Asymptotic Analysis of Algorithms
Algorithm and Data Structure

- A **data structure** is:
 - A systematic way to store and organize data in order to facilitate *access* and *modifications*
 - Never suitable for all purposes: it is important to know its *strengths* and *limitations*

- A **well-specified computational problem** precisely describes the desired *input/output relationship*.
 - **Input**: A sequence of \(n \) numbers \(\langle a_1, a_2, \ldots, a_n \rangle \)
 - **Output**: A permutation (reordering) \(\langle a'_1, a'_2, \ldots, a'_n \rangle \) of the input sequence such that \(a'_1 \leq a'_2 \leq \ldots \leq a'_n \)
 - An *instance* of the problem: \(\langle 3, 1, 2, 5, 4 \rangle \)

- An **algorithm** is:
 - A solution to a well-specified *computational problem*
 - A *sequence of computational steps* that takes value(s) as *input* and produces value(s) as *output*

- Steps in an *algorithm* manipulate well-chosen *data structure(s).*
Measuring “Goodness” of an Algorithm

1. **Correctness**:
 - Does the algorithm produce the expected output?
 - Use JUnit to ensure this.

2. **Efficiency**:
 - *Time Complexity*: processor time required to complete
 - *Space Complexity*: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?
Measuring Efficiency of an Algorithm

- **Time** is more of a concern than is **storage**.
- Solutions that are meant to be run on a computer should run **as fast as possible**.
- Particularly, we are interested in how **running time** depends on two **input factors**:
 1. size
 - e.g., sorting an array of 10 elements vs. 1 million elements
 2. structure
 - e.g., sorting an already-sorted array vs. a hardly-sorted array

- **How do you determine the running time of an algorithm?**
 1. Measure time via **experiments**
 2. Characterize time as a **mathematical function** of the input size
Measure Running Time via Experiments

• Once the algorithm is implemented in Java:
 ○ Execute the program on test inputs of various sizes and structures.
 ○ For each test, record the elapsed time of the execution.

```java
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currentTimeMillis();
long elapsed = endTime - startTime;
```

○ Visualize the result of each test.

• To make sound statistical claims about the algorithm’s running time, the set of input tests must be “reasonably” complete.
Example Experiment

- **Computational Problem:**
 - **Input:** A character \(c \) and an integer \(n \)
 - **Output:** A string consisting of \(n \) repetitions of character \(c \)
 e.g., Given input ‘*’ and 15, output ***************.

- **Algorithm 1 using String Concatenations:**

  ```java
  public static String repeat1(char c, int n) {
      String answer = "";
      for (int i = 0; i < n; i ++) {
          answer += c;
      }
      return answer;
  }
  ```

- **Algorithm 2 using StringBuilder append’s:**

  ```java
  public static String repeat2(char c, int n) {
      StringBuilder sb = new StringBuilder();
      for (int i = 0; i < n; i ++) {
          sb.append(c);
      }
      return sb.toString();
  }
  ```
Example Experiment: Detailed Statistics

<table>
<thead>
<tr>
<th>n</th>
<th>repeat1 (in ms)</th>
<th>repeat2 (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>2,884</td>
<td>1</td>
</tr>
<tr>
<td>100,000</td>
<td>7,437</td>
<td>1</td>
</tr>
<tr>
<td>200,000</td>
<td>39,158</td>
<td>2</td>
</tr>
<tr>
<td>400,000</td>
<td>170,173</td>
<td>3</td>
</tr>
<tr>
<td>800,000</td>
<td>690,836</td>
<td>7</td>
</tr>
<tr>
<td>1,600,000</td>
<td>2,847,968</td>
<td>13</td>
</tr>
<tr>
<td>3,200,000</td>
<td>12,809,631</td>
<td>28</td>
</tr>
<tr>
<td>6,400,000</td>
<td>59,594,275</td>
<td>58</td>
</tr>
<tr>
<td>12,800,000</td>
<td>265,696,421 (\approx 3 days)</td>
<td>135</td>
</tr>
</tbody>
</table>

- As input size is doubled, rates of increase for both algorithms are linear:
 - Running time of repeat1 increases by ≈ 5 times.
 - Running time of repeat2 increases by ≈ 2 times.
Example Experiment: Visualization

![Graph showing running time versus n for repeat 1 and repeat 2.](image)
1. An algorithm must be *fully implemented* (i.e., translated into valid Java syntax) in order to study its runtime behaviour experimentally.
 - What if our purpose is to *choose among alternative* data structures or algorithms to implement?
 - Can there be a *higher-level analysis* to determine that one algorithm or data structure is *superior* than others?

2. Comparison of multiple algorithms is only *meaningful* when experiments are conducted under the same environment of:
 - *Hardware*: CPU, running processes
 - *Software*: OS, JVM version

3. Experiments can be done only on a *limited set of test inputs*.
 - What if “*important*” inputs were not included in the experiments?
Moving Beyond Experimental Analysis

- A better approach to analyzing the *efficiency* (e.g., *running times*) of algorithms should be one that:
 - Allows us to calculate the *relative efficiency* (rather than absolute elapsed time) of algorithms in a way that is *independent of* the hardware and software environment.
 - Can be applied using a *high-level description* of the algorithm (without fully implementing it).
 - Considers all possible inputs.

- We will learn a better approach that contains 3 ingredients:
 1. Counting *primitive operations*
 2. Approximating running time as *a function of input size*
 3. Focusing on the *worst-case* input (requiring the most running time)
A *primitive operation* corresponds to a low-level instruction with a *constant execution time*.

- Assignment
 \[\text{e.g., } x = 5; \]
- Indexing into an array
 \[\text{e.g., } a[i] \]
- Arithmetic, relational, logical op.
 \[\text{e.g., } a + b, z > w, b1 \land b2 \]
- Accessing an attribute of an object
 \[\text{e.g., } \text{acc.balance} \]
- Returning from a method
 \[\text{e.g., } \text{return result;} \]

Q: Why is a method call in general *not* a primitive operation?

A: It may be a call to:

- a “cheap” method (e.g., printing *Hello World*), or
- an “expensive” method (e.g., sorting an array of integers)
Example: Counting Primitive Operations

```java
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i];
        }
        i ++
    }
    return currentMax;
}
```

of times \(i < n \) in **Line 3** is executed? \([n]\)

of times the loop body (**Line 4** to **Line 6**) is executed? \([n - 1]\)

- **Line 2**: 2
 [1 indexing + 1 assignment]
- **Line 3**: \(n + 1 \)
 [1 assignment + \(n \) comparisons]
- **Line 4**: \((n - 1) \cdot 2 \)
 [1 indexing + 1 comparison]
- **Line 5**: \((n - 1) \cdot 2 \)
 [1 indexing + 1 assignment]
- **Line 6**: \((n - 1) \cdot 2 \)
 [1 addition + 1 assignment]
- **Line 7**: 1
 [1 return]

Total # of Primitive Operations: \(7n - 2 \)
From Absolute RT to Relative RT

- Each *primitive operation* (PO) takes approximately the same, constant amount of time to execute. [say t]
- The *number of primitive operations* required by an algorithm should be proportional to its *actual running time* on a specific environment.

e.g., `findMax (int[] a, int n)` has $7n - 2$ POs

$$RT = (7n - 2) \cdot t$$

Say two algorithms with RT $(7n - 2) \cdot t$ and RT $(10n + 3) \cdot t$.
⇒ It suffices to compare their relative running time:

 $7n - 2$ vs. $10n + 3$.

- To determine the *time efficiency* of an algorithm, we only focus on their *number of POs*.
Example: Approx. # of Primitive Operations

- Given # of primitive operations counted precisely as $7n^1 - 2$, we view it as
 \[7 \cdot n - 2 \cdot n^0 \]

- We say
 - n is the highest power
 - 7 and 2 are the multiplicative constants
 - 2 is the lower term

- When approximating a function (considering that input size may be very large):
 - Only the highest power matters.
 - multiplicative constants and lower terms can be dropped.

 \[7n - 2 \] is approximately \[n \]

Exercise: Consider $7n + 2n \cdot \log n + 3n^2$:

- highest power?
- multiplicative constants?
- lower terms?
Approximating Running Time as a Function of Input Size

Given the *high-level description* of an algorithm, we associate it with a function f, such that $f(n)$ returns the *number of primitive operations* that are performed on an *input of size* n.

- $f(n) = 5$ [constant]
- $f(n) = \log_2 n$ [logarithmic]
- $f(n) = 4 \cdot n$ [linear]
- $f(n) = n^2$ [quadratic]
- $f(n) = n^3$ [cubic]
- $f(n) = 2^n$ [exponential]
Focusing on the Worst-Case Input

- **Average-case** analysis calculates the *expected running times* based on the probability distribution of input values.
- **Worst-case** analysis or **best-case** analysis?
What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing *behaviour in the limit*:
 - How the *running time* of the algorithm under analysis changes as the *input size* changes without bound
 - e.g., contrast $RT_1(n) = n$ with $RT_2(n) = n^2$

- Allows us to compare the *relative* performance of alternative algorithms:
 - For large enough inputs, the *multiplicative constants* and *lower-order* terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n - 100$ are considered **equally efficient, asymptotically**.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, **asymptotically**.
Three Notions of Asymptotic Bounds

We may consider three kinds of *asymptotic bounds* for the *running time* of an algorithm:

- Asymptotic *upper* bound $[\mathcal{O}]$
- Asymptotic lower bound $[\Omega]$
- Asymptotic tight bound $[\Theta]$
Asymptotic Upper Bound: Definition

- Let \(f(n) \) and \(g(n) \) be functions mapping positive integers (input size) to positive real numbers (running time).
 - \(f(n) \) characterizes the running time of some algorithm.
 - \(O(g(n)) \) denotes a collection of functions.

- \(O(g(n)) \) consists of all functions that can be upper bounded by \(g(n) \), starting at some point, using some constant factor.

- \(f(n) \in O(g(n)) \) if there are:
 - A real constant \(c > 0 \)
 - An integer constant \(n_0 \geq 1 \)

 such that:

 \[
 f(n) \leq c \cdot g(n) \quad \text{for } n \geq n_0
 \]

- For each member function \(f(n) \) in \(O(g(n)) \), we say that:
 - \(f(n) \in O(g(n)) \)
 - \(f(n) \) is \(O(g(n)) \) \[f(n) \) is a member of “big-Oh of \(g(n)\)”\]
 - \(f(n) \) is order of \(g(n) \) \[f(n) \) is “big-Oh of \(g(n)\)”\]
Asymptotic Upper Bound: Visualization

From n_0, $f(n)$ is upper bounded by $c \cdot g(n)$, so $f(n)$ is $O(g(n))$.
Asymptotic Upper Bound: Example (1)

Prove: The function $8n + 5$ is $O(n)$.

Strategy: Choose a real constant $c > 0$ and an integer constant $n_0 \geq 1$, such that for every integer $n \geq n_0$:

$$8n + 5 \leq c \cdot n$$

Can we choose $c = 9$? What should the corresponding n_0 be?

<table>
<thead>
<tr>
<th>n</th>
<th>$8n + 5$</th>
<th>9n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>54</td>
</tr>
</tbody>
</table>

Therefore, we prove it by choosing $c = 9$ and $n_0 = 5$. We may also prove it by choosing $c = 13$ and $n_0 = 1$. Why?
Asymptotic Upper Bound: Example (2)

Prove: The function \(f(n) = 5n^4 + 3n^3 + 2n^2 + 4n + 1 \) is \(O(n^4) \).

Strategy: Choose a real constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \), such that for every integer \(n \geq n_0 \):

\[
5n^4 + 3n^3 + 2n^2 + 4n + 1 \leq c \cdot n^4
\]

\[f(1) = 5 + 3 + 2 + 4 + 1 = 15\]

Choose \(c = 15 \) and \(n_0 = 1\)!
Asymptotic Upper Bound: Proposition (1)

If $f(n)$ is a polynomial of degree d, i.e.,

$$f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d$$

and a_0, a_1, \ldots, a_d are integers (i.e., negative, zero, or positive), then $f(n)$ is $O(n^d)$.

- We prove by choosing

 $$c = |a_0| + |a_1| + \cdots + |a_d|$$

 $$n_0 = 1$$

- We know that for $n \geq 1$:
 $$n^0 \leq n^1 \leq n^2 \leq \cdots \leq n^d$$

- Upper-bound effect starts when $n_0 = 1$?

 $$[f(1) \leq 1^d]$$

 $$a_0 \cdot 1^0 + a_1 \cdot 1^1 + \cdots + a_d \cdot 1^d \leq |a_0| \cdot 1^d + |a_1| \cdot 1^d + \cdots + |a_d| \cdot 1^d$$

- Upper-bound effect holds?

 $$[f(n) \leq n^d]$$

 $$a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d \leq |a_0| \cdot n^d + |a_1| \cdot n^d + \cdots + |a_d| \cdot n^d$$
Asymptotic Upper Bound: Proposition (2)

\[O(n^0) \subset O(n^1) \subset O(n^2) \subset \ldots \]

If a function \(f(n) \) is upper bounded by another function \(g(n) \) of degree \(d \), \(d \geq 0 \), then \(f(n) \) is also upper bounded by all other functions of a strictly higher degree (i.e., \(d + 1 \), \(d + 2 \), etc.).

e.g., Family of \(O(n) \) contains:
\[
\begin{align*}
n^0, 2n^0, 3n^0, \ldots & \quad \text{[functions with degree 0]} \\
n, 2n, 3n, \ldots & \quad \text{[functions with degree 1]}
\end{align*}
\]

e.g., Family of \(O(n^2) \) contains:
\[
\begin{align*}
n^0, 2n^0, 3n^0, \ldots & \quad \text{[functions with degree 0]} \\
n, 2n, 3n, \ldots & \quad \text{[functions with degree 1]} \\
n^2, 2n^2, 3n^2, \ldots & \quad \text{[functions with degree 2]}
\end{align*}
\]
Asymptotic Upper Bound: More Examples

- $5n^2 + 3n \cdot \log n + 2n + 5$ is $O(n^2)$
 $[c = 15, n_0 = 1]$
- $20n^3 + 10n \cdot \log n + 5$ is $O(n^3)$
 $[c = 35, n_0 = 1]$
- $3 \cdot \log n + 2$ is $O(\log n)$
 $[c = 5, n_0 = 2]$
 - Why can’t n_0 be 1?
 - Choosing $n_0 = 1$ means $\Rightarrow f(1)$ is upper-bounded by $c \cdot \log 1$:
 - We have $f(1) = 3 \cdot \log 1 + 2$, which is 2.
 - We have $c \cdot \log 1$, which is 0.
 $\Rightarrow f(1)$ is not upper-bounded by $c \cdot \log 1$
 [Contradiction!]
- 2^{n+2} is $O(2^n)$
 $[c = 4, n_0 = 1]$
- $2n + 100 \cdot \log n$ is $O(n)$
 $[c = 102, n_0 = 1]$
Using Asymptotic Upper Bound Accurately

- Use the big-Oh notation to characterize a function (of an algorithm’s running time) as closely as possible.

For example, say \(f(n) = 4n^3 + 3n^2 + 5 \):
- Recall: \(O(n^3) \subset O(n^4) \subset O(n^5) \subset \ldots \)
- It is the **most accurate** to say that \(f(n) \) is \(O(n^3) \).
- It is **true**, but not very useful, to say that \(f(n) \) is \(O(n^4) \) and that \(f(n) \) is \(O(n^5) \).
- It is **false** to say that \(f(n) \) is \(O(n^2), O(n), \) or \(O(1) \).

- Do not include **constant factors** and **lower-order terms** in the big-Oh notation.

For example, say \(f(n) = 2n^2 \) is \(O(n^2) \), do not say \(f(n) \) is \(O(4n^2 + 6n + 9) \).
Classes of Functions

<table>
<thead>
<tr>
<th>upper bound</th>
<th>class</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>cheapest</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>logarithmic</td>
<td></td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td></td>
</tr>
<tr>
<td>$O(n \cdot \log(n))$</td>
<td>“n-log-n”</td>
<td></td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td></td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td></td>
</tr>
<tr>
<td>$O(n^k), k \geq 1$</td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>$O(a^n), a > 1$</td>
<td>exponential</td>
<td>most expensive</td>
</tr>
</tbody>
</table>
Rates of Growth: Comparison

- Linear
- Exponential
- Constant
- Logarithmic
- N-Log-N
- Quadratic
- Cubic
- Linear-N
- Logarithmic
- Constant
Upper Bound of Algorithm: Example (1)

```java
maxOf (int x, int y) {
    int max = x;
    if (y > x) {
        max = y;
    }
    return max;
}
```

- # of primitive operations: 4
 2 assignments + 1 comparison + 1 return = 4
- Therefore, the running time is $O(1)$.
- That is, this is a *constant-time* algorithm.
Upper Bound of Algorithm: Example (2)

```c
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i];
        }
        i ++
    }
    return currentMax;
}
```

- From last lecture, we calculated that the # of primitive operations is $7n - 2$.
- Therefore, the running time is $O(n)$.
- That is, this is a linear-time algorithm.
Upper Bound of Algorithm: Example (3)

```java
containsDuplicate (int[] a, int n) {
    for (int i = 0; i < n; ) {
        for (int j = 0; j < n; ) {
            if (i != j && a[i] == a[j]) {
                return true;
            }
            j ++;
        }
        i ++;
    }
    return false;
}
```

• Worst case is when we reach Line 8.
• # of primitive operations \(\approx c_1 + n \cdot n \cdot c_2 \), where \(c_1 \) and \(c_2 \) are some constants.
• Therefore, the running time is \(O(n^2) \).
• That is, this is a quadratic algorithm.
Upper Bound of Algorithm: Example (4)

```java
sumMaxAndCrossProducts (int[] a, int n) {
    int max = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > max) { max = a[i]; }
    }
    int sum = max;
    for (int j = 0; j < n; j ++) {
        for (int k = 0; k < n; k ++) {
            sum += a[j] * a[k];
        }
    }
    return sum;
}
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1, c_2, c_3, and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a **quadratic** algorithm.
Upper Bound of Algorithm: Example (5)

```java
triangularSum (int[] a, int n) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
            sum += a[j];
        }
    }
    return sum;
}
```

- # of primitive operations $\approx n + (n - 1) + \cdots + 2 + 1 = \frac{n(n+1)}{2}$
- Therefore, the running time is $O\left(\frac{n^2+n}{2}\right) = O(n^2)$.
- That is, this is a *quadratic* algorithm.
Basic Data Structure: Arrays

- An array is a sequence of indexed elements.
- Size of an array is fixed at the time of its construction.
- Supported operations on an array:
 - **Accessing**: e.g., int max = a[0];
 - Time Complexity: $O(1)$ [constant operation]
 - **Updating**: e.g., a[i] = a[i + 1];
 - Time Complexity: $O(1)$ [constant operation]
 - **Inserting/Removing**:
    ```java
    String[] insertAt(String[] a, int n, String e, int i)
    String[] result = new String[n + 1];
    for(int j = 0; j <= i - 1; j ++){ result[j] = a[j]; }
    result[i] = e;
    for(int j = i + 1; j <= n - 1; j ++){ result[j] = a[j-1]; }
    return result;
    ```
 - Time Complexity: $O(n)$ [linear operation]
Array Case Study: Comparing Two Sorting Strategies

• Problem:

 Input: An array a of n numbers $\langle a_1, a_2, \ldots, a_n \rangle$

 Output: A permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \ldots \leq a'_n$

• We propose two *alternative implementation strategies* for solving this problem.

• At the end, we want to know which one to choose, based on *time complexity*.
Sorting: Strategy 1 – Selection Sort

- Maintain a (initially empty) sorted portion of array \(a \).
- From left to right in array \(a \), select and insert the minimum element to the end of this sorted portion, so it remains sorted.

```java
1. selectionSort(int[] a, int n)
2.   for (int i = 0; i <= (n - 2); i ++)
3.     int minIndex = i;
4.     for (int j = i; j <= (n - 1); j ++)
5.       if (a[j] < a[minIndex]) { minIndex = j; }
6.     int temp = a[i];
7.     a[i] = a[minIndex];
8.     a[minIndex] = temp;
```

- How many times does the body of the for loop (Line 4) run?
- Running time? \(O(n^2) \)

\[
\begin{align*}
&\underbrace{n} &+ \underbrace{(n-1)} &+ \cdots + \underbrace{2} \\
&\text{find \{a[0], \ldots, a[n-1]\}} &\text{find \{a[1], \ldots, a[n-1]\}} &\text{find \{a[n - 2], a[a[n - 1]]\}}
\end{align*}
\]

- So selection sort is a \textit{quadratic-time algorithm}.
Sorting: Strategy 2 – Insertion Sort

- Maintain a (initially empty) sorted portion of array \(a \).
- From left to right in array \(a \), insert one element at a time into the “right” spot in this sorted portion, so it remains sorted.

```java
insertionSort(int[] a, int n)
for (int i = 1; i < n; i++)
    int current = a[i];
    int j = i;
while (j > 0 && a[j - 1] > current)
    a[j] = a[j - 1];
    j --;
a[j] = current;
```

- **while loop** (L5) exits when? \(j \leq 0 \) or \(a[j - 1] \leq \) current
- Running time?
 \[
 O(n^2) = \left[\left(\frac{1}{1} + \frac{2}{2} + \cdots + \frac{n-1}{n-1} \right) \right]
 \]
 insert into \{a[0]\} \quad insert into \{a[0], a[1]\} \quad insert into \{a[0], ..., a[n-2]\}
- So insertion sort is a **quadratic-time algorithm**.
In the Java implementations for *selection* sort and *insertion* sort, we maintain the “sorted portion” from the *left* end.

- For *selection* sort, we select the *minimum* element from the “unsorted portion” and insert it to the *end* in the “sorted portion”.

- For *insertion* sort, we choose the *left-most* element from the “unsorted portion” and insert it at the “*right spot*” in the “sorted portion”.

Question: Can we modify the Java implementations, so that the “sorted portion” is maintained and grown from the *right* end instead?
Comparing Insertion & Selection Sorts

- **Asymptotically**, running times of selection sort and insertion sort are both $O(n^2)$.
- We will later see that there exist better algorithms that can perform better than quadratic: $O(n \cdot \log n)$.
Index (1)

- Algorithm and Data Structure
- Measuring “Goodness” of an Algorithm
- Measuring Efficiency of an Algorithm
- Measure Running Time via Experiments
- Example Experiment
- Example Experiment: Detailed Statistics
- Example Experiment: Visualization
- Experimental Analysis: Challenges
- Moving Beyond Experimental Analysis
- Counting Primitive Operations
- Example: Counting Primitive Operations
- From Absolute RT to Relative RT
- Example: Approx. # of Primitive Operations
Approximating Running Time as a Function of Input Size
Focusing on the Worst-Case Input
What is Asymptotic Analysis?
Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)
Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately
Classes of Functions
Index (3)

Rates of Growth: Comparison
Upper Bound of Algorithm: Example (1)
Upper Bound of Algorithm: Example (2)
Upper Bound of Algorithm: Example (3)
Upper Bound of Algorithm: Example (4)
Upper Bound of Algorithm: Example (5)
Basic Data Structure: Arrays
Array Case Study:
Comparing Two Sorting Strategies
Sorting: Strategy 1 – Selection Sort
Sorting: Strategy 2 – Insertion Sort
Sorting: Alternative Implementations?
Comparing Insertion & Selection Sorts