Aggregation and Composition

EECS2030 B: Advanced
Object Oriented Programming

YORKQI

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Call by Value (1) LassonDE

e Consider the general form of a call to some mutator method
m1, with context object s and argument value arg:

class Supplier { class Client {
void ml1(T par) | Supplier s = new Supplier();
/* manipulate par */ T arg = ...;
} s.ml (arg)
t }

o To execute | s.m1(arg) |, an implicit is done.

= A copy of value stored in arg is passed for the method call.
e What can the type T be? [Primitive or Reference]
o T is primitive type (e.g., int, char, boolean, efc.):
Call by Value : Copy of arg’s value (e.g., 2, “3’) is passed.
o T isreference type (e.9., String, Point, Person, €fc.):
Call by Value : Copy of arg’s stored reference/address
e.g., Point@5ch0d902) is passed.

m(
B

Call by Value (2.1)

|

/|

SSONDE

For illustration, let's assume the following variant of the Point

class:
class Point {
int x;
int y;
Point (int x, int y) {
this.x = x;

this.y = y;

}

void moveVertically(int y) {
this.y += y;

}

void moveHorizontally(int x) {
this.x += x;

}

}

30133

/|

SSONDE

Call by Value (2.2.1)
public class Util ({
void reassignInt (int j) {

j=3+1;}
void reassignRef (Point q) {

|

@Test
public void testCallByVal() {
Util u = new Util();

Point np = new Point (6, 8); int i = 10;
g i np.p} ! ! assertTrue (i == 10);
- ! u.reassignInt (i) ;
i h ViaRef (Poi
void changeViaRef (Point q) { assertTrue (i == 10);

ONO O~ WN =

g.moveHorizontally(3);
g.moveVertically(4); } }

e Before the mutator call at L6, primitive variable i stores 10.

* When executing the mutator call at L6, due to call by value , a
copy of variable i is made.

= The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

o .. After the mutator call at L6, variable i still stores 10.

e

S
Call by Value (2.2.2) e

After reassignInt

Before reassignint H During reassignInt ‘

/|

SSONDE

|

Call by Value (2.3.1)

public class Util {

void reassignInt(int j) {
j=3+1;}

void reassignRef (Point q) {
Point np = new Point (6, 8);
g = np; }

void changeViaRef (Point q) {
g.moveHorizontally (3);
g.moveVertically(4); } 1}

@Test

public void testCallByRef 1() {
Util u = new Util();
Point p = new Point(3, 4);
Point refOfPBefore = p;
u.reassignRef (p) ;
assertTrue (p==refOfPBefore) ;
assertTrue (p.x==3 && p.y==4);

}

©CoOoONOOR~WN =

e Before the mutator call at L6, reference variable p stores the
address of some Point object (whose x is 3 and y is 4).
* When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made.
= The assignment p = np is only effective on this copy, not the
original variable p itself.
e .. After the mutator call at L6, variable p still stores the original
&Egdress (i.e., same as refOfPBefore).

S
Call by Value (2.3.2) e

Before reassignRef H During reassignRef H After reassignRef

Point
=
P y
(—» Point P y q Point
x x
13 i q y

/|

SSONDE

|

Call by Value (2.4.1)

public class Util {

void reassignInt(int j) {
j=3+1;}

void reassignRef (Point q) {
Point np = new Point (6, 8);
g = np; }

void changeViaRef (Point q) {
g.moveHorizontally(3);
g.moveVertically(4); } 1}

@Test

public void testCallByRef 2() {
Util u = new Util();
Point p = new Point(3, 4);
Point refOfPBefore = p;
u.changeViaRef (p) ;
assertTrue (p==refOfPBefore) ;
assertTrue (p.x==6 && p.y==8);

}

©CoOoONOOR~WN =

e Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

* When executing the mutator call at L6, due to call by value , a
copy of address stored in p is made. [Alias: p and g store same address.]
= Calls to g.moveHorizontally and g.moveVertically are
effective on both p and q.

e .. After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore), but its x and y have been modified via q.

e

S
Call by Value (2.4.2) o

Before changeviaRef During changeViaRef After changeViaRef

p

I I
pr— = —l=

/|

Aggregation vs. Composition: Terminology :ssove

Container object: an object that contains others.
Containee object: an object that is contained within another.
¢ e.g., Each course has a faculty member as its instructor.
o Container: Course Containee: Faculty.
e e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
o Container: Student, Faculty Containees: Course.
e.g., eecs2030 taken by jim (student) and taught by t om (faculty).
= Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
= Containees may exist independently without their containers.
* e.g., In afile system, each directory contains a list of files.
o Container: Directory Containees: File.
e.g., Each file has exactly one parent directory.
= A containee may be owned by only one container.
e.g., Deleting a directory also deletes the files it contains.
= Containees may co-exist with their containers.

e

/|

Aggregation: Independent Containees
Shared by Containers (1.1)
prof
Course © 1 Faculty
1 Course {
cSatsr:sing title; clsats:inl;aiua_lfiey’ t
Faculty prof; Faculty(str;ng name) {
Course(String title) { .
this.titleg= title; this.name = name;

}
} : .
d N. St
void setProf(Faculty prof) { voli) setName (String name) {
. this.name = name;
this.prof = prof;)
} .
Strin tN.
Faculty getProf() { ing ge _ame() {
. return this.name;
return this.prof; }
) }
}

1iaf3]y

/|

Aggregation: Independent Containees
Shared by Containers (1.2)

@Test

public void testAggregationl() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf (prof) ;
eecs3311.setProf(prof);
assertTrue(eecs2030 getProf () == eecs3311.getProf());

/+ aliasing */
prof.setName ("Jeff");
assertTrue (eecs2030.getProf () == eecs3311.getProf());

assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);

assertTrue (eecs2030.getProf () '= eecs3311.getProf());
assertTrue (eecs2030.getProf () .getName () .equals ("Jeff"));
assertTrue (eecs3311.getProf () .getName () .equals ("Jonathan"));

e

Aggregation: Independent Containees

LASSONDE
et

Shared by Containers (2.1)
cs te
Student = Course Faculty
*
class Student |
String id; ArrayList<Course> cs;] 2S5 %/
Student (String 1id) { this.id = id; cs new ArrayList<>(); }
void addCourse(Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }
}
class Course { String title; }
class Faculty {
String name; ArrayList<Course> te; /* tea */
Faculty(String name) { this.name = name; te = new ArrayList<>(); }

void addTeaching(Course c)
ArrayList<Course> getTE()

{ te.add(c); }
{ return te; }

13.0£33

Aggregation: Independent Containees
Shared by Containers (2.2)

/|

LASSONDE
et

@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student ("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030) ;
p.addTeaching(eecs3311);
s.addCourse (eecs2030) ;
s.addCourse (eecs3311);

assertTrue (eecs2030.getProf () == s.getCS().get(0).getProf());
assertTrue (

assertTrue (eecs3311 == s.getCS() .get(1l));

assertTrue (s.getCS() .get (1) == p.getTE() .get(l));

s.getCS () .get (0) .getProf() == s.getCS().get(l).getProf()));

e

/|

SSONDE

The Dot Notation (3.1)

In real life, the relationships among classes are sophisticated.

|

cs te
Student * Course Faculty
*
class Student { class Course { class Faculty {
String id; String title; String name;
ArrayList<Course> cs; Faculty prof; ArrayList<Course> te;
} } }

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class student:

o Writing cs denotes the list of registered courses.
o Writing es[i] (where 1 is a valid index) navigates to the class

Course, which changes the context to class Course.
150133

-
The Dot Notation (3.2) féésésonos

class Course {
String title;

Faculty prof;
} }

|

class Faculty {
String name;
ArrayList<Course> te;

class Student {
String id;
ArrayList<Course> cs;
}

class Student {

/* attributes x*/

/* Get the *x/
String getI
/* Get t

String getCourseTitle(int 1) {
return this.cs.get (i) .title;

student’s id
({ return this.id; }

. PR S e
tle of the ith course */

}

/* Get the instruc of the ith course */
String getInstructorName (int 1) {
return this.cs.get (i) .prof.name;

tor’s

N
The Dot Notation (3.3) féésésonos

class Course {
String title;

Faculty prof;
} }

|

class Faculty {
String name;
ArrayList<Course> te;

class Student {
String id;
ArrayList<Course> cs;
}

class Course {
/* attributes #*/
/% Get the course’s title #*/

String getTitle() { return this.title; }

/* Get the instructor’s name =*/
String getInstructorName () {
return this.prof.name;
}
/* Get title of ith teaching course of the instructor =*/
String getCourseTitleOfInstructor(int 1) {
le;

return this.prof.te.get (i) .tit

SSONDE

The Dot Notation (3.4)
class Faculty {

class Course {
String title; String name;
ArrayList<Course> te;

Faculty prof;
}

|

class Student {

String id;
ArrayList<Course> cs;
}

}

class Faculty {

/* attributes
/* Get instruct
String getName () {

return this. name;

*/
or’s name */

the

course */

}

/+ Get the title of ith ng

String getCourseTitle(int 1)
i).title;

return this.te.get (1

}
e

teachi
{

/|

Composition: Dependent Containees
i
Owned by Containers (1.1)
. parent files .
Directory \ File
1 *
Assumption: Files are not shared among directories.
class Directory {
String name;
File[] files;
, int nof; /% num of files «/
class File { Directory(String name) {
String name; .
File(String name) { this.name = name;
. files = new File[100];
this.name = name; }
} } void addFile(String fileName) {
files[nof] = new File(fileName);

e

nof ++;
}
}

/|

Composition: Dependent Containees
Owned by Containers (1.2.1)

v D
f1.txt
f2.txt

f3.txt

O©CoO~NOOAWN =

@Test

public void testComposition() {

}

Directory dl =
dl.addrFile("f1l.
dl.addFile("f2.
dl.addFile("£3.
assertTrue (

dl.files[0].name.equals ("fl.txt"))

new Directory("D");
txt");
txt");
txt");

e L4: 1st File objectis created and owned exclusively by d1.
No other directories are sharing this File object with d1.

e L5: 2nd File objectis created and owned exclusively by d1.
No other directories are sharing this File object with d1.

e L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

20.0t.33

Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

nof

Directory wpn ‘
[1 2 3 4 5 6 7 99
dl.files
/ ‘ ‘ ‘ ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null | null ‘
d1 |
dlAfilW/U/\d{les[Z](

“f1.txt” “f2.txt” “f3.txt”

/|

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.

A copy constructor is a constructor which initializes attributes
from the argument object other.

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */
}
}

Hints:
* The implementation should be consistent with the effect of
copying and pasting a directory.

e Separate copies of files are created.
220133

/|

Composition: Dependent Containees
Owned by Containers (1.4.1)
Version 1: Shallow Copy by copying all attributes using =.

class Directory {

Directory (Directory other) {
ue copying for primitive type =*/
other.nof;

eSS copy

/* val

name other.name; files

Is a shallow copy satisfactory to support composition?

i.e., Does it still forbid sharing to occur? [NO]
@Test
void testShallowCopyConstructor() {

Directory dl = new Directory("D");

dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue (dl.files == d2.files); /+ violation of composition +{
d2.files[0].changeName ("f11.txt");

assertFalse (dl.files[0] .name.equals ("fl.txt")); }

nf33

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testshallowCopyConstructor
terminates:

/ Directory
nof

Directory l
0 1 2 3 4 5 6 7 99
dl.files
‘ ‘ s ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘
di
di.files[0] dl.files[1], dl.files[2]
dz.files[0] dz.files[1] dz.files[2]

d2.files

“f11.txt” “f2.txt” “f3.txt”

Composition: Dependent Containees
Owned by Containers (1.5.1)

LASSONDE
et

Version 2: a Deep Copy |class Directory f

Directory (String name) {

class File {
File(File other) {
this.name =
new String(other.name);

files = new File[100]; }
Directory(Directory other) {
this (other.name);

File src = other.files[i];
File nf = new File(src);
this.addFile(nf); } }

this.name = new String (name);

for(int i = 0; 1 < nof; i ++)

{

Directory d2 = new Directory(dl);
assertTrue (dl.files != d2.files); /+ composition preserved
d2.files[0].changeName ("f11l.txt");

assertTrue (dl.files[0] .name.equals ("fl.txt"));

}

*/

void addFile(File f) { ... } }
@Test
void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");

/|

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

nof
o 1
Directory d2. name
[1 2 3 6 -
d2.files
/ I I [nun | nun | oot] nun | pun | nun | nun]
dz

| File | File | File
[name [name [[name

“f11.txt” “f2.txt” “f3.txt”

“p* nof

Directory l
name 0 1 2 3 4 5 6 7 - 99
dl.files
files I I [nun | nun | nun | nun | pun | nun | nun]
d1 nof
dl.files(0] dl.files[1], a1, files(2]
| File | File | File
[name [name [name

“f1.txt” “f2.txt” “f3.txt”

/|

Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class Directory {

Directory(String name) ({
class File { this.name = new String (name);
File(File other) { files = new File[100]; }
this.name Directory(Directory other) {
new String(other.name); this (other.name);
} for(int i = 0; i < nof; 1 ++) {
} File src = other.files[i];
this.addFile(srec); } }
void addFile(File f) { ... } }
@Test
void testDeepCopyConstructor() {
Directory dl = new Directory("D");
dl.addFile("fl.txt"); dl.addFile("f2.txt"); dl.addFile("f3.txt");
Directory d2 = new Directory(dl);
assertTrue(dl.files != d2.files); /+ composition preserved x/
d2.files[0].changeName ("f11.txt");
assertTrue(dl.files[0] == d2.files[0]); /* composition violated| x/
22.0£33

/|

Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;

int nof;
File[] getFiles() {
/* Your Task x/

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

e

/|

|

Aggregation vs. Composition (1)

SSONDE

Terminology:

o Container object: an object that contains others.
o Containee object: an object that is contained within another.

Aggregation :
o Containees (e.g., Course) may be shared among containers
(e.g., Student, Faculty).

o Containees exist independently without their containers.
o When a container is destroyed, its containees still exist.

Composition :

o Containers (e.g, Directory, Department) own exclusive
access to their containees (e.g., File, Faculty).

o Containees cannot exist without their containers.

o Destroying a container destroys its containeees cascadingly.

29.0£.33

Aggregation vs. Composition (2) LassonDE

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:

o Each workstation owns CPU, monitor, keyword. [compositions]
o All workstations share the same network. [aggregations]

KEYBOARD k | |KEYBOARDI * | |[KEYBOARDI1

MONITORI n MONITOR?2 7 MONITOR3

|ndeX (1) _;HASSONDE
Call by Value (1)

Call by Value (2.1)
Call by Value (2.2.1)

Call by Value (2.2.2)
Call by Value (2.3.1)

Call by Value (2.3.2)
Call by Value (2.4.1)
Call by Value (2.4.2)

Aggregation vs. Composition: Terminology
Aggreqgation: Independent Containees

Shared by Containers (1.1)

Aggreqation: Independent Containees

Shared by Containers (1.2)

Aggreqgation: Independent Containees

Shared by Containers (2.1)
e

S
Index (2) _;ASSONDE
Aggregation: Independent Containees
Shared by Containers (2.2)

The Dot Notation (3.1)

The Dot Notation (3.2)
The Dot Notation (3.3)
The Dot Notation (3.4)

Composition: Dependent Containees
Owned by Containers (1.1)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
Composition: Dependent Containees

Owned by Containers (1.3)
e

- ___
Index (3) .;:ASSONDE

Composition: Dependent Containees
Owned by Containers (1.4.1)

Composition: Dependent Containees

Owned by Containers (1.4.2)

Composition: Dependent Containees

Owned by Containers (1.5.1)
Composition: Dependent Containees

Owned by Containers (1.5.2)
Composition: Dependent Containees

Owned by Containers (1.5.3)

Composition: Dependent Containees

Owned by Containers (1.6)

Aggregation vs. Composition (1)

Aggregation vs. Composition (2)
33.0£33

	Call by Value (1)
	Call by Value (2.1)
	Call by Value (2.2.1)
	Call by Value (2.2.2)
	Call by Value (2.3.1)
	Call by Value (2.3.2)
	Call by Value (2.4.1)
	Call by Value (2.4.2)
	Aggregation vs. Composition: Terminology
	Aggregation: Independent Containees Shared by Containers (1.1)
	Aggregation: Independent Containees Shared by Containers (1.2)
	Aggregation: Independent Containees Shared by Containers (2.1)
	Aggregation: Independent Containees Shared by Containers (2.2)
	The Dot Notation (3.1)
	The Dot Notation (3.2)
	The Dot Notation (3.3)
	The Dot Notation (3.4)
	Composition: Dependent Containees Owned by Containers (1.1)
	Composition: Dependent Containees Owned by Containers (1.2.1)
	Composition: Dependent Containees Owned by Containers (1.2.2)
	Composition: Dependent Containees Owned by Containers (1.3)
	Composition: Dependent Containees Owned by Containers (1.4.1)
	Composition: Dependent Containees Owned by Containers (1.4.2)
	Composition: Dependent Containees Owned by Containers (1.5.1)
	Composition: Dependent Containees Owned by Containers (1.5.2)
	Composition: Dependent Containees Owned by Containers (1.5.3)
	Composition: Dependent Containees Owned by Containers (1.6)
	Aggregation vs. Composition (1)
	Aggregation vs. Composition (2)

