Asymptotic Analysis of Algorithms

EECS2030 B: Advanced
Object Oriented Programming Fall 2018

Chen-Wei Wang

Algorithm and Data Structure

- A data structure is:
- A systematic way to store and organize data in order to facilitate access and modifications
- Never suitable for all purposes: it is important to know its strengths and limitations
- A well-specified computational problem precisely describes the desired input/output relationship.
- Input: A sequence of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- Output: A permutation (reordering) $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$
- An instance of the problem: $\langle 3,1,2,5,4\rangle$
- An algorithm is:
- A solution to a well-specified computational problem
- A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an algorithm manipulate well-chosen data structure(s).

2 of 42

Measuring "Goodness" of an Algorithm

1. Correctness:

- Does the algorithm produce the expected output?
- Use JUnit to ensure this.

2. Efficiency:

- Time Complexity: processor time required to complete
- Space Complexity: memory space required to store data

Correctness is always the priority. How about efficiency? Is time or space more of a concern?

Measuring Efficiency of an Algorithm

- Time is more of a concern than is storage.
- Solutions that are meant to be run on a computer should run as fast as possible.
- Particularly, we are interested in how running time depends on two input factors:

1. size
e.g., sorting an array of 10 elements vs. 1 m elements
2. structure
e.g., sorting an already-sorted array vs. a hardly-sorted array

- How do you determine the running time of an algorithm?

1. Measure time via experiments
2. Characterize time as a mathematical function of the input size

Measure Running Time via Experiments

- Once the algorithm is implemented in Java:
- Execute the program on test inputs of various sizes and structures.
- For each test, record the elapsed time of the execution.

```
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- Visualize the result of each test.
- To make sound statistical claims about the algorithm's running time, the set of input tests must be "reasonably" complete.

Example Experiment

- Computational Problem:
- Input: A character c and an integer n
- Output: A string consisting of n repetitions of character c e.g., Given input '*' and 15, output $* * * * * * * * * * * * * * *$.
- Algorithm 1 using String Concatenations:

```
public static String repeatl(char c, int n) {
    String answer = "";
    for (int i = 0; i < n; i ++) { answer += c; }
    return answer; }
```

- Algorithm 2 using StringBuilder append's:

```
public static String repeat2(char c, int n) {
    StringBuilder sb = new StringBuilder();
    for (int i = 0; i<n; i ++) { sb.append(c); }
    return sb.toString(); }
```


Example Experiment: Detailed Statistics

n	repeat 1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
$1,600,000$	$2,847,968$	13
$3,200,000$	$12,809,631$	28
$6,400,000$	$59,594,275$	58
$12,800,000$	$265,696,421(\approx 3$ days $)$	135

- As input size is doubled, rates of increase for both algorithms are linear:
- Running time of repeat1 increases by ≈ 5 times.
- Running time of repeat2 increases by ≈ 2 times.

Example Experiment: Visualization

Experimental Analysis: Challenges

1. An algorithm must be fully implemented (i.e., translated into valid Java syntax) in order study its runtime behaviour experimentally.

- What if our purpose is to choose among alternative data structures or algorithms to implement?
- Can there be a higher-level analysis to determine that one algorithm or data structure is superior than others?

2. Comparison of multiple algorithms is only meaningful when experiments are conducted under the same environment of:

- Hardware: CPU, running processes
- Software: OS, JVM version

3. Experiments can be done only on a limited set of test inputs.

- What if "important" inputs were not included in the experiments?

Moving Beyond Experimental Analysis

- A better approach to analyzing the efficiency (e.g., running times) of algorithms should be one that:
- Allows us to calculate the relative efficiency (rather than absolute elapsed time) of algorithms in a ways that is independent of the hardware and software environment.
- Can be applied using a high-level description of the algorithm (without fully implementing it).
- Considers all possible inputs.
- We will learn a better approach that contains 3 ingredients:

1. Counting primitive operations
2. Approximating running time as a function of input size
3. Focusing on the worst-case input (requiring the most running time)

Counting Primitive Operations

A primitive operation corresponds to a low-level instruction with
a constant execution time .

- Assignment
[e.g., $x=5 ;$]
[e.g., a [i]]
- Indexing into an array
- Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 \&\& b2]
- Accessing an attribute of an object [e.g., acc.balance]
- Returning from a method [e.g., return result;]

Q: Why is a method call in general not a primitive operation?
A: It may be a call to:

- a "cheap" method (e.g., printing Hello World), or
- an "expensive" method (e.g., sorting an array of integers)

Example: Counting Primitive Operations

```
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
                currentMax = a[i]; }
        i ++ }
    return currentMax; }
```

\# of times i < n in Line 3 is executed?
\# of times the loop body (Line 4 to Line 6) is executed? [$n-1$]

- Line 2: 2
- Line 3: $n+1$
- Line 4: $(n-1) \cdot 2$
- Line 5: $(n-1) \cdot 2$
- Line 6: $(n-1) \cdot 2$
- Line 7: 1
- Total \# of Primitive Operations: 7n-2
[1 indexing +1 assignment]
[1 assignment $+n$ comparisons]
[1 indexing + 1 comparison]
[1 indexing +1 assignment]
[1 addition +1 assignment]
[1 return]

From Absolute RT to Relative RT

- Each primitive operation (PO) takes approximately the same, constant amount of time to execute.
- The number of primitive operations required by an algorithm should be proportional to its actual running time on a specific environment.
e.g., findMax (int[] a, int n) has $7 n-2$ POs

$$
R T=(7 n-2) \cdot t
$$

Say two algorithms with RT $(7 n-2) \cdot t$ and $R T(10 n+3) \cdot t$. \Rightarrow It suffices to compare their relative running time:

$$
7 n-2 \text { vs. } 10 n+3
$$

- To determine the time efficiency of an algorithm, we only focus on their number of POs.

Example: Approx. \# of Primitive Operations

- Given \# of primitive operations counted precisely as $7 n^{1}-2$, we view it as

$$
7 \cdot n-2 \cdot n^{0}
$$

- We say
- n is the highest power
- 7 and 2 are the multiplicative constants
- 2 is the lower term
- When approximating a function (considering that input size may be very large):
- Only the highest power matters.
- multiplicative constants and lower terms can be dropped.
$\Rightarrow 7 n-2$ is approximately n
Exercise: Consider $7 n+2 n \cdot \log n+3 n^{2}$:
- highest power?
$\left[n^{2}\right]$
$[7,2,3]$
$[7 n+2 n \cdot \log n]$

Approximating Running Time as a Function of Input Size

Given the high-level description of an algorithm, we associate it with a function f, such that $f(n)$ returns the number of primitive operations that are performed on an input of size n.

- $f(n)=5$
- $f(n)=\log _{2} n$
- $f(n)=4 \cdot n$
- $f(n)=n^{2}$
[constant]
[logarithmic]
[linear]
[quadratic]
- $f(n)=n^{3}$
- $f(n)=2^{n}$
[exponential]

Focusing on the Worst-Case Input

- Average-case analysis calculates the expected running times based on the probability distribution of input values.
- worst-case analysis or best-case analysis?

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing behaviour in the limit:
- How the running time of the algorithm under analysis changes as the input size changes without bound
- e.g., contrast $R T_{1}(n)=n$ with $R T_{2}(n)=n^{2}$
- Allows us to compare the relative performance of alternative algorithms:
- For large enough inputs, the multiplicative constants and lower-order terms of an exact running time can be disregarded.
- e.g., $R T_{1}(n)=3 n^{2}+7 n+18$ and $R T_{1}(n)=100 n^{2}+3 n-100$ are considered equally efficient, asymptotically.
- e.g., $R T_{1}(n)=n^{3}+7 n+18$ is considered less efficient than $R T_{1}(n)=100 n^{2}+100 n+2000$, asymptotically.

Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the running time of an algorithm:

- Asymptotic upper bound
- Asymptotic lower bound
- Asymptotic tight bound

Asymptotic Upper Bound: Definition

- Let $f(n)$ and $g(n)$ be functions mapping positive integers (input size) to positive real numbers (running time).
- $f(n)$ characterizes the running time of some algorithm.
- $O(g(n))$ denotes a collection of functions.
- $O(g(n))$ consists of all functions that can be upper bounded by $g(n)$, starting at some point, using some constant factor.
- $f(n) \in O(g(n))$ if there are:
- A real constant c>0
- An integer constant $n_{0} \geq 1$
such that:

$$
f(n) \leq c \cdot g(n) \quad \text { for } n \geq n_{0}
$$

- For each member function $f(n)$ in $O(g(n))$, we say that:
- $f(n) \in O(g(n)) \quad[f(\mathrm{n})$ is a member of "big-Oh of $\mathrm{g}(\mathrm{n})$ "]
- $f(n)$ is $O(g(n))$
[$\mathrm{f}(\mathrm{n})$ is "big-Oh of $\mathrm{g}(\mathrm{n})$ "]

Asymptotic Upper Bound: Visualization

From $n_{0}, f(n)$ is upper bounded by $c \cdot g(n)$, so $f(n)$ is $O(g(n))$.

Asymptotic Upper Bound: Example (1)

Prove: The function $8 n+5$ is $O(n)$.
Strategy: Choose a real constant $c>0$ and an integer constant $n_{0} \geq 1$, such that for every integer $n \geq n_{0}$:

$$
8 n+5 \leq c \cdot n
$$

Can we choose $c=9$? What should the corresponding n_{0} be?

n	$8 \mathrm{n}+5$	9 n
1	13	9
2	21	18
3	29	27
4	37	36
5	45	45
6	53	54

Therefore, we prove it by choosing $c=9$ and $n_{0}=5$.
We may also prove it by choosing $c=13$ and $n_{0}=1$. Why?

Asymptotic Upper Bound: Example (2)

Prove: The function $f(n)=5 n^{4}+3 n^{3}+2 n^{2}+4 n+1$ is $O\left(n^{4}\right)$.
Strategy: Choose a real constant $c>0$ and an integer constant $n_{0} \geq 1$, such that for every integer $n \geq n_{0}$:

$$
5 n^{4}+3 n^{3}+2 n^{2}+4 n+1 \leq c \cdot n^{4}
$$

$f(1)=5+3+2+4+1=15$
Choose $c=15$ and $n_{0}=1$!

Asymptotic Upper Bound: Proposition (1)

If $f(n)$ is a polynomial of degree d, i.e.,

$$
f(n)=a_{0} \cdot n^{0}+a_{1} \cdot n^{1}+\cdots+a_{d} \cdot n^{d}
$$

and $a_{0}, a_{1}, \ldots, a_{d}$ are integers (i.e., negative, zero, or positive), then $f(n)$ is $O\left(n^{d}\right)$.

- We prove by choosing

$$
\begin{aligned}
& c=\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{d}\right| \\
& n_{0}=1
\end{aligned}
$$

- We know that for $n \geq 1$:

$$
\begin{array}{r}
n^{0} \leq n^{1} \leq n^{2} \leq \cdots \leq n^{d} \\
{\left[f(1) \leq 1^{d}\right]}
\end{array}
$$

$$
a_{0} \cdot 1^{0}+a_{1} \cdot 1^{1}+\cdots+a_{d} \cdot 1^{d} \leq\left|a_{0}\right| \cdot 1^{d}+\left|a_{1}\right| \cdot 1^{d}+\cdots+\left|a_{d}\right| \cdot 1^{d}
$$

- Upper-bound effect holds?

$$
\left[f(n) \leq n^{d}\right]
$$

$$
a_{0} \cdot n^{0}+a_{1} \cdot n^{1}+\cdots+a_{d} \cdot n^{d} \leq\left|a_{0}\right| \cdot n^{d}+\left|a_{1}\right| \cdot n^{d}+\cdots+\left|a_{d}\right| \cdot n^{d}
$$

Asymptotic Upper Bound: Proposition (2)

$$
O\left(n^{0}\right) \subset O\left(n^{1}\right) \subset O\left(n^{2}\right) \subset \ldots
$$

If a function $f(n)$ is upper bounded by another function $g(n)$ of degree $d, d \geq 0$, then $f(n)$ is also upper bounded by all other functions of a strictly higher degree (i.e., $d+1, d+2$, etc.).
e.g., Family of $O(n)$ contains:
$n^{0}, 2 n^{0}, 3 n^{0}, \ldots$
$n, 2 n, 3 n, \ldots$
e.g., Family of $O\left(n^{2}\right)$ contains:

$$
n^{0}, 2 n^{0}, 3 n^{0}, \ldots
$$

$n, 2 n, 3 n, \ldots$
$n^{2}, 2 n^{2}, 3 n^{2}, \ldots$
[functions with degree 0] [functions with degree 1]
[functions with degree 0]
[functions with degree 1]
[functions with degree 2]

Asymptotic Upper Bound: More Examples

- $5 n^{2}+3 n \cdot \log n+2 n+5$ is $O\left(n^{2}\right)$

$$
\begin{aligned}
& {\left[c=15, n_{0}=1\right]} \\
& {\left[c=35, n_{0}=1\right]} \\
& {\left[c=5, n_{0}=2\right]}
\end{aligned}
$$

- $20 n^{3}+10 n \cdot \log n+5$ is $O\left(n^{3}\right)$
- $3 \cdot \log n+2$ is $O(\log n)$
- Why can't n_{0} be 1?
- Choosing $n_{0}=1$ means $\Rightarrow f(\boxed{1})$ is upper-bounded by $c \cdot \log 1$:
- We have $f(1)=3 \cdot \log 1+2$, which is 2 .
- We have $c \cdot \log 1$, which is 0 .
$\Rightarrow f(1)$ is not upper-bounded by $c \cdot \log 1 \quad$ [Contradiction!]
- 2^{n+2} is $O\left(2^{n}\right)$
- $2 n+100 \cdot \log n$ is $O(n)$

$$
\begin{array}{r}
{\left[c=4, n_{0}=1\right]} \\
{\left[c=102, n_{0}=1\right]}
\end{array}
$$

Using Asymptotic Upper Bound Accurately

- Use the big-Oh notation to characterize a function (of an algorithm's running time) as closely as possible.
For example, say $f(n)=4 n^{3}+3 n^{2}+5$:
- Recall: $O\left(n^{3}\right) \subset O\left(n^{4}\right) \subset O\left(n^{5}\right) \subset \ldots$
- It is the most accurate to say that $f(n)$ is $O\left(n^{3}\right)$.
- It is true, but not very useful, to say that $f(n)$ is $O\left(n^{4}\right)$ and that $f(n)$ is $O\left(n^{5}\right)$.
- It is false to say that $f(n)$ is $O\left(n^{2}\right), O(n)$, or $O(1)$.
- Do not include constant factors and lower-order terms in the big-Oh notation.
For example, say $f(n)=2 n^{2}$ is $O\left(n^{2}\right)$, do not say $f(n)$ is $O\left(4 n^{2}+6 n+9\right)$.

Classes of Functions

upper bound	class	cost
$O(1)$	constant	cheapest
$O(\log (n))$	logarithmic	
$O(n)$	linear	
$O(n \cdot \log (n))$	"n-log-n"	
$O\left(n^{2}\right)$	quadratic	
$O\left(n^{3}\right)$	cubic	
$O\left(n^{k}\right), k \geq 1$	polynomial	
$O\left(a^{n}\right), a>1$	exponential	most expensive

Rates of Growth: Comparison

Upper Bound of Algorithm: Example (1)

```
maxOf (int }x\mathrm{ , int }y\mathrm{ ) {
    int max = x;
    if (y>x) {
        max = y;
    }
    return max;
}
```

- \# of primitive operations: 4

2 assignments +1 comparison +1 return $=4$

- Therefore, the running time is $O(1)$.
- That is, this is a constant-time algorithm.

Upper Bound of Algorithm: Example (2)

```
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i]; }
        i ++ }
    return currentMax; }
```

- From last lecture, we calculated that the \# of primitive operations is $7 n-2$.
- Therefore, the running time is $O(n)$.
- That is, this is a linear-time algorithm.

Upper Bound of Algorithm: Example (3)

```
containsDuplicate (int[] a, int n) {
    for (int i = 0; i < n; ) {
        for (int j = 0; j < n; ) {
            if (i != j && a[i] == a[j]) {
                return true; }
            j ++; }
        i ++; }
    return false; }
```

- Worst case is when we reach Line 8.
- \# of primitive operations $\approx c_{1}+n \cdot n \cdot c_{2}$, where c_{1} and c_{2} are some constants.
- Therefore, the running time is $O\left(n^{2}\right)$.
- That is, this is a quadratic algorithm.

Upper Bound of Algorithm: Example (4)

```
sumMaxAndCrossProducts (int [] a, int n) {
    int max = a[0];
    for(int i = 1; i < n;) {
        if (a[i] > max) { max = a[i]; }
    }
    int sum = max;
    for (int j = 0; j < n; j ++) {
        for (int }k=0;k<n;k++) 
            sum += a[j] * a[k]; } }
    return sum; }
```

- \# of primitive operations $\approx\left(c_{1} \cdot n+c_{2}\right)+\left(c_{3} \cdot n \cdot n+c_{4}\right)$, where c_{1}, c_{2}, c_{3}, and c_{4} are some constants.
- Therefore, the running time is $O\left(n+n^{2}\right)=O\left(n^{2}\right)$.
- That is, this is a quadratic algorithm.

Upper Bound of Algorithm: Example (5)

```
triangularSum (int[] a, int n) {
    int sum = 0;
    for (int i = 0; i<n; i ++) {
        for (int j = i ; j< n; j ++) {
            sum += a[j]; } }
    return sum; }
```

- \# of primitive operations $\approx n+(n-1)+\cdots+2+1=\frac{n \cdot(n+1)}{2}$
- Therefore, the running time is $O\left(\frac{n^{2}+n}{2}\right)=O\left(n^{2}\right)$.
- That is, this is a quadratic algorithm.

Basic Data Structure: Arrays

- An array is a sequence of indexed elements.
- Size of an array is fixed at the time of its construction.
- Supported operations on an array:
- Accessing: e.g., int max = a[0]; Time Complexity: O(1)
[constant operation]
- Updating: e.g., a[i] = a[i + 1];

Time Complexity: $O(1)$ [constant operation]

- Inserting/Removing:

```
String[] insertAt(String[] a, int n, String e, int i)
    String[] result = new String[n + 1];
    for(int j = 0; j<= i - 1; j ++){ result[j] = a[j]; }
    result[i] = e;
    for(int j = i + 1; j <= n - 1; j ++){ result[j] = a[j-1]; }
    return result;
```

Time Complexity: $O(n)$
[linear operation]

Array Case Study:
 Comparing Two Sorting Strategies

- Problem:

Input: An array a of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output: A permutation (reordering) $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$

- We propose two alternative implementation strategies for solving this problem.
- At the end, we want to know which one to choose, based on time complexity.

Sorting: Strategy 1 - Selection Sort

- Maintain a (initially empty) sorted portion of array a.
- From left to right in array a, select and insert the minimum element to the end of this sorted portion, so it remains sorted.

```
selectionSort(int[] a, int n)
    for (int i = 0; i <= (n-2); i ++)
        int minIndex = i;
        for (int j = i; j <= (n - 1); j ++)
            if (a[j] < a[minIndex]) { minIndex = j; }
        int temp = a[i];
        a[i] = a[minIndex];
        a[minIndex] = temp;
```

- How many times does the body of for loop (Line 4) run?
- Running time?

- So selection sort is a quadratic-time algorithm.

Sorting: Strategy 2 - Insertion Sort

- Maintain a (initially empty) sorted portion of array a.
- From left to right in array a, insert one element at a time into the "right" spot in this sorted portion, so it remains sorted.

```
insertionSort(int[] a, int n)
    for (int i = 1; i < n; i ++)
        int current = a[i];
        int j = i;
        while (j > 0 && a[j - 1] > current)
        a[j] = a[j - 1];
        j --;
        a[j] = current;
```

- while loop (L5) exits when? $j<=0$ or a [j-1] <= current
- Running time?

- So insertion sort is a quadratic-time algorithm.

Sorting: Alternative Implementations?

- In the Java implementations for selection sort and insertion sort, we maintain the "sorted portion" from the left end.
- For selection sort, we select the minimum element from the "unsorted portion" and insert it to the end in the "sorted portion".
- For insertion sort, we choose the left-most element from the "unsorted portion" and insert it at the "right spot" in the "sorted portion".
- Question: Can we modify the Java implementations, so that the "sorted portion" is maintained and grown from the right end instead?

Comparing Insertion \& Selection Sorts

- Asymptotically , running times of selection sort and insertion sort are both $O\left(n^{2}\right)$.
- We will later see that there exist better algorithms that can perform better than quadratic: $O(n \cdot \log n)$.

Index (1)

Algorithm and Data Structure

Measuring "Goodness" of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Example Experiment
Example Experiment: Detailed Statistics

Example Experiment: Visualization

Experimental Analysis: Challenges
Moving Beyond Experimental Analysis
Counting Primitive Operations
Example: Counting Primitive Operations
From Absolute RT to Relative RT
Example: Approx. \# of Primitive Operations
400142

Index (2)

Approximating Running Time as a Function of Input Size
Focusing on the Worst-Case Input
What is Asymptotic Analysis?
Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)
Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately
Classes of Functions
410142

Index (3)

Rates of Growth: Comparison
Upper Bound of Algorithm: Example (1)
Upper Bound of Algorithm: Example (2)
Upper Bound of Algorithm: Example (3)
Upper Bound of Algorithm: Example (4)
Upper Bound of Algorithm: Example (5)
Basic Data Structure: Arrays
Array Case Study:
Comparing Two Sorting Strategies
Sorting: Strategy 1 - Selection Sort
Sorting: Strategy 2 - Insertion Sort
Sorting: Alternative Implementations?
Comparing Insertion \& Selection Sorts
42 of 42

