Test-Driven Development (TDD) with JUnit

EECS2030 B: Advanced
Object Oriented Programming

' Fall 2018

E
Y CHEN-WEI WANG

ooooooooooooooooooo

Consider two kinds of exceptions for a counter:

public class ValueTooLargeException extends Exception {
ValueTooLargeException(String s) { super(s); }

}

public class ValueTooSmallException extends Exception {
ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two classes must be
handled (catch-specify requirement):

o Either specify throws ... inthe method signature
(i.e., propagating it to other caller)
o Or handle itinatry-catch block

2o0f 41

J

ooooooooooooooooooo

Approach 1 — Specify: Indicate in the method signature that a
specific exception might be thrown.
Example 1: Method that throws the exception

class C1 {
void ml (int x) throws ValueTooSmallException {
if(x < 0) |
throw new ValueTooSmallException("val " + x);
}
}
}

Example 2: Method that calls another which throws the exception

class C2 {
Cl cl;
void m2(int x) throws ValueTooSmallException {
cl.ml(x);
}
}

3of41

ooooooooooooooooooo

Approach 2 — Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int x = input.nextInt();
C2 c2 = new c2();
try {
c2.m2(x);

}
catch (ValueTooSmallException e) { ... }

4 of 41

A Simple Counter (1) LASSONDE

ooooooooooooooooo

Consider a class for keeping track of an integer counter value:

public class Counter {

public final static int MAX VALUE
public final static int MIN_VALUE
private int value;
public Counter() {

this.value = Counter.MIN_VALUE;
}
public int getValue() {

return value;

}

[l
o

o Access private attribute value using public accessor getValue.
Two class-wide (i.e., static) constants (i.e., final) for lower and
upper bounds of the counter value.

Initialize the counter value to its lower bound.

o | Requirement|:

The counter value must be between its lower and upper bounds.
5of 41

e}

(o)

Exceptional Scenarios LASSONDE

ooooooooooooooooo

Consider the two possible exceptional scenarios:

¢ An attempt to increment above the counter’s upper bound.
¢ An attempt to decrement below the counter’s lower bound.

6 of 41

A Simple Counter (2) o

ooooooooooooooooo

* class Co -

C s Counter =/
public void increment () throws ValueTooLargeException {
if (value == Counter.MAX VALUE) {
throw new ValueTooLargeException("counter value is " + value);
}
else { value ++; }
}

public void decrement () throws ValueTooSmallException {
if (value == Counter.MIN_ VALUE) {
throw new ValueTooSmallException("counter value is " + value);
}
else { value ——; }
}
}

o Change the counter value via two mutator methods.
o Changes on the counter value may frigger an exception:
o Attempt to increment when counter already reaches its maximum.

o Attempt to decrement when counter already reaches its minimum.
7 of 41

Components of a Test LASSONDE

ooooooooooooooooo

Manipulate the relevant object(s).

e.g., Initialize a counter object c, then call c. increment ().
What do you expect to happen ?

e.g., value of counter is such that Counter .MIN_VALUE + 1
What does your program actually produce ?

e.g., call c.getVvalue to find out.
A test:

o Passes if expected value maiches actual value
o Fails if expected value does not match actual value

So far, you ran tests via a tester class with the main method.

8 of 41

5 Ay
s

Testing Counter from Console (V1): Case 1

£2ONDE

Consider a class for testing the Counter class:

public class CounterTesterl ({
public static void main(String[] args) {

Counter ¢ = new Counter();

println("Init val: " + c.getValue());

try {
c.decrement () ;
println("ValueTooSmallException NOT thrown as expected.");

}

catch (ValueTooSmallException e) {
println("ValueTooSmallException thrown as expected.");

Py}

Executing it as Java Application gives this Console Output:

Init val: O
ValueTooSmallException thrown as expected.

9 of 41

5 Ay

Testing Counter from Console (V1): Case 2

ROSOnDE
Consider another class for testing the Counter class:
public class CounterTester2 {
public static void main(String[] args) {
Counter ¢ = new Counter|();
println("Current val: " + c.getValue());
try { c.increment(); c.increment(); c.increment(); }
catch (ValueTooLargeException e) {
println("ValueToolLargeException thrown unexpectedly."); }
println("Current val: " + c.getValue());
try {
c.lincrement () ;
println("ValueTooLargeException NOT thrown as expected."); }
catch (ValueTooLargeException e) {
println("ValueToolLargeException thrown as expected."); } } }

Executing it as Java Application gives this Console Output:

Current val: O
Current val: 3
ValueTooLargeException thrown as expected.

10 of 41

st e

0oL oF B

Testing Counter from Console (V2)
Consider a different class for testing the Counter class:

import java.util.Scanner;
public class CounterTester3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String cmd = null; Counter c¢c = new Counter();
boolean userWantsToContinue = true;
while (userWantsToContinue) ({
println("Enter \"inc\", \"dec\", or \"val\":");
cmd = input.nextLine();

try {
if (cmd.equals ("inc")) { c.increment () ; }
else if (cmd.equals("dec")) { c.decrement () ; }

‘ else if (cmd.equals("val")) { println(c.getValue()); }

else { userWantsToContinue = false; println("Bye!"); }

}
catch (ValueTooLargeException e){ println("Value too big!"); }
catch (ValueTooSmallException e){ println("Value too small!"); }

}

b}

11 of 41

5 Ay

g

£2ONDE

Testing Counter from Console (V2): Test 1

Test Case 1: Decrement when the counter value is too small.

Enter "inc", "dec", or "val":

Enter "inc", "dec", or "val":

Value too small!

Enter "inc", "dec", or "val":
exit

Bye!

12 of 41

Testing Counter from Console (V2): Test 2 Jssons
Test Case 2: Increment when the counter value is too big.

Enter "inc", "dec", or "val":
inc

Enter "inc", "dec", or "wval":
inc

Enter "inc", "dec", or "val":
inc

Enter "inc", "dec", or "val":
val

3

Enter "inc", "dec", or "val":
inc

Value too big!

Enter "inc",
exit

Bye'!

"dec", or "val":

13 of 41

Limitations of Testing from the Console LASSONDE
e Do Test Cases 1 & 2 suffice to test Counter’s correctness?
o lIs it plausible to claim that the implementation of Counter is
correct because it passes the two test cases?

¢ What other test cases can you think of?

c.getValue () H c.increment () ‘ c.decrement ()
0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

e So in total we need 8 test cases. = 6 more separate

o CounterTester classes to create (like CounterTesterl)!

o Console interactions with CounterTester3!
¢ Problems? It is inconvenient to:

o Run each TC by executing main of a CounterTester and

comparing console outputs with your eyes.
o Re-run manually all TCs whenever Counter is changed.
Regression Testing : Any change introduced to your software must

1aota1 110t compromise its established correctness.

e
Why JUnit?

ooooooooooooooooo

e Automate the testing of correctness of your Java classes.

¢ Once you derive the list of tests, translate it into a JUnit test
case, which is just a Java class that you can execute upon.

e JUnit tests are helpful callers/clients of your classes, where
each test may:
o Either attempt to use a method in a legal way (i.e., satisfying its
precondition), and report:
e Success if the result is as expected
e Failure if the result is not as expected

o Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
e Success if the expected exception
(e.g., valueTooSmallException) OCCUrS.
e Failure if the expected exception does not occur.

15 of 41

LASSONDE

ooooooooooooooooo

How to Use JUnit: Packages

Step 1:
o In Eclipse, create a Java project ExampleTestingCounter
o Separation of concerns :
o Group classes for implementation (i.e., Counter)
into package implementation.

e Group classes classes for testing (to be created)
into package tests.

V‘lyJ ExampleTestingCounter
» =\, JRE System Library [JavaSE-1.8]
v B src
¥ i implementation
» [J) Counter.java
> m ValueToolLargeException.java
> m ValueTooSmallException.java

5 tests

16 of 41

J

How to Use JUnit: New JUnit Test Case (1) sono:

Step 2: Create a new JUnit Test Case in tests package.

v (=2 ExampleTestingUtilityClasses
» =\ JRE System Library [JavaSE-1.8]
v (B src
v 1 implementation
» [J] Counter.java
I tests

New » 22 Java Project

Open in New Window £ Project...

Open Type Hierarchy Fa 8 Package

Show In N8BW » @ Class

[Copy 8C @ Interface

E2 Copy Qualified Name @ Enum

(7 Paste 8V @ Annotation

% Delete & &9 Source Folder
14 Java Working Set

Remove from Context &¥ Folder

Build Path : > < File

i::gfor %:? > | 2 Untitled Text Fie
[Task

b mpor..

Create one JUnit Test Case to test one Java class only.

= If you have n Java classes to test, create n JUnit test cases.
17 of 41

How to Use JUnit: New JUnit Test Case (2) LASSONDE

Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

[] e New JUnit Test Case
JUnit Test Case
me of the new JUnit test case. You have the options to specify IE
the class under test and on the next page, to select methods to be tested. -
New JUnit 3 1est‘ © New JUnit 4 test '

Source folder: | ExampleTestingUtilityClasses/src Browse...
Package: tests Browse...
Nerme:

Superclass: java.lang.Object Browse...

Which method stubs would you like
setUpBeforeClass|

tearDownAfterClass()

setup() tearDown()

Do you want to add comments? (Configure templates and default value here)

Generate comments

| Class under test: Browse...

@]
18 of 41

I —
How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

EaSaRNDE

| NON) New JUnit Test Case

JUnit 4 is not on the build path. Do you want to add it?

-

Not now
Open the build path property page

° Perform the following action:

=\ Add JUnit 4 library to the build path

19 of 41

How to Use JUnit: Generated Test Case

[J) TestCounter.java 5%

1 package tests;
2=import static org.junit.Assert.*;
3 import org.junit.Test;

4 public class TestCounter {

5 @Test
6
7
8

EaSaRNDE

| public void test() {
fail("Not yet implemented");
}
9%
o Lines 6 — 8: test is just an ordinary mutator method that has a
one-line implementation body.
o Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test.
= When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.
o Line 7: By default, we deliberately fail the test with a message

“Not yet implemented”.
20 of 41

How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

EaSaRNDE

v (= ExampleTestingUtilityClasses New >
» =\ JRE System Library [JavaSE-1.8]
v (#src Open F3
> £ implementation Open With »
v i tests Open Type Hierarchy Fa
S T
> =\ JUnit4
[E Copy 8C
E= Copy Qualified Name
[Paste 8V
% Delete ®
Remove from Context
Build Path >
Source X#S »
Refactor X8T »
4 Import...
e Export...
References >
Declarations » [El console %

ition] /Library/Java/JavaVirtualMachines/jdk 1
& Refresh F5

Assign Working Sets...

Coverage As >
>

~1JUnit Test 8XT

21 of 41
[e]

How to Use JUnit: Generating Test Report LASSONDE

A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

[# Package Explor gu Junit 32 5= outline = B

C o8B R 0 HY ¥
Finished after 0.032 seconds

Runs: 1/1 B Errors: 0 B Failures: 1

v E](ests.TestCoumer [Runner: JUnit 4] (0.003 s)
/2 test (0.003 5)

= Fai =i
= Failure Trace 2F

I0 java.lang AssertionError: Not yet implemented

= at tests.TestCounter.test(TestCounter.java:11)
22 of 41 !

How to Use JUnit: Interpreting Test Report LASSONDE

¢ A test is a method prepended with the @Test tag.
¢ The result of running a test is considered:
o Failure if either
e an assertion failure (e.g., caused by fail, assertTrue
assertEquals) occurs; or
e an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.
o Success if neither assertion failures nor unexpected exceptions
occur.
o After running all tests:
o A green bar means that all tests succeed.
= Keep challenging yourself if more tests may be added.
o A red bar means that af least one test fails.
= Keep fixing the class under test and re-runing all tests, until you
receive a green bar.
¢ Question: What is the easiest way to making test a success?

Answer: Delete the call fail ("Not yet implemented").
23 of 41

EaSaRNDE

How to Use JUnit: Revising Test Case

] TestCounter.java 5%
1 package tests;
2-import static org.junit.Assert.*;
3 import org.junit.Test;
4 public class TestCounter {
5 @Test
6 public void test() {
7
8
9

// fail("Not yet implemented™);
}
}

Now, the body of test simply does nothing.
= Neither assertion failures nor exceptions will occur.
= The execution of test will be considered as a success.

- There is currently only one test in TestCounter.

.. We will receive a green bar!

Caution: test which passes at the moment is not useful at all!
24 of 41

st e

0oL oF B

How to Use JUnit: Re-Running Test Case

A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

[% Package Explor |gfu Junit 32 5= Outine = O

a® S EE @ E ©
Finished after 0.017 seconds

Runs: 1/1 B Errors: O B Failures: 0

v i tests.TestCounter [Runner: JUnit 4] (0.000 s)
gEltest (0.000 s)

+4

A

= Failure Trace

25 of 41

g\

How to Use JUnit: Adding More Tests (1)

¢ Recall the complete list of cases for testing Counter:

c.getValue () H c.increment () ‘ c.decrement ()
ValueTooSmall

EaSaRNDE

g

1 0
2 1
3 ValueToolarge 2

e Let’s turn the two cases in the 1st row into two JUnit tests:
o Test for the green cell succeeds if:
¢ No failures and exceptions occur; and
e The new counter value is 1.
o Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).
e Common JUnit assertion methods:
o void assertNull (Object o)
o void assertEquals (expected, actual)
o void assertArrayEquals (expecteds, actuals)
o void assertTrue (boolean condition)
[0}

void fail (String message)
26 of 41

How to Use JUnit: Assertion Methods

method name / parameters

assertTrue (test)
assertTrue("message", fest)

description

Causes this test method to fail if the given boolean
test is not true.

assertFalse(test)

aceortralse("message", fest) Causes this test method to fail if the given boolean

test is not false.

assertEquals (expectedValue, value)

SsortEquals - message", expectedvalue, value) Causes this test method to fail if the given two values

are not equal to each other. (For objects, it uses the
equals method to compare them.) The first of the two
values is considered to be the result that you expect;
the second is the actual result produced by the class
under test.

assertNotEquals(valuel, value2;

) . Fr— p
ocertNotrcuale| "messager, valuel, value2) Causes this test method to fail if the given two values

are equal to each other. (For objects, it uses the
equals method to compare them.)

assertNull (value)

" " Causes this test method to fail if the given value is
assertNull("message", value)

not nuii.

assertNotNull (value)

SosertNotNull, " message", value) Causes this test method to fail if the given value is

null.

assertSame (expectedValue, value)
assertSame("message", expectedValue, value)
assertNotSame (valuel, value2)
assertNotSame ("message", valuel, value2)

Identical to assertequals and assertNotEquals respectively,
except that for objects, it uses the == operator rather
than the equals method to compare them. (The difference
is that two objects that have the same state might be
equals to each other, but not == to each other. An
object is only == to itself.)

fail() s s
fa;u"message") Causes this test method to fail.

27 of 41

\u,

How to Use JUnit: Adding More Tests (2.1)

EOSONDE
1 | @Test
2 |public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals (Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment () ;
7 assertEquals (1, c.getValue());
8 } catch(ValueTooBigException e) {
9 /* Exception 1is not expec to be own. %,
10 fail ("ValueTooBigException is not expected."); } } ‘
o Lines 5 & 8: We need a try-catch block because of Line 6.
Method increment from class Counter may throw the
ValueTooBigException.
o Lines 4,7 & 10 are all assertions:
e Lines 4 & 7 assert that c.getVvalue () returns the expected values.
e Line 10: an assertion failure -- unexpected ValueTooBigException
o Line 7 can be rewritten as assertTrue (1 == c.getValue()).
28 of 41

oooooooooooooooooooooooooooooooooo

e Don't lose the big picture!
¢ JUnit test in previous slide automates this console interaction:

¢ Again, don’t lose the big picture!
¢ JUnit test in previous slide automates CounterTesterl and

Enter "inc", "dec", or "val': the following console interaction for CounterTester3:
val

0 Enter "inc", "dec", or "val":
Enter "inc", "dec", or "val": val

inc 0

Enter "inc", "dec", or "val": Enter "inc", "dec", or "val":
val dec

1 Value too small!

Enter "inc", "dec", or "val": Enter "inc", "dec", or "val":
exit exit

Bye! Bye!

 Automation is exactly rationale behind using JUnit! e Again, automation is exactly rationale behind using JUnit!

29 of 41 31 of 41

oooooooooooooooooooooooooooooooooo

1 |QTest 1 |@Test
2 |public void testDecFromMinValue() { 2 |public void _testIncFromMaXV.'alue() {
3 Counter ¢ = new Counter(); 2 Counter ¢ = new Counter();
4 assertEquals (Counter.MIN_VALUE, c.getValue()); 5 trcy i{ncrement() . ¢.increment(); c.increment();
5 & . ;oc. ;oc. ;
6 rg afecrement()' 6 } catch (ValueToolLargeException e) {

. ')) 7 fail ("ValueToolargeException was thrown unexpectedly.");
7 fail ("ValueTooSmallException is expected."); } 8 }
8 cat/:ch(Value‘TooSmallExcept‘ion e) |) 9 assertEquals (Counter.MAX VALUE, c.getValue());
9 * Exception 1s expected to be thrown. */ } } 10 try {

)) 11 c.increment () ;

o Lines 5 & 8: We need a trY‘CatCh block because of Line 6. 12 fail ("ValueTooLargeException was NOT thrown as expected.");
Method decrement from class Counter may throw the 13 } catch (ValueToolargeException e) {
ValueTooSmallException. '1|g- /* Do nc g: ValueTooLargeException *,

o Lines 4 & 7 are both assertions: H

o Lines 4 asserts that c.getvalue () returns the expected value (i.e., o Lines 4 - 8:
Counter.MIN.VALUE). We use a try-catch block to express that a VTLE /s not expected.
¢ Line 7: an assertion failure -.- expected ValueTooSmallException o Lines 9 — 15:
ootan not thrown 520141 W€ USE @ try-catch block to express that a VTLE /s expected.

. - |
How to Use JUnit: Adding More Tests (4.2) o How to Use JUnit: Adding More Tests (5)

ooooooooooooooooo

o JUnit test in previous slide automates CounterTester2 and Loops can make it effective on generating test cases:

the following console interaction for CounterTester3: 1 |@Test
2 |public void testIncDecFromMiddleValues() {
Enter "inc", "dec", or "val": 3 Counter c = new Counter();
inc 4 try {
Ent . " ng " " Lo 5 for(int i = Counter.MIN VALUE; i < Counter.MAX VALUE; 1 ++) {
-n er “inct, ec’, or ‘wva . 6 int currentValue = c.getValue();
inc 7 c.increment () ;
Enter "inc", "dec", or "val": 8 assertEquals (currentValue + 1, c.getValue());
inc 9 }
Enter "inc", "dec", or "val": 10 for (int i = Counter.MAX VALUE; i > Counter.MIN_VALUE; i —--) {
val 11 int currentValue = c.getValue();
3 12 c.decrement () ;
) 13 assertEquals (currentValue - 1, c.getValue());
Enter "inc", "dec", or "wval": 14 }
inc 15 } catch(ValueTooLargeException e) {
Value too big! 16 fail ("ValueTooLargeException is thrown unexpectedly");
Enter "inc", "dec", or "val": 17 } catch(ValueTooSmallException e) {
exit 18 fail ("ValueTooSmallException is thrown unexpectedly");
1
Bye! 9 o}
33017 35 of 41

How to Use JUnit: Adding More Tests (4.3) o Exercises

ooooooooooooooooo

Q: Can we rewrite test IncFromMaxValue to:

1 |QTest

2 |public void testIncFromMaxValue() {

3 Counter ¢ = new Counter();

4 try { :

5 increnentl): 1. Run all 8 tests and make sure you receive a green bar.

6 c.increment () ; 2. Now, introduction an error to the implementation: Change the

’ c.increment () ; line value ++in Counter.increment to —-.

8 assertEquals (Counter.MAX VALUE, c.getValue()); .

9 c.increment () ; o Re-run all 8 tests and you should receive a red bar. [Why?]
10 fail ("ValueTooLargeException was NOT thrown as expected."); o Undo the error injection, and re-run all 8 tests. [What happens?]
11 } catch (ValueTooLargeException e) { }

12 |}

No!

At Line 9, we would not know which line throws the VTLE:
o |f it was any of the calls in L5 — L7, then it's not right.

o If it was L9, then it’s right.

34 of 41 36 of 41

Test-Driven Development (TDD) LASSONDE

fix the Java class under test
* when some test fails
extend, maintai
Java Classes
(e.g., Counter)

derive

JUnit
Framework

y

JUnit Test Case
(e.g., TestCounter)

1 when all tests pass

add more tests
Maintain a collection of tests which define the correctness of your
Java class under development (CUD):

e Derive and run tests as soon as your CUD is testable .
i.e., A Java class is testable when defined with method signatures.
e Red bar reported: Fix the class under test (CUT) until green bar.
e Green bar reported: Add more tests and Fix CUT when necessary.
37 of 41

Resources LASSONDE

¢ Official Site of JUnit 4:
http://junit.org/junit4d/
¢ API of JUnit assertions:
http://Jjunit.sourceforge.net/javadoc/org/junit/Assert.html
¢ Another JUnit Tutorial example:

https://courses.cs.washington.edu/courses/cseld3/11wi/

eclipse-tutorial/junit.shtml

38 of 41

Index (1)

EaSaRNDE

Motivating Example: Two Types of Errors (1)
Motivating Example: Two Types of Errors (2)
Motivating Example: Two Types of Errors (3)

A Simple Counter (1)

Exceptional Scenarios

A Simple Counter (2)

Components of a Test

Testing Counter from Console (V1): Case 1

Testing Counter from Console (V1): Case 2

Testing Counter from Console (V2)
Testing Counter from Console (V2): Test 1
Testing Counter from Console (V2): Test 2
Limitations of Testing from the Console

Why JUnit?

39 of 41

Index (2)

EaSaRNDE

How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:

40 of 41

Packages

New JUnit Test Case (1)
New JUnit Test Case (2)
Adding JUnit Library
Generated Test Case
Running Test Case
Generating Test Report
Interpreting Test Report
Revising Test Case
Re-Running Test Case
Adding More Tests (1)
Assertion Methods
Adding More Tests (2.1)
Adding More Tests (2.2)

Index (3)

EaSaRNDE

How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:
How to Use JUnit:

How to Use JUnit:

Exercises

Adding More Tests (3.1)
Adding More Tests (3.2)
Adding More Tests (4.1)
Adding More Tests (4.2)
Adding More Tests (4.3)
Adding More Tests (5)

Test-Driven Development (TDD)

Resources

41 of 41

