Asymptotic Analysis of Algorithms

EECS2030 B: Advanced Object Oriented Programming Fall 2018

CHEN-WEI WANG

Algorithm and Data Structure

- A data structure is:
 - A systematic way to store and organize data in order to facilitate access and modifications
 - Never suitable for all purposes: it is important to know its strengths and limitations
- A well-specified computational problem precisely describes the desired input/output relationship.
 - **Input:** A sequence of *n* numbers $\langle a_1, a_2, \dots, a_n \rangle$
 - **Output:** A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$
 - An instance of the problem: (3, 1, 2, 5, 4)
- An *algorithm* is:
 - A solution to a well-specified *computational problem*
 - A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an algorithm manipulate well-chosen data structure(s).

Measuring "Goodness" of an Algorithm

- 1. Correctness:
 - Does the algorithm produce the expected output?
 - Use JUnit to ensure this.
- **2.** Efficiency:
 - o Time Complexity: processor time required to complete
 - o Space Complexity: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?

3 of 42

Measuring Efficiency of an Algorithm

- *Time* is more of a concern than is *storage*.
- Solutions that are meant to be run on a computer should run as fast as possible.
- Particularly, we are interested in how *running time* depends on two *input factors*:
 - 1. size
 - e.g., sorting an array of 10 elements vs. 1m elements
 - structure
 - e.g., sorting an already-sorted array vs. a hardly-sorted array
- How do you determine the running time of an algorithm?
 - 1. Measure time via experiments
 - 2. Characterize time as a *mathematical function* of the input size

Measure Running Time via Experiments

- Once the algorithm is implemented in Java:
 - Execute the program on *test inputs* of various *sizes* and *structures*.
 - For each test, record the *elapsed time* of the execution.

```
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- o Visualize the result of each test.
- To make *sound statistical claims* about the algorithm's *running time*, the set of input tests must be "reasonably" *complete*.

5 of 42

Example Experiment

- Computational Problem:
 - Input: A character c and an integer n
- Algorithm 1 using String Concatenations:

```
public static String repeat1(char c, int n) {
   String answer = "";
   for (int i = 0; i < n; i ++) {      answer += c; }
   return answer; }</pre>
```

• Algorithm 2 using StringBuilder append's:

```
public static String repeat2(char c, int n) {
   StringBuilder sb = new StringBuilder();
   for (int i = 0; i < n; i ++) {       sb.append(c);    }
   return sb.toString(); }</pre>
```

Example Experiment: Detailed Statistics

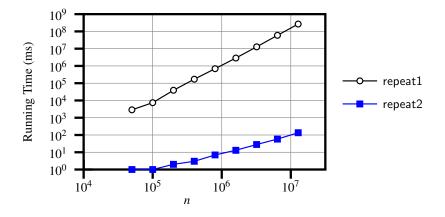
n	repeat1 (in ms)	repeat2 (in ms)	
50,000	2,884	1	
100,000	7,437	1	
200,000	39,158	2	
400,000	170,173	3	
800,000	690,836	7	
1,600,000	2,847,968	13	
3,200,000	12,809,631	28	
6,400,000	59,594,275	58	
12,800,000	265,696,421 (≈ 3 days)	135	

- As *input size* is doubled, *rates of increase* for both algorithms are *linear*:
 - Running time of repeat1 increases by ≈ 5 times.
 - Running time of repeat 2 increases by ≈ 2 times.

7 of 42

8 of 42

Example Experiment: Visualization



LASSONDE

Experimental Analysis: Challenges

- 1. An algorithm must be *fully implemented* (i.e., translated into valid Java syntax) in order study its runtime behaviour experimentally.
 - What if our purpose is to choose among alternative data structures or algorithms to implement?
 - Can there be a higher-level analysis to determine that one algorithm or data structure is *superior* than others?
- 2. Comparison of multiple algorithms is only *meaningful* when experiments are conducted under the same environment of:
 - Hardware: CPU, running processes
 - o Software: OS, JVM version
- 3. Experiments can be done only on a limited set of test inputs.
 - What if "important" inputs were not included in the experiments?

9 of 42

Moving Beyond Experimental Analysis

- A better approach to analyzing the efficiency (e.g., running times) of algorithms should be one that:
 - Allows us to calculate the *relative efficiency* (rather than absolute elapsed time) of algorithms in a ways that is independent of the hardware and software environment.
 - Can be applied using a high-level description of the algorithm (without fully implementing it).
 - Considers all possible inputs.
- We will learn a better approach that contains 3 ingredients:
 - 1. Counting primitive operations
 - 2. Approximating running time as a function of input size
 - **3.** Focusing on the *worst-case* input (requiring the most running time)

10 of 42

Counting Primitive Operations

A *primitive operation* corresponds to a low-level instruction with

a constant execution time.

```
    Assignment

                                                        [e.g., x = 5;]

    Indexing into an array

                                                           [e.g., a[i]]
• Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]

    Accessing an attribute of an object

                                                 [e.g., acc.balance]

    Returning from a method

                                             [e.g., return result;]
```

Q: Why is a method call in general *not* a primitive operation?

A: It may be a call to:

- a "cheap" method (e.g., printing Hello World), or
- an "expensive" method (e.g., sorting an array of integers)

11 of 42

Example: Counting Primitive Operations


```
findMax (int[] a, int n) {
 currentMax = a[0];
 for (int i = 1; i < n; ) {
  if (a[i] > currentMax) {
    currentMax = a[i]; }
  i ++ }
 return currentMax;
```

```
# of times i < n in Line 3 is executed?
                                                             [ n ]
 # of times the loop body (Line 4 to Line 6) is executed? [n-1]
• Line 2:
           2
                                     [1 indexing + 1 assignment]
• Line 3:
                                 [1 assignment + n comparisons]
           n+1
           (n-1) \cdot 2
                                     [1 indexing + 1 comparison]
Line 4:
                                     [1 indexing + 1 assignment]
Line 5:
           (n-1) \cdot 2
                                     [1 addition + 1 assignment]
Line 6:
           (n-1) \cdot 2
• Line 7: 1
                                                       [1 return]
```

• Total # of Primitive Operations:

LASSONDE

From Absolute RT to Relative RT

- Each primitive operation (PO) takes approximately the <u>same</u>,
 constant amount of time to execute. [say t]
- The *number of primitive operations* required by an algorithm should be *proportional* to its *actual running time* on a specific environment.

e.g., findMax (int[] a, int n) has
$$7n-2$$
 POs

$$RT = (7n - 2) \cdot t$$

Say two algorithms with RT $(7n - 2) \cdot t$ and RT $(10n + 3) \cdot t$. \Rightarrow It suffices to compare their *relative* running time:

$$7n - 2$$
 vs. $10n + 3$.

• To determine the *time efficiency* of an algorithm, we only focus on their *number of POs*.

13 of 42

Example: Approx. # of Primitive Operations

• Given # of primitive operations counted precisely as $7n^1 - 2$, we view it as

$$7 \cdot n - 2 \cdot n^0$$

- We say
 - *n* is the *highest power*
 - o 7 and 2 are the multiplicative constants
 - ∘ 2 is the *lower term*
- When approximating a function (considering that input size may be very large):
 - Only the *highest power* matters.
 - o multiplicative constants and lower terms can be dropped.
 - \Rightarrow 7*n* 2 is approximately *n*

Exercise: Consider $7n + 2n \cdot log n + 3n^2$:

- highest power?
- multiplicative constants?

[7, 2, 3]

 $[n^2]$

• lower terms?

14 of 42

 $[7n + 2n \cdot \log n]$

LASSONDE

Approximating Running Time as a Function of Input Size

Given the *high-level description* of an algorithm, we associate it with a function f, such that f(n) returns the *number of primitive operations* that are performed on an *input of size n*.

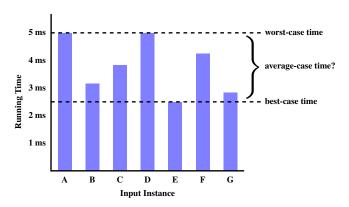
 \circ f(n) = 5 [constant] \circ $f(n) = log_2 n$ [logarithmic] \circ $f(n) = 4 \cdot n$ [linear] \circ $f(n) = n^2$ [quadratic] \circ $f(n) = n^3$ [cubic]

15 of 42

 \circ $f(n) = 2^n$

Focusing on the Worst-Case Input

[exponential]



- Average-case analysis calculates the expected running times based on the probability distribution of input values.
- worst-case analysis or best-case analysis?

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing behaviour in the limit:
 - How the running time of the algorithm under analysis changes as the input size changes without bound
 - e.g., contrast $RT_1(n) = n$ with $RT_2(n) = n^2$
- Allows us to compare the *relative* performance of alternative algorithms:
 - For large enough inputs, the multiplicative constants and lower-order terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n 100$ are considered **equally efficient**, *asymptotically*.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, asymptotically.

17 of 42

Three Notions of Asymptotic Bounds

We may consider three kinds of *asymptotic bounds* for the *running time* of an algorithm:

- Asymptotic *upper* bound [O]
- Asymptotic lower bound $[\Omega]$
- Asymptotic tight bound [Θ]

18 of 42

Asymptotic Upper Bound: Definition

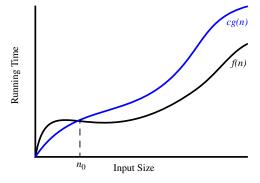
- Let f(n) and g(n) be functions mapping positive integers (input size) to positive real numbers (running time).
 - \circ f(n) characterizes the running time of some algorithm.
 - \circ O(g(n)) denotes a collection of functions.
- O(g(n)) consists of *all* functions that can be upper bounded by g(n), starting at some point, using some constant factor.
- $f(n) \in O(g(n))$ if there are:
 - A real constant c > 0
 - An integer constant $n_0 \ge 1$ such that:

$$f(n) \le c \cdot g(n)$$
 for $n \ge n_0$

- For each member function f(n) in O(g(n)), we say that:
 - ∘ $f(n) \in O(g(n))$ [f(n) is a member of "big-Oh of g(n)"] ∘ f(n) is O(g(n)) [f(n) is "big-Oh of g(n)"]
 - \circ f(n) is order of g(n)

19 of 42

Asymptotic Upper Bound: Visualization



From n_0 , f(n) is upper bounded by $c \cdot g(n)$, so f(n) is O(g(n)).

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$8n + 5 \le c \cdot n$$

Can we choose c = 9? What should the corresponding n_0 be?

n	8n + 5	9n
1	13	9
2	21	18
3	29	27
4	37	36
5	45	45
6	53	54

Therefore, we prove it by choosing c = 9 and $n_0 = 5$.

We may also prove it by choosing c = 13 and $n_0 = 1$. Why?

21 of 42

Asymptotic Upper Bound: Example (2)

Prove: The function $f(n) = 5n^4 + 3n^3 + 2n^2 + 4n + 1$ is $O(n^4)$.

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$5n^4 + 3n^3 + 2n^2 + 4n + 1 \le c \cdot n^4$$

$$f(1) = 5 + 3 + 2 + 4 + 1 = 15$$

Choose c = 15 and $n_0 = 1!$

22 of 42

Asymptotic Upper Bound: Proposition (1)

If f(n) is a polynomial of degree d, i.e.,

$$f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d$$

and a_0, a_1, \dots, a_d are integers (i.e., negative, zero, or positive), then $f(\mathbf{n})$ is $O(n^d)$.

We prove by choosing

$$c = |a_0| + |a_1| + \cdots + |a_d|$$

 $n_0 = 1$

$$0 < n^1 < n^2 < \cdots < n^d$$

$$(1) < 1^{d}$$

• We know that for
$$n \ge 1$$
: $n^0 \le n^1 \le n^2 \le \dots \le n^d$
• Upper-bound effect starts when $n_0 = 1$? $[f(1) \le 1^d]$
 $a_0 \cdot 1^0 + a_1 \cdot 1^1 + \dots + a_d \cdot 1^d \le |a_0| \cdot 1^d + |a_1| \cdot 1^d + \dots + |a_d| \cdot 1^d$

Upper-bound effect holds?

 $[f(\mathbf{n}) < \mathbf{n}^d]$

$$a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d \le |a_0| \cdot n^d + |a_1| \cdot n^d + \dots + |a_d| \cdot n^d$$
23 of 42

Asymptotic Upper Bound: Proposition (2)

$$O(n^0) \subset O(n^1) \subset O(n^2) \subset \dots$$

If a function f(n) is upper bounded by another function g(n) of degree d, d > 0, then f(n) is also upper bounded by all other functions of a *strictly higher degree* (i.e., d + 1, d + 2, *etc.*).

e.g., Family of O(n) contains:

 n^0 , $2n^0$, $3n^0$, ... [functions with degree 0] $n, 2n, 3n, \dots$ [functions with degree 1]

e.g., Family of $O(n^2)$ contains:

 n^0 , $2n^0$, $3n^0$, ... [functions with degree 0] $n, 2n, 3n, \dots$ [functions with degree 1] n^2 , $2n^2$, $3n^2$, ... [functions with degree 2]

Asymptotic Upper Bound: More Examples LASSONDE

- $5n^2 + 3n \cdot logn + 2n + 5$ is $O(n^2)$ $[c = 15, n_0 = 1]$
- $20n^3 + 10n \cdot logn + 5$ is $O(n^3)$ $[c = 35, n_0 = 1]$
- $[c = 5, n_0 = 2]$ • $3 \cdot logn + 2$ is O(logn)
 - ∘ Why can't n₀ be 1?
 - Choosing $n_0 = 1$ means $\Rightarrow f(1)$ is upper-bounded by $c \cdot log(1)$:
 - We have $f(\boxed{1}) = 3 \cdot log 1 + 2$, which is 2.
 - We have $c \cdot log 1$, which is 0.
 - $\Rightarrow f(1)$ is not upper-bounded by $c \cdot log 1$ [Contradiction!]
- 2^{n+2} is $O(2^n)$ $[c = 4, n_0 = 1]$
- $2n + 100 \cdot logn$ is O(n) $[c = 102, n_0 = 1]$

25 of 42

Using Asymptotic Upper Bound Accurately LASSONDE

• Use the big-Oh notation to characterize a function (of an algorithm's running time) as closely as possible.

For example, say $f(n) = 4n^3 + 3n^2 + 5$:

- Recall: $O(n^3) \subset O(n^4) \subset O(n^5) \subset \dots$
- It is the *most accurate* to say that f(n) is $O(n^3)$.
- It is *true*, but not very useful, to say that f(n) is $O(n^4)$ and that f(n) is $O(n^5)$.
- It is *false* to say that f(n) is $O(n^2)$, O(n), or O(1).
- Do not include constant factors and lower-order terms in the big-Oh notation.

For example, say $f(n) = 2n^2$ is $O(n^2)$, do not say f(n) is $O(4n^2 + 6n + 9)$.

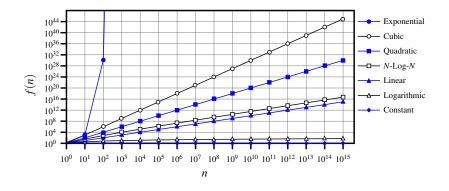
26 of 42

Classes of Functions

upper bound	class	cost
<i>O</i> (1)	constant	cheapest
O(log(n))	logarithmic	
<i>O</i> (<i>n</i>)	linear	
$O(n \cdot log(n))$	"n-log-n"	
$O(n^2)$	quadratic	
$O(n^3)$	cubic	
$O(n^k), k \ge 1$	polynomial	
$O(a^n), a > 1$	exponential	most expensive

27 of 42

Rates of Growth: Comparison



- # of primitive operations: 4
 2 assignments + 1 comparison + 1 return = 4
- Therefore, the running time is O(1).
- That is, this is a *constant-time* algorithm.

29 of 42

Upper Bound of Algorithm: Example (2)


```
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i]; }
        i ++ }
    return currentMax; }
```

- From last lecture, we calculated that the # of primitive operations is 7n – 2.
- Therefore, the running time is O(n).
- That is, this is a *linear-time* algorithm.

30 of 42

Upper Bound of Algorithm: Example (3)


```
containsDuplicate (int[] a, int n) {
for (int i = 0; i < n; ) {
  for (int j = 0; j < n; ) {
   if (i != j && a[i] == a[j]) {
     return true; }
     j ++; }
  i ++; }
return false; }</pre>
```

- Worst case is when we reach Line 8.
- # of primitive operations $\approx c_1 + n \cdot n \cdot c_2$, where c_1 and c_2 are some constants.
- Therefore, the running time is $O(n^2)$.
- That is, this is a *quadratic* algorithm.

31 of 42

Upper Bound of Algorithm: Example (4)

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1 , c_2 , c_3 , and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a *quadratic* algorithm.


```
1  triangularSum (int[] a, int n) {
2   int sum = 0;
3   for (int i = 0; i < n; i ++) {
4    for (int j = i; j < n; j ++) {
5     sum += a[j]; } }
6   return sum; }</pre>
```

- # of primitive operations $\approx n + (n-1) + \cdots + 2 + 1 = \frac{n \cdot (n+1)}{2}$
- Therefore, the running time is $O(\frac{n^2+n}{2}) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

33 of 42

Basic Data Structure: Arrays

- An array is a sequence of indexed elements.
- Size of an array is fixed at the time of its construction.
- Supported operations on an array:
 - o Accessing: e.g., int max = a[0];
 Time Complexity: O(1) [constant operation]

 - Inserting/Removing:

String[] insertAt(String[] a, int n, String e, int i)
 String[] result = new String[n + 1];
 for(int j = 0; j <= i - 1; j ++) { result[j] = a[j]; }
 result[i] = e;
 for(int j = i + 1; j <= n - 1; j ++) { result[j] = a[j-1]; }
 return result;</pre>

Time Complexity: O(n)

[linear operation]

34 of 42

Array Case Study: Comparing Two Sorting Strategies

Problem:

Input: An array a of n numbers $\langle a_1, a_2, \ldots, a_n \rangle$ **Output:** A permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \ldots \leq a'_n$

- We propose two alternative implementation strategies for solving this problem.
- At the end, we want to know which one to choose, based on time complexity.

35 of 42

Sorting: Strategy 1 - Selection Sort

- Maintain a (initially empty) sorted portion of array a.
- From left to right in array *a*, select and insert *the minimum element* to the end of this sorted portion, so it remains sorted.

```
1    selectionSort(int[] a, int n)
2         for (int i = 0; i <= (n - 2); i ++)
3         int minIndex = i;
4         for (int j = i; j <= (n - 1); j ++)
5         if (a[j] < a[minIndex]) { minIndex = j; }
6         int temp = a[i];
7         a[i] = a[minIndex];
8         a[minIndex] = temp;</pre>
```

• How many times does the body of for loop (Line 4) run?

So selection sort is a quadratic-time algorithm.

Sorting: Strategy 2 – Insertion Sort

- Maintain a (initially empty) sorted portion of array a.
- From left to right in array a, insert one element at a time into the "right" spot in this sorted portion, so it remains sorted.

```
insertionSort(int[] a, int n)

for (int i = 1; i < n; i ++)
    int current = a[i];

int j = i;

while (j > 0 && a[j - 1] > current)

a[j] = a[j - 1];

j --;

a[j] = current;
```

• while loop (L5) exits when? j <= 0 or a[j - 1] <= current</p>

```
• Running time? O(\underbrace{1}_{insert\ into\ \{a[0]\}} + \underbrace{2}_{insert\ into\ \{a[0],\ a[1]\}} + \cdots + \underbrace{(n-1)}_{insert\ into\ \{a[0],\ \dots,\ a[n-2]\}}
```

So insertion sort is a quadratic-time algorithm.

37 of 42

Sorting: Alternative Implementations?

- In the Java implementations for *selection* sort and *insertion* sort, we maintain the "sorted portion" from the *left* end.
 - For *selection* sort, we select the *minimum* element from the "unsorted portion" and insert it to the *end* in the "sorted portion".
- For insertion sort, we choose the left-most element from the "unsorted portion" and insert it at the "right spot" in the "sorted portion".
- Question: Can we modify the Java implementations, so that the "sorted portion" is maintained and grown from the <u>right</u> end instead?

Comparing Insertion & Selection Sorts

- Asymptotically, running times of selection sort and insertion sort are both $O(n^2)$.
- We will later see that there exist better algorithms that can perform better than quadratic: $O(n \cdot logn)$.

39 of 42

Index (1)

Algorithm and Data Structure

Measuring "Goodness" of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Example Experiment

Example Experiment: Detailed Statistics

Example Experiment: Visualization
Experimental Analysis: Challenges
Moving Beyond Experimental Analysis

Counting Primitive Operations

Example: Counting Primitive Operations

From Absolute RT to Relative RT

Example: Approx. # of Primitive Operations

Index (2)

Approximating Running Time as a Function of Input Size

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)

Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately

Classes of Functions

Index (3)

Rates of Growth: Comparison

Upper Bound of Algorithm: Example (1)

Upper Bound of Algorithm: Example (2)

Upper Bound of Algorithm: Example (3)

Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)

Basic Data Structure: Arrays

Array Case Study:

Comparing Two Sorting Strategies Sorting: Strategy 1 – Selection Sort

Sorting: Strategy 2 – Insertion Sort

Sorting: Alternative Implementations?

Comparing Insertion & Selection Sorts