Eiffel Testing Framework (ETF):
Acceptance Tests via Abstract User Interface

EECS3311: Software Design

YORK ' Fall 2017

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

-
Bank ATM e

The ATM application has a variety of concrete user interfaces.

/|

Separation of Concerns LassonDE
e The (Concrete) User Interface
o The executable of your application hides the implementing classes
and features.
o Users typically interact with your application via some GUI.
e.g., web app, mobile app, or desktop app

e The Business Logic (Model)

o When you develop your application software, you implement
classes and features.
e.g., How the bank stores, processes, retrieves information about
accounts and transactions

In practice:

* You need to test your software as if it were a real app way
before dedicating to the design of an actual GUI.

e The model should be independent of the View, Input and
Output.

et

Prototyping System with Abstract Ul Lassonpe

¢ For you to quickly prototype a working system, you do not need
to spend time on developing a fancy GUI.

e The Eiffel Testing Framework (ETF) allows you to:
o Focus on developing the business model;
o Test your business model as if it were a real app.

* In ETF, observable interactions with the application GUI (e.g.,
“button clicks”) are absitracted as monitored events.

| Events | Features |
interactions computations
external internal
observable hidden
acceptance tests unit tests
users, customers | programmers, developers

e

Abstract Events: Bank ATM

|

SSONDE
new name Albert Einstein
Albert Einstein Niels Bohr
deposit withdraw
$20.25 $10.02
Albert Einstein
transfer $20.25
total:
Niels Bohr ST

a0l

-
ETF in a Nutshell o

o Eiffel Testing Framework (ETF) facilitates engineers to write

and execute input-output-based acceptance tests.
o Inputs are specified as traces of events (or sequences).
o The boundary of the system under development (SUD) is defined
by declaring the list of input events that might occur.
o Outputs (from executing events in the input trace) are by default
logged onto the terminal, and their formats may be customized.
¢ An executable ETF that is tailored for the SUD can already be
generated, using these event declarations (documented
documented in a plain text file), with a default business model .
* Once the business model is implemented, there is only a
small number of steps to follow for the developers to connect it
to the generated ETF.
e Once connected, developers may re-run all use cases and

observe if the expected state effects take place.
Bofd2

\n,

Workflow: Develop-Connect-Test

-

ASSONDE

l define

limplemem‘

monitored
events

business
model

|
(re)new connect to |
|

generate

Code
Skeleton

redefine

ETF: Abstract User Interface e

Input Grammar

(namel: NAME)
-- create a new bank account for “id"

(namel: NAME; amount: VALUE)

- deposit "amount" into the account of “id"

(namel: NAME; amount: VALUE)

- withdraw "amount” from the account of “id"

(namel: NAMFE; name2: NAME; amount: VALUE)
- transfer "amount’ from "id1" to "id2"

8.0t12

Albert Enstein

Albert Enstein Neis Bonr

s2025 s1002

Abert Enstein

s2025 =T User
N o s Interface

%bank -b atl.txt

init
->new("Steve")
name: Steve, balance: 0.00
->new("Bill")
name: Bill, balance: 0.00
name: Steve, balance: 0.00
->deposit("Steve",520)
name: Bill, balance: 0.00
name: Steve, balance: 520.00
->new("Pam")
name: Bill, balance: 0.00
name: Pam, balance: 0.00
name: Steve, balance: 520.00
->deposit("Bill",100)
name: Bill, balance: 100.00
name: Pam, balance: 0.00
name: Steve, balance: 520.00
->withdraw("Steve",20)
name: Bill, balance: 100.00
name: Pam, balance: 0.00
name: Steve, balance: 500.00

SSONDE

ETF: Generating a New Project

|

etf -new bank.input.txt <directory>

v bank
v abstract_ui
software_operation.e

User Il’lput v [user_commands

(from command line) deposit.e
new.e
transfer.e
withdraw.e

Model [model
account.e
(business logic) bank_access.e
bank.e
customer.e
v output

Output ﬁ output_handler.e

4 bank-fresh.ecf

4 bank.ecf
v docs
> generated_code
> root
. v test
Unit Tests > > =
Acceptance Tests > [unit

> utilities

ETF: Architecture o

Pt
@& E&E=D

model

+
OUTPUT_HANDLER

e Classes in the model cluster are hidden from the users.

¢ All commands reference to the same model (bank) instance.
* When a user’s request is made:
o A command object of the corresponding type is created, which
invokes relevant feature(s) in the mode1 cluster.

o Updates to the model are published to the output handler.
100£12

/|

ETF: Input Errors

|

SSONDE
class
ETF_DEPOSIT
inherit

ETF_DEPOSIT_INTERFACE
redefine deposit end
create
make
feature -- command
deposit(id: STRING ; amount: REAL_64)
do
if not model.has_user (id) then
-- Set some error message
elseif not amount <= model.get_balance (id) then
-- Set some other error message
else
-- perform some update on the model state
model.deposit (id, amount)
end
-- Publish model update
etf_cmd_container.on_change.notify ([Current])
end
end

Index (1) _;HASSONDE
Bank ATM

Separation of Concerns
Prototyping System with Abstract Ul

Absiract Events: Bank ATM

ETE in a Nuishell

Workflow: Develop-Connect-Test

ETE: Abstract User Interface

ETF: Generating a New Project

EIE. Architecture

ETF: Input Errors

12.0f12
e

	Bank ATM
	Separation of Concerns
	Prototyping System with Abstract UI
	Abstract Events: Bank ATM
	ETF in a Nutshell
	Workflow: Develop-Connect-Test
	ETF: Abstract User Interface
	ETF: Generating a New Project
	ETF: Architecture
	ETF: Input Errors

