
Recursion: Merge Sort Example (3)
Recursion: Merge Sort Example (4)
Recursion: Merge Sort Example (5)

49 of 47

Index (4)
Recursion: Merge Sort Running Time (1)

Recursion: Merge Sort Running Time (2)

Beyond this lecture . . .

50 of 47

Generics in Java

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Example: A Book of Objects
1 class Book {
2 String[] names;
3 Object[] records;
4 /* add a name-record pair to the book */
5 void add (String name, Object record) { . . . }
6 /* return the record associated with a given name */
7 Object get (String name) { . . . } }

Question: Which line has a type error?

1 Date birthday; String phoneNumber;
2 Book b; boolean isWednesday;
3 b = new Book();
4 phoneNumber = "416-67-1010";
5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);
7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

2 of 21

Motivating Example: Observations (1)
● In the Book class:

○ By declaring the attribute

Object[] records

We meant that each book instance may store any object whose
static type is a descendant class of Object.

○ Accordingly, from the return type of the get method, we only know
that the returned record is an Object, but not certain about its
dynamic type (e.g., Date, String, etc.).
∴ a record retrieved from the book, e.g., b.get("Yuna"), may
only be called upon methods in its static type (i.e,. Object).

● In the tester code of the Book class:
○ In Line 1, the static types of variables birthday (i.e., Date) and
phoneNumber (i.e., String) are descendant classes of
Object.

○ So, Line 5 and Line 7 compile.
3 of 21

Motivating Example: Observations (2)
Due to polymorphism , the dynamic types of stored objects
(e.g., phoneNumber and birthday) need not be the same.
○ Methods supported in the dynamic types (e.g., method getDay of

class Date) may be new methods not inherited from Object.
○ This is why Line 8 would fail to compile, and may be fixed using an

explicit cast :

isWednesday = ((Date) b.get("Yuna")).getDay() == 4;

○ But what if the dynamic type of the returned object is not a Date?

isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

○ To avoid such a ClassCastException at runtime, we need to
check its dynamic type before performing a cast:

if (b.get("Suyeon") instanceof Date) {
isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

}

4 of 21

Motivating Example: Observations (2.1)

● It seems: combining instanceof check and type cast works.
● Can you see any potential problem(s)?
● Hints: What happens when you have a large number of

records of distinct dynamic types stored in the book
(e.g., Date, String, Person, Account, etc.)?

5 of 21

Motivating Example: Observations (2.2)
Imagine that the tester code (or an application) stores 100
different record objects into the book.
○ All of these records are of static type Object, but of distinct

dynamic types.

Object rec1 = new C1(); b.add(. . ., rec1);
Object rec2 = new C2(); b.add(. . ., rec2);
. . .
Object rec100 = new C100(); b.add(. . ., rec100);

where classes C1 to C100 are descendant classes of Object.
○ Every time you retrieve a record from the book, you need to check

“exhaustively” on its dynamic type before calling some method(s).

Object rec = b.get("Jim");
if (rec instanceof C1) { ((C1) rec).m1; }
. . .
else if (rec instanceof C100) { ((C100) rec).m100; }

○ Writing out this list multiple times is tedious and error-prone!
6 of 21

Motivating Example: Observations (3)
We need a solution that:
● Saves us from explicit instanceof checks and type casts
● Eliminates the occurrences of ClassCastException
As a sketch, this is how the solution looks like:
● When the user declares a Book object b, they must

commit to the kind of record that b stores at runtime .
e.g., b stores either Date objects only or String objects only,
but not a mix .

● When attempting to store a new record object rec into b, what
if rec’s static type is not a descendant class of the type of
book that the user previously commits to?
⇒ A compilation error

● When attempting to retrieve a record object from b, there is
no longer a need to check and cast .
∵ Static types of all records in b are guaranteed to be the same.

7 of 21

Parameters
● In mathematics:

○ The same function is applied with different argument values.
e.g., 2 + 3, 1 + 1, 10 + 101, etc.

○ We generalize these instance applications into a definition.
e.g., + ∶ (Z ×Z)→Z is a function that takes two integer
parameters and returns an integer.

● In Java programming:
○ We want to call a method , with different argument values, to

achieve a similar goal.
e.g., acc.deposit(100), acc.deposit(23), etc.

○ We generalize these possible method calls into a definition.
e.g., In class Account, a method void deposit(int amount)
takes one integer parameter .

● When you design a mathematical function or a Java method,
always consider the list of parameters , each of which
representing a set of possible argument values.

8 of 21

Java Generics: Design of a Generic Book

class Book <E> {
String[] names;
E [] records;
/* add a name-record pair to the book */
void add (String name, E record) { . . . }
/* return the record associated with a given name */
E get (String name) { . . . } }

Question: Which line has a type error?
1 Date birthday; String phoneNumber;

2 Book<Date> b ; boolean isWednesday;

3 b = new Book<Date>() ;

4 phoneNumber = "416-67-1010";
5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);
7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

9 of 21

Java Generics: Observations
● In class Book:

○ At the class level, we parameterize the type of records that an

instance of book may store: class Book< E >

where E is the name of a type parameter, which should be
instantiated when the user declares an instance of Book.

○ Every occurrence of Object (the most general type of records) is
replaced by E .

○ As soon as E at the class level is committed to some known type
(e.g., Date, String, etc.), every occurrence of E will be
replaced by that type.

● In the tester code of Book:
○ In Line 2, we commit that the book b will store Date objects only.
○ Line 5 now fails to compile. [String is not a Date]
○ Line 7 still compiles.
○ Line 8 does not need any instance check and type cast, and does

not cause any ClassCastException.
∵ Only Date objects were allowed to be stored.10 of 21

Bad Example of using Generics

Has the following client made an appropriate choice?

Book<Object> book

NO!!!!!!!!!!!!!!!!!!!!!!!
○ It allows all kinds of objects to be stored.
∵ All classes are descendants of Object .

○ We can expect very little from an object retrieved from this book.
∵ The static type of book’s items are Object , root of the class
hierarchy, has the minimum amount of features available for use.
∵ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

11 of 21

Generic Classes: Singly-Linked List (1)

public class Node< E > {

private E element;

private Node< E > next;

public Node(E e, Node< E > n) { element = e; next = n; }

public E getElement() { return element; }

public Node< E > getNext() { return next; }

public void setNext(Node< E > n) { next = n; }

public void setElement(E e) { element = e; }
}

public class SinglyLinkedList< E > {

private Node< E > head;

private Node< E > tail;
private int size = null;
public void addFirst(E e) { . . . }

Node< E > getNodeAt (int i) { . . . }
. . .

}

12 of 21

Generic Classes: Singly-Linked List (2)Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

Approach 1
Node<String> tom = new Node<>("Tom", null);
Node<String> mark = new Node<>("Mark", tom);
Node<String> alan = new Node<>("Alan", mark);

Approach 2
Node<String> alan = new Node<>("Alan", null);
Node<String> mark = new Node<>("Mark", null);
Node<String> tom = new Node<>("Tom", null);
alan.setNext(mark);
mark.setNext(tom);

13 of 21

Generic Classes: Singly-Linked List (3)
Assume we are in the context of class SinglyLinkedList.
void addFirst (E e) {

head = new Node< E >(e, head);
if (size == 0) { tail = head; }
size ++;

}

Node< E > getNodeAt (int i) {
if (i < 0 || i >= size) {
throw new IllegalArgumentException("Invalid Index"); }

else {
int index = 0;
Node< E > current = head;
while (index < i) {

index ++; current = current.getNext();
}
return current;

}
}

14 of 21

Generic Stack: Interface

public interface Stack< E > {
public int size();
public boolean isEmpty();
public E top();

public void push(E e);

public E pop();
}

15 of 21

Generic Stack: Architecture

ArrayedStack⟨E⟩ LinkedStack⟨E⟩

Stack⟨E⟩

implements

implements

16 of 21

Generic Stack: Array Implementation
public class ArrayedStack< E > implements Stack< E > {
private static final int MAX_CAPACITY = 1000;
private E [] data;
private int t; /* top index */
public ArrayedStack() {
data = (E []) new Object[MAX_CAPACITY];
t = -1; }

public int size() { return (t + 1); }
public boolean isEmpty() { return (t == -1); }
public E top() {
if (isEmpty()) { /* Error: Empty Stack. */ }
else { return data[t]; } }

public void push(E e) {
if (size() == MAX_CAPACITY) { /* Error: Stack Full. */ }
else { t ++; data[t] = e; } }

public E pop() {

E result;
if (isEmpty()) { /* Error: Empty Stack */ }
else { result = data[t]; data[t] = null; t --; }
return result; }

}17 of 21

Generic Stack: SLL Implementation

public class LinkedStack< E > implements Stack< E > {

private SinglyLinkedList< E > data;
public LinkedStack() {
data = new SinglyLinkedList< E >();

}
public int size() { return data.size(); }
public boolean isEmpty() { return size() == 0; }
public E top() {
if (isEmpty()) { /* Error: Empty Stack. */ }
else { return data.getFirst(); } }

public void push(E e) {
data.addFirst(e); }

public E pop() {

E result;
if (isEmpty()) { /* Error: Empty Stack */ }
else { result = top(); data.removeFirst(); }
return result; }

}

18 of 21

Generic Stack: Testing Both Implementations

@Test
public void testPolymorphicStacks() {
Stack<String> s = new ArrayedStack<>();
s. push ("Alan"); /* dynamic binding */

s. push ("Mark"); /* dynamic binding */

s. push ("Tom"); /* dynamic binding */

assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s. top ());

s = new LinkedStack<>();
s. push ("Alan"); /* dynamic binding */

s. push ("Mark"); /* dynamic binding */

s. push ("Tom"); /* dynamic binding */

assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s. top ());

}

19 of 21

Beyond this lecture . . .

● Study https://docs.oracle.com/javase/tutorial/
java/generics/index.html for further details on Java
generics.

20 of 21

https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html

Index (1)
Motivating Example: A Book of Objects
Motivating Example: Observations (1)
Motivating Example: Observations (2)
Motivating Example: Observations (2.1)
Motivating Example: Observations (2.2)
Motivating Example: Observations (3)
Parameters
Java Generics: Design of a Generic Book
Java Generics: Observations
Bad Example of using Generics
Generic Classes: Singly-Linked List (1)
Generic Classes: Singly-Linked List (2)
Generic Classes: Singly-Linked List (3)
Generic Stack: Interface

21 of 21

Index (2)
Generic Stack: Architecture

Generic Stack: Array Implementation

Generic Stack: SLL Implementation

Generic Stack: Testing Both Implementations

Beyond this lecture . . .

22 of 21

Wrap-Up

EECS2030 B: Advanced
Object Oriented Programming

Fall 2018

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What You Learned (1)

● Procedural Programming in Java
○ Exceptions
○ Recursion (implementation, running time, correctness)

● Data Structures
○ Arrays
○ Maps and Hash Tables

2 of 8

What You Learned (2)

● Object-Oriented Programming in Java
○ classes, attributes, encapsulation, objects, reference data types
○ methods: constructors, accessors, mutators, helper
○ dot notation, context objects
○ aliasing
○ inheritance:
● code reuse
● expectations
● static vs. dynamic types
● rules of substitutions
● casts and instanceof checks
● polymorphism and method arguments/return values
● method overriding and dynamic binding: e.g., equals
● abstract classes vs. interfaces
● generics (vs. collection of Object) [Optional]

3 of 8

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2018/F/EECS2030/slides/10-Generics.pdf

What You Learned (3)

● Integrated Development Environment (IDE) for Java: Eclipse
○ Break Point and Debugger
○ Unit Testing using JUnit

4 of 8

Beyond this course. . . (1)

● Introduction to Algorithms (3rd
Ed.) by Cormen, etc.

● DS by DS, Algo. by Algo.:
○ Understand math analysis
○ Read pseudo code
○ Translate into Java code
○ Write and pass JUnit tests

5 of 8

Beyond this course. . . (2)

● Design Patterns: Elements of
Reusable Object-Oriented
Software by Gamma, etc.

● Pattern by Pattern:
○ Understand the problem
○ Read the solution (not in Java)
○ Translate into Java code
○ Write and pass JUnit tests

6 of 8

Beyond this course. . . (3)

Visit my lectures on EECS3311 Software Design:
http://www.eecs.yorku.ca/˜jackie/teaching/
lectures/index.html#EECS3311_F18
○ Design by Contracts
○ Design Patterns
○ Program Verification

7 of 8

http://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS3311_F18
http://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS3311_F18

Wish You All the Best

● What you have learned will be assumed in EECS2011.
● Logic is your friend: Learn/Review EECS1019/EECS1090.
● Do not abandon Java during the break!!
● Feel free to get in touch and let me know how you’re doing :D

8 of 8

	01-Classes-and-Objects
	Separation of Concerns: App/Tester vs. Model
	Object Orientation: Observe, Model, and Execute
	Object-Oriented Programming (OOP)
	OO Thinking: Templates vs. Instances (1.1)
	OO Thinking: Templates vs. Instances (1.2)
	OO Thinking: Templates vs. Instances (2.1)
	OO Thinking: Templates vs. Instances (2.2)
	OO Thinking: Templates vs. Instances (3)
	OOP: Classes Templates
	OOP: Define Constructors for Creating Objects (1.1)
	OOP: Define Constructors for Creating Objects (1.2)
	OOP: Define Constructors for Creating Objects (2.1)
	OOP: Define Constructors for Creating Objects (2.2)
	Visualizing Objects at Runtime (1)
	Visualizing Objects at Runtime (2.1)
	Visualizing Objects at Runtime (2.2)
	Visualizing Objects at Runtime (2.3)
	Visualizing Objects at Runtime (2.4)
	The this Reference (1)
	The this Reference (2)
	The this Reference (3)
	The this Reference (4)
	The this Reference (5)
	The this Reference (6.1): Common Error
	The this Reference (6.2): Common Error
	OOP: Methods (1.1)
	OOP: Methods (1.2)
	OOP: Methods (2)
	OOP: Methods (3)
	OOP: The Dot Notation (1.1)
	OOP: The Dot Notation (1.2)
	OOP: Method Calls
	OOP: Class Constructors (1)
	OOP: Class Constructors (2)
	OOP: Class Constructors (3)
	OOP: Class Constructors (4)
	OOP: Object Creation (1)
	OOP: Object Creation (2)
	OOP: Object Creation (3)
	OOP: Object Creation (4)
	OOP: Object Creation (5)
	OOP: Object Creation (6)
	OOP: Mutator Methods
	OOP: Accessor Methods
	OOP: Use of Mutator vs. Accessor Methods
	OOP: Method Parameters
	OOP: Object Alias (1)
	OOP: Object Alias (2.1)
	OOP: Object Alias (2.2)
	OOP: Object Alias (3)
	Anonymous Objects (1)
	Anonymous Objects (2.1)
	Anonymous Objects (2.2)
	Java Data Types (1)
	Java Data Types (2)
	Java Data Types (3.1)
	Java Data Types (3.2.1)
	Java Data Types (3.2.2)
	Static Variables (1)
	Static Variables (2)
	Static Variables (3)
	Static Variables (4.1): Common Error
	Static Variables (4.2): Common Error
	Static Variables (5.1): Common Error
	Static Variables (5.2): Common Error
	Static Variables (5.3): Common Error

	02-Exceptions
	Caller vs. Callee
	Why Exceptions? (1.1)
	Why Exceptions? (1.2)
	Why Exceptions? (2.1)
	Why Exceptions? (2.2)
	Why Exceptions? (2.3)
	What is an Exception?
	Exceptions in Java (1.1)
	Exceptions in Java (1.2)
	Exceptions in Java (1.3)
	Exceptions in Java (1.4.1)
	Exceptions in Java (1.4.2)
	Exceptions in Java (2.1)
	Exceptions in Java (2.2)
	Exceptions in Java (2.3)
	Exceptions in Java (2.4)
	Examples (1)
	Example (2.1)
	Example (2.2)
	Example: to Handle or Not to Handle? (1.1)
	Example: to Handle or Not to Handle? (1.2)
	Example: to Handle or Not to Handle? (2.1)
	Example: to Handle or Not to Handle? (2.2)
	Example: to Handle or Not to Handle? (3.1)
	Example: to Handle or Not to Handle? (3.2)
	Example: to Handle or Not to Handle? (4.1)
	Example: to Handle or Not to Handle? (4.2)
	Stack of Method Calls
	What to Do When an Exception Is Thrown? (1)
	What to Do When an Exception Is Thrown? (2)
	The Catch or Specify Requirement (1)
	The Catch or Specify Requirement (2)
	The Catch or Specify Requirement (3)
	Exception Category (1): Checked Exceptions
	Exception Category (2): Errors
	Exception Category (3): Runtime Exceptions
	Catching and Handling Exceptions
	Examples (3)
	Examples (4): Problem?

	03-TDD-with-JUnit
	Motivating Example: Two Types of Errors (1)
	Motivating Example: Two Types of Errors (2)
	Motivating Example: Two Types of Errors (3)
	A Simple Counter (1)
	Exceptional Scenarios
	A Simple Counter (2)
	Components of a Test
	Testing Counter from Console (V1): Case 1
	Testing Counter from Console (V1): Case 2
	Testing Counter from Console (V2)
	Testing Counter from Console (V2): Test 1
	Testing Counter from Console (V2): Test 2
	Limitations of Testing from the Console
	Why JUnit?
	How to Use JUnit: Packages
	How to Use JUnit: New JUnit Test Case (1)
	How to Use JUnit: New JUnit Test Case (2)
	How to Use JUnit: Adding JUnit Library
	How to Use JUnit: Generated Test Case
	How to Use JUnit: Running Test Case
	How to Use JUnit: Generating Test Report
	How to Use JUnit: Interpreting Test Report
	How to Use JUnit: Revising Test Case
	How to Use JUnit: Re-Running Test Case
	How to Use JUnit: Adding More Tests (1)
	How to Use JUnit: Assertion Methods
	How to Use JUnit: Adding More Tests (2.1)
	How to Use JUnit: Adding More Tests (2.2)
	How to Use JUnit: Adding More Tests (3.1)
	How to Use JUnit: Adding More Tests (3.2)
	How to Use JUnit: Adding More Tests (4.1)
	How to Use JUnit: Adding More Tests (4.2)
	How to Use JUnit: Adding More Tests (4.3)
	How to Use JUnit: Adding More Tests (5)
	Exercises
	Test-Driven Development (TDD)
	Resources

	04-Advanced-Classes-and-Objects
	Equality (1)
	Equality (2.1)
	Equality (2.2): Common Error
	Equality (3)
	Requirements of equals
	Equality (4.1)
	Equality (4.2)
	Equality (4.3)
	Equality (5)
	Equality (6.1)
	Equality (6.2)
	Equality (6.3)
	Equality (6.4)
	Equality in JUnit (7.1)
	Equality in JUnit (7.2)
	Equality in JUnit (7.3)
	Why Ordering Between Objects? (1)
	Why Ordering Between Objects? (2)
	Defining Ordering Between Objects (1.1)
	Defining Ordering Between Objects (1.2)
	Defining Ordering Between Objects (2.1)
	Defining Ordering Between Objects (2.2)
	Defining Ordering Between Objects (2.3)
	Defining Ordering Between Objects (3)
	Hashing: What is a Map?
	Hashing: Arrays are Maps
	Hashing: Naive Implementation of Map
	Hashing: Naive Implementation of Map (0)
	Hashing: Naive Implementation of Map (1)
	Hashing: Naive Implementation of Map (2)
	Hashing: Naive Implementation of Map (3)
	Hashing: Naive Implementation of Map (4)
	Hashing: Naive Implementation of Map (5)
	Hashing: Naive Implementation of Map (6)
	Hashing: Naive Implementation of Map (7)
	Hashing: Naive Implementation of Map (8.1)
	Hashing: Naive Implementation of Map (8.2)
	Hashing: Naive Implementation of Map (8.3)
	Hashing: Naive Implementation of Map (8.4)
	Hashing: Hash Table (1)
	Hashing: Hash Table as a Bucket Array (2.1)
	Hashing: Hash Table as a Bucket Array (2.2)
	Hashing: Contract of Hash Function
	Hashing: Defining Hash Function in Java (1)
	Hashing: Defining Hash Function in Java (2)
	Hashing: Using Hash Table in Java
	Hashing: Defining Hash Function in Java (3)
	Hashing: Defining Hash Function in Java (4.1.1)
	Hashing: Defining Hash Function in Java (4.1.2)
	Hashing: Defining Hash Function in Java (4.2)
	Call by Value (1)
	Call by Value (2.1)
	Call by Value (2.2.1)
	Call by Value (2.2.2)
	Call by Value (2.3.1)
	Call by Value (2.3.2)
	Call by Value (2.4.1)
	Call by Value (2.4.2)

	05-Asymptotic-Analysis
	Algorithm and Data Structure
	Measuring ``Goodness'' of an Algorithm
	Measuring Efficiency of an Algorithm
	Measure Running Time via Experiments
	Example Experiment
	Example Experiment: Detailed Statistics
	Example Experiment: Visualization
	Experimental Analysis: Challenges
	Moving Beyond Experimental Analysis
	Counting Primitive Operations
	Example: Counting Primitive Operations
	From Absolute RT to Relative RT
	Example: Approx. # of Primitive Operations
	Approximating Running Time as a Function of Input Size
	Focusing on the Worst-Case Input
	What is Asymptotic Analysis?
	Three Notions of Asymptotic Bounds
	Asymptotic Upper Bound: Definition
	Asymptotic Upper Bound: Visualization
	Asymptotic Upper Bound: Example (1)
	Asymptotic Upper Bound: Example (2)
	Asymptotic Upper Bound: Proposition (1)
	Asymptotic Upper Bound: Proposition (2)
	Asymptotic Upper Bound: More Examples
	Using Asymptotic Upper Bound Accurately
	Classes of Functions
	Rates of Growth: Comparison
	Upper Bound of Algorithm: Example (1)
	Upper Bound of Algorithm: Example (2)
	Upper Bound of Algorithm: Example (3)
	Upper Bound of Algorithm: Example (4)
	Upper Bound of Algorithm: Example (5)
	Basic Data Structure: Arrays
	Array Case Study: Comparing Two Sorting Strategies
	Sorting: Strategy 1 – Selection Sort
	Sorting: Strategy 2 – Insertion Sort
	Sorting: Alternative Implementations?
	Comparing Insertion & Selection Sorts

	06-Aggregation-and-Composition
	Call by Value (1)
	Call by Value (2.1)
	Call by Value (2.2.1)
	Call by Value (2.2.2)
	Call by Value (2.3.1)
	Call by Value (2.3.2)
	Call by Value (2.4.1)
	Call by Value (2.4.2)
	Aggregation vs. Composition: Terminology
	Aggregation: Independent Containees Shared by Containers (1.1)
	Aggregation: Independent Containees Shared by Containers (1.2)
	Aggregation: Independent Containees Shared by Containers (2.1)
	Aggregation: Independent Containees Shared by Containers (2.2)
	The Dot Notation (3.1)
	The Dot Notation (3.2)
	The Dot Notation (3.3)
	The Dot Notation (3.4)
	Composition: Dependent Containees Owned by Containers (1.1)
	Composition: Dependent Containees Owned by Containers (1.2.1)
	Composition: Dependent Containees Owned by Containers (1.2.2)
	Composition: Dependent Containees Owned by Containers (1.3)
	Composition: Dependent Containees Owned by Containers (1.4.1)
	Composition: Dependent Containees Owned by Containers (1.4.2)
	Composition: Dependent Containees Owned by Containers (1.5.1)
	Composition: Dependent Containees Owned by Containers (1.5.2)
	Composition: Dependent Containees Owned by Containers (1.5.3)
	Composition: Dependent Containees Owned by Containers (1.6)
	Aggregation vs. Composition (1)
	Aggregation vs. Composition (2)

	07-Inheritance
	Why Inheritance: A Motivating Example
	No Inheritance: ResidentStudent Class
	No Inheritance: NonResidentClass
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Inheritance Architecture
	Inheritance: The Student Parent/Super Class
	Inheritance: The ResidentStudent Child/Sub Class
	Inheritance: The NonResidentStudent Child/Sub Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Visualizing Parent/Child Objects (1)
	Visualizing Parent/Child Objects (2)
	Testing the Two Student Sub-Classes
	Inheritance Architecture: Static Types & Expectations
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture
	Multi-Level Inheritance Hierarchy: Smart Phones
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Reference Variable: Static Type
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Dynamic Type
	Visualizing Static Type vs. Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Polymorphism and Dynamic Binding (3.1)
	Polymorphism and Dynamic Binding (3.2)
	Polymorphism and Dynamic Binding (3.3)
	Reference Type Casting: Motivation (1.1)
	Reference Type Casting: Motivation (1.2)
	Reference Type Casting: Motivation (2.1)
	Reference Type Casting: Motivation (2.2)
	Type Cast: Named or Anonymous
	Notes on Type Cast (1)
	Reference Type Casting: Danger (1)
	Reference Type Casting: Danger (2)
	Notes on Type Cast (2.1)
	Notes on Type Cast (2.2)
	Notes on Type Cast (2.3)
	Required Reading: Static Types, Dynamic Types, Casts
	Compilable Cast vs. Exception-Free Cast
	Reference Type Casting: Runtime Check (1)
	Reference Type Casting: Runtime Check (2)
	Notes on the instanceof Operator (1)
	Notes on the instanceof Operator (2)
	Static Type and Polymorphism (1.1)
	Static Type and Polymorphism (1.2)
	Static Type and Polymorphism (1.3)
	Static Type and Polymorphism (1.4)
	Static Type and Polymorphism (2)
	Polymorphism: Method Call Arguments (1)
	Polymorphism: Method Call Arguments (2.1)
	Polymorphism: Method Call Arguments (2.2)
	Polymorphism: Method Call Arguments (2.3)
	Polymorphism: Method Call Arguments (2.4)
	Polymorphism: Method Call Arguments (2.5)
	Why Inheritance: A Polymorphic Collection of Students
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (1)
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (2)
	Polymorphism: Return Values (1)
	Polymorphism: Return Values (2)
	Polymorphism: Return Values (3)
	Static Type vs. Dynamic Type: When to consider which?
	Summary: Type Checking Rules
	Root of the Java Class Hierarchy
	Overriding and Dynamic Binding (1)
	Overriding and Dynamic Binding (2.1)
	Overriding and Dynamic Binding (2.2)
	Overriding and Dynamic Binding (2.3)
	Behaviour of Inherited toString Method (1)
	Behaviour of Inherited toString Method (2)
	Behaviour of Inherited toString Method (3)

	08-Abstract-Class-and-Interface
	Abstract Class (1)
	Abstract Class (2)
	Abstract Class (3)
	Abstract Class (4)
	Abstract Class (5)
	Abstract Class (6)
	Abstract Class (7.1)
	Abstract Class (7.2)
	Abstract Class (8)
	Interface (1.1)
	Interface (1.2)
	Interface (2)
	Interface (3)
	Interface (4)
	Interface (5)
	Interface (6)
	Abstract Classes vs. Interfaces: When to Use Which?

	09-Recursion
	Beyond this lecture …
	Recursion: Principle
	Tracing Method Calls via a Stack
	Recursion: Factorial (1)
	Common Errors of Recursive Methods
	Recursion: Factorial (2)
	Recursion: Factorial (3)
	Recursion: Factorial (4)
	Recursion: Fibonacci (1)
	Recursion: Fibonacci (2)
	Java Library: String
	Recursion: Palindrome (1)
	Recursion: Palindrome (2)
	Recursion: Reverse of a String (1)
	Recursion: Reverse of a String (2)
	Recursion: Number of Occurrences (1)
	Recursion: Number of Occurrences (2)
	Making Recursive Calls on an Array
	Recursion: All Positive (1)
	Recursion: All Positive (2)
	Recursion: Is an Array Sorted? (1)
	Recursion: Is an Array Sorted? (2)
	Recursive Methods: Correctness Proofs
	Recursion: Binary Search (1)
	Recursion: Binary Search (2)
	Running Time: Binary Search (1)
	Running Time: Binary Search (2)
	Tower of Hanoi: Specification
	Tower of Hanoi: A Recursive Solution
	Tower of Hanoi in Java (1)
	Tower of Hanoi in Java (2)
	Tower of Hanoi in Java (3)
	Running Time: Tower of Hanoi (1)
	Running Time: Tower of Hanoi (2)
	Recursion: Merge Sort
	Recursion: Merge Sort in Java (1)
	Recursion: Merge Sort in Java (2)
	Recursion: Merge Sort Example (1)
	Recursion: Merge Sort Example (2)
	Recursion: Merge Sort Example (3)
	Recursion: Merge Sort Example (4)
	Recursion: Merge Sort Example (5)
	Recursion: Merge Sort Running Time (1)
	Recursion: Merge Sort Running Time (2)
	Beyond this lecture …

	10-Generics
	Motivating Example: A Book of Objects
	Motivating Example: Observations (1)
	Motivating Example: Observations (2)
	Motivating Example: Observations (2.1)
	Motivating Example: Observations (2.2)
	Motivating Example: Observations (3)
	Parameters
	Java Generics: Design of a Generic Book
	Java Generics: Observations
	Bad Example of using Generics
	Generic Classes: Singly-Linked List (1)
	Generic Classes: Singly-Linked List (2)
	Generic Classes: Singly-Linked List (3)
	Generic Stack: Interface
	Generic Stack: Architecture
	Generic Stack: Array Implementation
	Generic Stack: SLL Implementation
	Generic Stack: Testing Both Implementations
	Beyond this lecture …

	11-Wrapup
	What You Learned (1)
	What You Learned (2)
	What You Learned (3)
	Beyond this course… (1)
	Beyond this course… (2)
	Beyond this course… (3)
	Wish You All the Best

