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Call by Value (1) LassonDE

e Consider the general form of a call to some mutator method
m1, with context object s and argument value arg:

class Supplier { class Client {
void ml1( T par) | Supplier s = new Supplier();
/* manipulate par */ T arg = ...;
} s.ml (arg)
t }

o To execute | s.m1(arg) |, an implicit is done.

= A copy of value stored in arg is passed for the method call.
e What can the type T be? [ Primitive or Reference ]
o T is primitive type (e.g., int, char, boolean, efc.):
Call by Value : Copy of arg’s value (e.g., 2, “3’) is passed.
o T isreference type (e.9., String, Point, Person, €fc.):
Call by Value : Copy of arg’s stored reference/address
e.g., Point@5ch0d902) is passed.
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Call by Value (2.1)
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For illustration, let's assume the following variant of the Point

class:
class Point {
int x;
int y;
Point (int x, int y) {
this.x = x;

this.y = y;

}

void moveVertically(int y) {
this.y += y;

}

void moveHorizontally(int x) {
this.x += x;

}

}
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Call by Value (2.2.1)
public class Util ({
void reassignInt (int j) {

j=3+1;}
void reassignRef (Point q) {

|

@Test
public void testCallByVal() {
Util u = new Util();

Point np = new Point (6, 8); int i = 10;
g i np.p} ! ! assertTrue (i == 10);
- ! u.reassignInt (i) ;
i h ViaRef (Poi
void changeViaRef (Point q) { assertTrue (i == 10);

ONO O~ WN =

g.moveHorizontally(3);
g.moveVertically(4); } }

e Before the mutator call at L6, primitive variable i stores 10.

* When executing the mutator call at L6, due to call by value , a
copy of variable i is made.

= The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

o .. After the mutator call at L6, variable i still stores 10.

e
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Call by Value (2.3.1)

public class Util {

void reassignInt(int j) {
j=3+1;}

void reassignRef (Point q) {
Point np = new Point (6, 8);
g = np; }

void changeViaRef (Point q) {
g.moveHorizontally (3);
g.moveVertically(4); } 1}

@Test

public void testCallByRef 1() {
Util u = new Util();
Point p = new Point(3, 4);
Point refOfPBefore = p;
u.reassignRef (p) ;
assertTrue (p==refOfPBefore) ;
assertTrue (p.x==3 && p.y==4);

}

©CoOoONOOR~WN =

e Before the mutator call at L6, reference variable p stores the
address of some Point object (whose x is 3 and y is 4).
* When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made.
= The assignment p = np is only effective on this copy, not the
original variable p itself.
e .. After the mutator call at L6, variable p still stores the original
&Egdress (i.e., same as refOfPBefore).
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Call by Value (2.4.1)

public class Util {

void reassignInt(int j) {
j=3+1;}

void reassignRef (Point q) {
Point np = new Point (6, 8);
g = np; }

void changeViaRef (Point q) {
g.moveHorizontally(3);
g.moveVertically(4); } 1}

@Test

public void testCallByRef 2() {
Util u = new Util();
Point p = new Point(3, 4);
Point refOfPBefore = p;
u.changeViaRef (p) ;
assertTrue (p==refOfPBefore) ;
assertTrue (p.x==6 && p.y==8);

}

©CoOoONOOR~WN =

e Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

* When executing the mutator call at L6, due to call by value , a
copy of address stored in p is made. [Alias: p and g store same address.]
= Calls to g.moveHorizontally and g.moveVertically are
effective on both p and q.

e .. After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore), but its x and y have been modified via q.

e
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Aggregation vs. Composition: Terminology :ssove

Container object: an object that contains others.
Containee object: an object that is contained within another.
¢ e.g., Each course has a faculty member as its instructor.
o Container: Course Containee: Faculty.
e e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
o Container: Student, Faculty Containees: Course.
e.g., eecs2030 taken by jim (student) and taught by t om (faculty).
= Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
= Containees may exist independently without their containers.
* e.g., In afile system, each directory contains a list of files.
o Container: Directory Containees: File.
e.g., Each file has exactly one parent directory.
= A containee may be owned by only one container.
e.g., Deleting a directory also deletes the files it contains.
= Containees may co-exist with their containers.

e
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Aggregation: Independent Containees
Shared by Containers (1.1)
prof
Course © 1 Faculty
1 Course {
cSatsr:sing title; clsats:inl;aiua_lfiey’ t
Faculty prof; Faculty(str;ng name) {
Course(String title) { .
this.titleg= title; this.name = name;

}
} : .
d N. St
void setProf(Faculty prof) { voli ) setName (String name) {
. this.name = name;
this.prof = prof; )
} .
Strin tN.
Faculty getProf() { ing ge _ame() {
. return this.name;
return this.prof; }
) }
}

1iaf3]y
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Aggregation: Independent Containees
Shared by Containers (1.2)

@Test

public void testAggregationl() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf (prof) ;
eecs3311.setProf(prof);
assertTrue(eecs2030 getProf () == eecs3311.getProf());

/+ aliasing */
prof.setName ("Jeff");
assertTrue (eecs2030.getProf () == eecs3311.getProf());

assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);

assertTrue (eecs2030.getProf () '= eecs3311.getProf());
assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));
assertTrue (eecs3311.getProf () .getName () .equals ("Jonathan"));

e
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Shared by Containers (2.1)
cs te
Student = Course Faculty
*
class Student |
String id; ArrayList<Course> cs; ] 2S5 %/
Student (String 1id) { this.id = id; cs new ArrayList<>(); }
void addCourse(Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }
}
class Course { String title; }
class Faculty {
String name; ArrayList<Course> te; /* tea */
Faculty(String name) { this.name = name; te = new ArrayList<>(); }

void addTeaching(Course c)
ArrayList<Course> getTE()

{ te.add(c); }
{ return te; }

13.0£33



Aggregation: Independent Containees
Shared by Containers (2.2)
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@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student ("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030) ;
p.addTeaching(eecs3311);
s.addCourse (eecs2030) ;
s.addCourse (eecs3311);

assertTrue (eecs2030.getProf () == s.getCS().get(0).getProf());
assertTrue (

assertTrue (eecs3311 == s.getCS() .get(1l));

assertTrue (s.getCS() .get (1) == p.getTE() .get(l));

s.getCS () .get (0) .getProf() == s.getCS().get(l).getProf()));

e



/|

SSONDE

The Dot Notation (3.1)

In real life, the relationships among classes are sophisticated.

|

cs te
Student * Course Faculty
*
class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cs; Faculty prof; ArrayList<Course> te;
} } }

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class student:

o Writing cs denotes the list of registered courses.
o Writing es[i] (where 1 is a valid index) navigates to the class

Course, which changes the context to class Course.
150133
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The Dot Notation (3.2) féésésonos

class Course {
String title;

Faculty prof;
} }

|

class Faculty {
String name;
ArrayList<Course> te;

class Student {
String id;
ArrayList<Course> cs;
}

class Student {

/* attributes x*/

/* Get the *x/
String getI
/* Get t

String getCourseTitle(int 1) {
return this.cs.get (i) .title;

student’s id
( { return this.id; }

. PR S e
tle of the ith course */

}

/* Get the instruc of the ith course */
String getInstructorName (int 1) {
return this.cs.get (i) .prof.name;

tor’s
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The Dot Notation (3.3) féésésonos

class Course {
String title;

Faculty prof;
} }

|

class Faculty {
String name;
ArrayList<Course> te;

class Student {
String id;
ArrayList<Course> cs;
}

class Course {
/* attributes #*/
/% Get the course’s title #*/

String getTitle() { return this.title; }

/* Get the instructor’s name =*/
String getInstructorName () {
return this.prof.name;
}
/* Get title of ith teaching course of the instructor =*/
String getCourseTitleOfInstructor(int 1) {
le;

return this.prof.te.get (i) .tit
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The Dot Notation (3.4)
class Faculty {

class Course {
String title; String name;
ArrayList<Course> te;

Faculty prof;
}

|

class Student {

String id;
ArrayList<Course> cs;
}

}

class Faculty {

/* attributes
/* Get instruct
String getName () {

return this. name;

*/
or’s name */

the

course */

}

/+ Get the title of ith ng

String getCourseTitle(int 1)
i).title;

return this.te.get (1

}
e

teachi
{
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Composition: Dependent Containees
i
Owned by Containers (1.1)
. parent files .
Directory \ File
1 *
Assumption: Files are not shared among directories.
class Directory {
String name;
File[] files;
, int nof; /% num of files «/
class File { Directory(String name) {
String name; .
File(String name) { this.name = name;
. files = new File[100];
this.name = name; }
} } void addFile(String fileName) {
files[nof] = new File(fileName);

e

nof ++;
}
}
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Composition: Dependent Containees
Owned by Containers (1.2.1)

v D
f1.txt
f2.txt

f3.txt

O©CoO~NOOAWN =

@Test

public void testComposition() {

}

Directory dl =
dl.addrFile("f1l.
dl.addFile("f2.
dl.addFile("£3.
assertTrue (

dl.files[0].name.equals ("fl.txt"))

new Directory("D");
txt");
txt");
txt");

e L4: 1st File objectis created and owned exclusively by d1.
No other directories are sharing this File object with d1.

e L5: 2nd File objectis created and owned exclusively by d1.
No other directories are sharing this File object with d1.

e L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

20.0t.33



Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

nof

Directory wpn ‘
[ 1 2 3 4 5 6 7 99
dl.files
/ ‘ ‘ ‘ ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null | null ‘
d1 |
dlAfilW/U/\d{les[Z](

“f1.txt” “f2.txt” “f3.txt”
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Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.

A copy constructor is a constructor which initializes attributes
from the argument object other.

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */
}
}

Hints:
* The implementation should be consistent with the effect of
copying and pasting a directory.

e Separate copies of files are created.
220133
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Composition: Dependent Containees
Owned by Containers (1.4.1)
Version 1: Shallow Copy by copying all attributes using =.

class Directory {

Directory (Directory other) {
ue copying for primitive type =*/
other.nof;

eSS copy

/* val

name other.name; files

Is a shallow copy satisfactory to support composition?

i.e., Does it still forbid sharing to occur? [NO]
@Test
void testShallowCopyConstructor() {

Directory dl = new Directory("D");

dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue (dl.files == d2.files); /+ violation of composition +{
d2.files[0].changeName ("f11.txt");

assertFalse (dl.files[0] .name.equals ("fl.txt")); }

nf33




Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testshallowCopyConstructor
terminates:

/ Directory
nof

Directory l
0 1 2 3 4 5 6 7 99
dl.files
‘ ‘ s ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘
di
di.files[0] dl.files[1], dl.files[2]
dz.files[0] dz.files[1] dz.files[2]

d2.files

“f11.txt” “f2.txt” “f3.txt”




Composition: Dependent Containees
Owned by Containers (1.5.1)
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Version 2: a Deep Copy |class Directory f

Directory (String name) {

class File {
File(File other) {
this.name =
new String(other.name);

files = new File[100]; }
Directory(Directory other) {
this (other.name);

File src = other.files[i];
File nf = new File(src);
this.addFile(nf); } }

this.name = new String (name);

for(int i = 0; 1 < nof; i ++)

{

Directory d2 = new Directory(dl);
assertTrue (dl.files != d2.files); /+ composition preserved
d2.files[0].changeName ("f11l.txt");

assertTrue (dl.files[0] .name.equals ("fl.txt"));

}

*/

void addFile(File f) { ... } }
@Test
void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
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Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

nof
o 1
Directory d2. name
[ 1 2 3 6 -
d2.files
/ I I [ nun | nun | oot ] nun | pun | nun | nun ]
dz

| File | File | File
[ name [ name [[name

“f11.txt” “f2.txt” “f3.txt”

“p* nof

Directory l
name 0 1 2 3 4 5 6 7 - 99
dl.files
files I I [ nun | nun | nun | nun | pun | nun | nun ]
d1 nof
dl.files(0] dl.files[1], a1, files(2]
| File | File | File
[ name [ name [ name

“f1.txt” “f2.txt” “f3.txt”
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Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class Directory {

Directory(String name) ({
class File { this.name = new String (name);
File(File other) { files = new File[100]; }
this.name Directory(Directory other) {
new String(other.name); this (other.name);
} for(int i = 0; i < nof; 1 ++) {
} File src = other.files[i];
this.addFile(srec); } }
void addFile(File f) { ... } }
@Test
void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue(dl.files != d2.files); /+ composition preserved x/
d2.files[0].changeName ("f11.txt");
assertTrue(dl.files[0] == d2.files[0]); /* composition violated| x/
22.0£33
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Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;

int nof;
File[] getFiles() {
/* Your Task x/

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

e
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Aggregation vs. Composition (1)
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Terminology:

o Container object: an object that contains others.
o Containee object: an object that is contained within another.

Aggregation :
o Containees (e.g., Course) may be shared among containers
(e.g., Student, Faculty).

o Containees exist independently without their containers.
o When a container is destroyed, its containees still exist.

Composition :

o Containers (e.g, Directory, Department) own exclusive
access to their containees (e.g., File, Faculty).

o Containees cannot exist without their containers.

o Destroying a container destroys its containeees cascadingly.

29.0£.33



Aggregation vs. Composition (2) LassonDE

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:

o Each workstation owns CPU, monitor, keyword. [ compositions ]
o All workstations share the same network. [ aggregations ]

KEYBOARD k | |KEYBOARDI * | |[KEYBOARDI1

MONITORI n MONITOR?2 7 MONITOR3
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