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Motivating Example: Two Types of Errors (1)

Consider two kinds of exceptions for a counter:

public class ValueTooLargeException extends Exception {
ValueTooLargeException(String s) { super(s); }

}
public class ValueTooSmallException extends Exception {
ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two classes must be
handled ( catch-specify requirement ):

○ Either specify throws . . . in the method signature
(i.e., propagating it to other caller)

○ Or handle it in a try-catch block
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Motivating Example: Two Types of Errors (2)
Approach 1 – Specify: Indicate in the method signature that a
specific exception might be thrown.

Example 1: Method that throws the exception
class C1 {
void m1(int x) throws ValueTooSmallException {
if(x < 0) {
throw new ValueTooSmallException("val " + x);

}
}

}

Example 2: Method that calls another which throws the exception
class C2 {
C1 c1;
void m2(int x) throws ValueTooSmallException {
c1.m1(x);

}
}
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Motivating Example: Two Types of Errors (3)

Approach 2 – Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int x = input.nextInt();
C2 c2 = new c2();
try {
c2.m2(x);

}
catch(ValueTooSmallException e) { . . . }

}
}
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A Simple Counter (1)
Consider a class for keeping track of an integer counter value:
public class Counter {
public final static int MAX_VALUE = 3;
public final static int MIN_VALUE = 0;
private int value;
public Counter() {
this.value = Counter.MIN_VALUE;

}
public int getValue() {
return value;

}
. . . /* more later! */

○ Access private attribute value using public accessor getValue.
○ Two class-wide (i.e., static) constants (i.e., final) for lower and

upper bounds of the counter value.
○ Initialize the counter value to its lower bound.
○ Requirement :

The counter value must be between its lower and upper bounds.
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Exceptional Scenarios

Consider the two possible exceptional scenarios:

● An attempt to increment above the counter’s upper bound.
● An attempt to decrement below the counter’s lower bound.
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A Simple Counter (2)
/* class Counter */
public void increment() throws ValueTooLargeException {
if(value == Counter.MAX_VALUE) {
throw new ValueTooLargeException("counter value is " + value);

}
else { value ++; }

}

public void decrement() throws ValueTooSmallException {
if(value == Counter.MIN_VALUE) {
throw new ValueTooSmallException("counter value is " + value);

}
else { value --; }

}
}

○ Change the counter value via two mutator methods.
○ Changes on the counter value may trigger an exception:
● Attempt to increment when counter already reaches its maximum.
● Attempt to decrement when counter already reaches its minimum.
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Components of a Test

● Manipulate the relevant object(s).
e.g., Initialize a counter object c, then call c.increment().

● What do you expect to happen ?
e.g., value of counter is such that Counter.MIN VALUE + 1

● What does your program actually produce ?
e.g., call c.getValue to find out.

● A test:
○ Passes if expected value matches actual value
○ Fails if expected value does not match actual value

● So far, you ran tests via a tester class with the main method.
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Testing Counter from Console (V1): Case 1

Consider a class for testing the Counter class:

public class CounterTester1 {
public static void main(String[] args) {
Counter c = new Counter();
println("Init val: " + c.getValue());
try {
c.decrement();
println("ValueTooSmallException NOT thrown as expected.");

}
catch (ValueTooSmallException e) {
println("ValueTooSmallException thrown as expected.");

} } }

Executing it as Java Application gives this Console Output:

Init val: 0
ValueTooSmallException thrown as expected.
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Testing Counter from Console (V1): Case 2
Consider another class for testing the Counter class:
public class CounterTester2 {
public static void main(String[] args) {
Counter c = new Counter();
println("Current val: " + c.getValue());
try { c.increment(); c.increment(); c.increment(); }
catch (ValueTooLargeException e) {
println("ValueTooLargeException thrown unexpectedly."); }

println("Current val: " + c.getValue());
try {
c.increment();
println("ValueTooLargeException NOT thrown as expected."); }

catch (ValueTooLargeException e) {
println("ValueTooLargeException thrown as expected."); } } }

Executing it as Java Application gives this Console Output:
Current val: 0
Current val: 3
ValueTooLargeException thrown as expected.

10 of 41



Testing Counter from Console (V2)
Consider a different class for testing the Counter class:
import java.util.Scanner;
public class CounterTester3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

String cmd = null; Counter c = new Counter();
boolean userWantsToContinue = true;
while(userWantsToContinue) {
println("Enter \"inc\", \"dec\", or \"val\":");
cmd = input.nextLine();
try {

if(cmd.equals("inc")) { c.increment() ; }

else if(cmd.equals("dec")) { c.decrement() ; }

else if(cmd.equals("val")) { println( c.getValue() ); }

else { userWantsToContinue = false; println("Bye!"); }
}
catch(ValueTooLargeException e){ println("Value too big!"); }
catch(ValueTooSmallException e){ println("Value too small!"); }

} } }
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Testing Counter from Console (V2): Test 1

Test Case 1: Decrement when the counter value is too small.

Enter "inc", "dec", or "val":
val
0
Enter "inc", "dec", or "val":
dec
Value too small!
Enter "inc", "dec", or "val":
exit
Bye!
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Testing Counter from Console (V2): Test 2
Test Case 2: Increment when the counter value is too big.

Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
val
3
Enter "inc", "dec", or "val":
inc
Value too big!
Enter "inc", "dec", or "val":
exit
Bye!
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Limitations of Testing from the Console
● Do Test Cases 1 & 2 suffice to test Counter’s correctness?

○ Is it plausible to claim that the implementation of Counter is
correct because it passes the two test cases?

● What other test cases can you think of?
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

● So in total we need 8 test cases. ⇒ 6 more separate
○ CounterTester classes to create (like CounterTester1)!
○ Console interactions with CounterTester3!

● Problems? It is inconvenient to:
○ Run each TC by executing main of a CounterTester and

comparing console outputs with your eyes.
○ Re-run manually all TCs whenever Counter is changed.

Regression Testing : Any change introduced to your software must
not compromise its established correctness.14 of 41



Why JUnit?

● Automate the testing of correctness of your Java classes.
● Once you derive the list of tests, translate it into a JUnit test

case, which is just a Java class that you can execute upon.
● JUnit tests are helpful callers/clients of your classes, where

each test may:
○ Either attempt to use a method in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected

○ Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
● Success if the expected exception

(e.g., ValueTooSmallException) occurs.
● Failure if the expected exception does not occur.
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How to Use JUnit: Packages

Step 1:
○ In Eclipse, create a Java project ExampleTestingCounter
○ Separation of concerns :
● Group classes for implementation (i.e., Counter)

into package implementation.
● Group classes classes for testing (to be created)

into package tests.
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How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.
⇒ If you have n Java classes to test , create n JUnit test cases.
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How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.
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How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.
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How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.

○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .
⇒When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.

○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.
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How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

○
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How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○
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How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.
● The result of running a test is considered:

○ Failure if either
● an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) occurs; or

● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.

○ Success if neither assertion failures nor unexpected exceptions
occur.

● After running all tests:
○ A green bar means that all tests succeed.
⇒ Keep challenging yourself if more tests may be added.

○ A red bar means that at least one test fails.
⇒ Keep fixing the class under test and re-runing all tests, until you
receive a green bar.

● Question: What is the easiest way to making test a success?
Answer: Delete the call fail("Not yet implemented").
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How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.
⇒ Neither assertion failures nor exceptions will occur.
⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.
∴ We will receive a green bar!
Caution: test which passes at the moment is not useful at all!

24 of 41



How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○

25 of 41



How to Use JUnit: Adding More Tests (1)
● Recall the complete list of cases for testing Counter:

c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

● Let’s turn the two cases in the 1st row into two JUnit tests:
○ Test for the green cell succeeds if:
● No failures and exceptions occur; and
● The new counter value is 1.

○ Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).

● Common JUnit assertion methods:
○ void assertNull(Object o)
○ void assertEquals(expected, actual)
○ void assertArrayEquals(expecteds, actuals)
○ void assertTrue(boolean condition)
○ void fail(String message)
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How to Use JUnit: Assertion Methods
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How to Use JUnit: Adding More Tests (2.1)
1 @Test
2 public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment();
7 assertEquals(1, c.getValue());
8 } catch(ValueTooBigException e) {
9 /* Exception is not expected to be thrown. */

10 fail ("ValueTooBigException is not expected."); } }

○ Lines 5 & 8: We need a try-catch block because of Line 6.
Method increment from class Counter may throw the
ValueTooBigException.

○ Lines 4, 7 & 10 are all assertions:
● Lines 4 & 7 assert that c.getValue() returns the expected values.
● Line 10: an assertion failure ∵ unexpected ValueTooBigException

○ Line 7 can be rewritten as assertTrue(1 == c.getValue()).
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How to Use JUnit: Adding More Tests (2.2)
● Don’t lose the big picture!
● JUnit test in previous slide automates this console interaction:

Enter "inc", "dec", or "val":
val
0
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
val
1
Enter "inc", "dec", or "val":
exit
Bye!

● Automation is exactly rationale behind using JUnit!
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How to Use JUnit: Adding More Tests (3.1)

1 @Test
2 public void testDecFromMinValue() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.decrement();

7 fail ("ValueTooSmallException is expected."); }
8 catch(ValueTooSmallException e) {
9 /* Exception is expected to be thrown. */ } }

○ Lines 5 & 8: We need a try-catch block because of Line 6.
Method decrement from class Counter may throw the
ValueTooSmallException.

○ Lines 4 & 7 are both assertions:
● Lines 4 asserts that c.getValue() returns the expected value (i.e.,
Counter.MIN VALUE).

● Line 7: an assertion failure ∵ expected ValueTooSmallException
not thrown
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How to Use JUnit: Adding More Tests (3.2)

● Again, don’t lose the big picture!
● JUnit test in previous slide automates CounterTester1 and

the following console interaction for CounterTester3:

Enter "inc", "dec", or "val":
val
0
Enter "inc", "dec", or "val":
dec
Value too small!
Enter "inc", "dec", or "val":
exit
Bye!

● Again, automation is exactly rationale behind using JUnit!
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How to Use JUnit: Adding More Tests (4.1)

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment(); c.increment(); c.increment();
6 } catch (ValueTooLargeException e) {
7 fail("ValueTooLargeException was thrown unexpectedly.");
8 }
9 assertEquals(Counter.MAX_VALUE, c.getValue());

10 try {
11 c.increment();
12 fail("ValueTooLargeException was NOT thrown as expected.");
13 } catch (ValueTooLargeException e) {
14 /* Do nothing: ValueTooLargeException thrown as expected. */
15 } }

○ Lines 4 – 8:
We use a try-catch block to express that a VTLE is not expected.

○ Lines 9 – 15:
We use a try-catch block to express that a VTLE is expected.
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How to Use JUnit: Adding More Tests (4.2)
● JUnit test in previous slide automates CounterTester2 and

the following console interaction for CounterTester3:

Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
inc
Enter "inc", "dec", or "val":
val
3
Enter "inc", "dec", or "val":
inc
Value too big!
Enter "inc", "dec", or "val":
exit
Bye!
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How to Use JUnit: Adding More Tests (4.3)

Q: Can we rewrite testIncFromMaxValue to:

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment();
6 c.increment();
7 c.increment();
8 assertEquals(Counter.MAX_VALUE, c.getValue());
9 c.increment();

10 fail("ValueTooLargeException was NOT thrown as expected.");
11 } catch (ValueTooLargeException e) { }
12 }

No!
At Line 9, we would not know which line throws the VTLE:
○ If it was any of the calls in L5 – L7, then it’s not right .
○ If it was L9, then it’s right .
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How to Use JUnit: Adding More Tests (5)
Loops can make it effective on generating test cases:

1 @Test
2 public void testIncDecFromMiddleValues() {
3 Counter c = new Counter();
4 try {
5 for(int i = Counter.MIN_VALUE; i < Counter.MAX_VALUE; i ++) {
6 int currentValue = c.getValue();
7 c.increment();
8 assertEquals(currentValue + 1, c.getValue());
9 }

10 for(int i = Counter.MAX_VALUE; i > Counter.MIN_VALUE; i --) {
11 int currentValue = c.getValue();
12 c.decrement();
13 assertEquals(currentValue - 1, c.getValue());
14 }
15 } catch(ValueTooLargeException e) {
16 fail("ValueTooLargeException is thrown unexpectedly");
17 } catch(ValueTooSmallException e) {
18 fail("ValueTooSmallException is thrown unexpectedly");
19 } }
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Exercises

1. Run all 8 tests and make sure you receive a green bar.
2. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.
○ Re-run all 8 tests and you should receive a red bar. [ Why? ]
○ Undo the error injection, and re-run all 8 tests. [ What happens? ]
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Test-Driven Development (TDD)

JUnit 
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as 
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

extend, maintain

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.
● Red bar reported: Fix the class under test (CUT) until green bar.
● Green bar reported: Add more tests and Fix CUT when necessary.

37 of 41



Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml
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