
EECS3311 Software Design Fall 2017

Static Types, Expectations, Dynamic Types, and Type Casts

Chen-Wei Wang

Contents

1 Inheritance Hierarchy 1

2 Static Types (at Compile Time) Define Expected Usages 2

3 Dynamic Types (at Runtime) 2

4 Temporarily Changing the Static Type via a Cast 3
4.1 Does a Cast Compile? . 3
4.2 Does a (Compilable) Cast Cause an Assertion Violation at Runtime? 4

1 Inheritance Hierarchy

Consider the following definitions of Eiffel classes

class

A

create

make

feature

make do end

feature

a: INTEGER

end

class

B

inherit

A

create

make

feature

b: INTEGER

end

class

C

inherit

A

create

make

feature

c: INTEGER

end

class

D

inherit

C

create

make

feature

d: INTEGER

end

which form the class hierarchy as shown in Figure 1:

A a:INTEGER

C c:INTEGERBb:INTEGER

D d:INTEGER

Figure 1: Class Inheritance Hierarchy

1

2 Static Types (at Compile Time) Define Expected Usages

Consider the following line of Eiffel code, which declares, at compile time, class C as the type
of a reference variable oc:

oc: C

After the above declaration, we say that C is the static type of variable oc. The static type of
variable oc constrains that, at runtime, oc stores the address of some C object. Consequently,
only features (attributes, commands, and queries) that are defined and inherited in class C are
expected to be called via oc as the context object:

• oc.a

• oc.c

Recall that a class only inherits code of features (i.e., attributes, commands, and queries) from
its ancestor classes. Therefore, it is not expected to call:

• oc.b (∵ class B is not an ancestor class of C)

• oc.d (∵ class D is actually a child class of C)

From the inheritance hierarchy in Figure 1 (page 1), we have the following expectations for
variables of the various types:

Declaration Expectations

os: A oa.a

ob: B
ob.a

ob.b

oc: C
oc.a

oc.c

od: D

od.a

od.c

od.d

Figure 2: Declarations of Static Types and Expectations

3 Dynamic Types (at Runtime)

Because a reference variable’s static type defines its expected usages at runtime, that variable’s
dynamic type must be consistent with the expectations. As an example, the following object
attachments (i.e., object creations) are not valid:

1 oc1, oc2: C

2 create {A} oc1.make

3 create {B} oc2.make

Both of the above object attachments are invalid:

• For Line 2, if we allowed oc1 to point to an A object (which only possesses the attribute
a), then one of the expectations of oc, which is oc.c (see Figure 2), would not be met.

2

• Similarly, for Line 3, if we allowed oc2 to point to a B object (which possesses attributes
a and b), then one of the expectations of oc, which is oc.c (see Figure 2), would not be
met.

Instead, the following object attachments are valid:

oc3, oc4: C

create {C} oc3.make

create {D} oc4.make

In the above object attachments, the expectations of static type C can be met by dynamic
types C and D, which are both descendant classes of C.

4 Temporarily Changing the Static Type via a Cast

Always remember:

• To judge if a line of Eiffel code compiles or not, you only need to consider the static
types of the variables involved (Section 4.1).

• To judge if a line of compilable Eiffel code causes an exception or violation at runtime,
you need to then consider the dynamic types of the variable involved (Section 4.2).

4.1 Does a Cast Compile?

Principles:

– Casting a reference variable temporarily changes its static type , and thus changes

the expectations of that variable.

– A reference variable may be cast to any class that is either a descendant or an ancestor
class of that variable’s declared static type .

– Casting a reference variable to a descendant class of its widens that variable’s expec-
tations (∵ a class’ descendant class contains at least as many features).

– Symmetrically, casting a reference variable to a ancestor class of its narrows that
variable’s expectations.

For example, given a variable oc whose declared static type is C (i.e., oc: C), the
following casts are compilable:

1. check attached {D} oc as v then ... end [oc’s scope is within . . .]

This cast creates a temporary variable v whose static type is D, and whose dynamic
type is that of oc. Since D is a descendant class of oc’s static type (C), performing
this cast widens the expectations: we can now expect v.d, whereas oc.d cannot be
expected.

2. check attached {C} oc as v then ... end [oc’s scope is within . . .]

This cast creates a temporary variable v whose static type is C, and whose dynamic
type is that of oc. Since C is both a descendant and an ancestor class of oc’s static
type (C), performing this cast results in the same expectations: v.a and v.c.

3. check attached {A} oc as v then ... end [oc’s scope is within . . .]

3

This cast creates a temporary variable v whose static type is A, and whose dynamic
type is that of oc. Since A is an ancestor class of oc’s static type (C), performing
this cast narrows the expectations: we can no longer expect v.c, but only v.a can
be expected.

On the other hand, the following cast does not compile:

– check attached {B} oc as v then ... end

This cast does not compile because B is neither a descendant nor an ancestor class of
oc’s static type (C).

The above example is summarized in Figure 3.

A a:INTEGER

C c:INTEGERBb:INTEGER

D d:INTEGER

Static Type of oc is C

Down-Casting to
Descendants Classes
widens expectations.

Up-Casting to
Ancestor Classes

narrows expectations.

Figure 3: Compilable Casts Given oc’s Static Type is C

4.2 Does a (Compilable) Cast Cause an Assertion Violation at Runtime?

Consider the following lines of Eiffel code

oa: A

create {C} oa.make

which declare variable oa’s static type as A and initializes its dynamic type as C. According
to the principle in Section 4.1, we know that the following casts (where each class being cast
into is either a descendant class or an ancestor class of oa’s static type , i.e., A) are compilable:

• check attached {A} oa as v then ... end

• check attached {B} oa as v then ... end

• check attached {C} oa as v then ... end

• check attached {D} oa as v then ... end

4

However, a cast being compilable does not mean that it will not result in error at
runtime. To determine if there will be a runtime error or not, we need to also consider oa’s
dynamic type (i.e., C):

• check attached {A} oa as v then ... end

This cast works well at runtime.

∵ You can use a C object as if it were an A object. This is because A only expects a,
whereas C provides a and c.

• check attached {B} oa as v then ... end

This cast causes an assertion violation at runtime.

∵ You cannot use a C object as if it were a B object. This is because B expects both a and
b, but attribute b is not declare in class C.

• check attached {C} oa as v then ... end

This cast works well at runtime.

∵ You can use a C object as if it were a C object. This is because C has the same expectations
as itself.

• check attached {d} oa as v then ... end

This cast causes an assertion violation at runtime.

∵ You cannot use a C object as if it were a D object. This is because D expects both a, c,
and d, but attribute d is not declare in class C.

The above example is summarized in Figure 4.

A a:INTEGER

C c:INTEGERBb:INTEGER

D d:INTEGER

Static Type of oa is A

Down-Casting to
Descendants Classes of

oa’s Dynamic Type
causes an assertion violation

because the widened expectation
(e.g., in D) cannot be met.

Dynamic Type of oa is C

Figure 4: Compilable but Exceptional Casts Given oa’s Static Type is A and Dynamic Types is C

Again, at runtime there is an assertion violation resulted from a type cast when the dynamic
type cannot meet the expectations of the reference variable, determined by either its declared

static type or temporary static type resulted from a cast .

5

	Inheritance Hierarchy
	Static Types (at Compile Time) Define Expected Usages
	Dynamic Types (at Runtime)
	Temporarily Changing the Static Type via a Cast
	Does a Cast Compile?
	Does a (Compilable) Cast Cause an Assertion Violation at Runtime?

