
Wrap-Up

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

What You Learned
● Design Principles:○ Abstraction [contracts, architecture, math models]

Think above the code level○ Information Hiding○ Single Choice Principle○ Open-Closed Principle○ Uniform Access Principle● Design Patterns:○ Singleton○ Iterator○ State○ Composite○ Visitor○ Observer○ Event-Driven Design○ Undo/Redo, Command [lab 4]○ Model-View-Controller [project]
2 of 4

Beyond this course. . . (1)
● How do I program in a language not supporting DbC natively?
○ Document your contracts (e.g., JavaDoc)○ But, it’s critical to ensure (manually) that contracts are in sync

with your latest implementations.○ Incorporate contracts into your Unit and Regression tests
● How do I program in a language without a math library ?○ Again, before diving into coding, always start by

thinking above the code level .○ Plan ahead how you intend for your system to behaviour at
runtime, in terms of interactions among mathematical objects .

A mathematical relation, a formal model of the graph data
structure, suffices to cover all the common problems.○ Use efficient data structures to support the math operations.○ Document your code with contracts specified in terms of the

math models.○ Test!
3 of 4

Beyond this course. . . (2)

● Software fundamentals:
collected papers by David L.
Parnas

● Design Techniques:○ Tabular Expressions○ Information Hiding

4 of 4

