
Eiffel Testing Framework (ETF):
Acceptance Tests via Abstract User Interface

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Bank ATM

The ATM application has a variety of concrete user interfaces.

2 of 12



Separation of Concerns
● The (Concrete) User Interface
○ The executable of your application hides the implementing classes

and features.
○ Users typically interact with your application via some GUI.

e.g., web app, mobile app, or desktop app
● The Business Logic (Model)
○ When you develop your application software, you implement

classes and features.
e.g., How the bank stores, processes, retrieves information about
accounts and transactions

In practice:
● You need to test your software as if it were a real app way

before dedicating to the design of an actual GUI.
● The model should be independent of the View, Input and

Output.
3 of 12



Prototyping System with Abstract UI

● For you to quickly prototype a working system, you do not need
to spend time on developing a fancy GUI.

● The Eiffel Testing Framework (ETF) allows you to:
○ Focus on developing the business model;
○ Test your business model as if it were a real app.

● In ETF, observable interactions with the application GUI (e.g.,
“button clicks”) are abstracted as monitored events.

Events Features
interactions computations

external internal
observable hidden

acceptance tests unit tests
users, customers programmers, developers

4 of 12



Abstract Events: Bank ATM

5 of 12



ETF in a Nutshell
● Eiffel Testing Framework (ETF) facilitates engineers to write

and execute input-output-based acceptance tests.
○ Inputs are specified as traces of events (or sequences).
○ The boundary of the system under development (SUD) is defined

by declaring the list of input events that might occur.
○ Outputs (from executing events in the input trace) are by default

logged onto the terminal, and their formats may be customized.
● An executable ETF that is tailored for the SUD can already be

generated, using these event declarations (documented
documented in a plain text file), with a default business model .

● Once the business model is implemented, there is only a
small number of steps to follow for the developers to connect it
to the generated ETF.

● Once connected, developers may re-run all use cases and
observe if the expected state effects take place.

6 of 12



Workflow: Develop-Connect-Test

ETF

monitored 
events

Code 
Skeleton

business 
model

use 
cases

Abstract 
State

implement

(re)new

generate

connect to

define

test fix or add

debug

run

derive

redefine

7 of 12



ETF: Abstract User Interface

8 of 12



ETF: Generating a New Project

9 of 12



ETF: Architecture

● Classes in the model cluster are hidden from the users.
● All commands reference to the same model (bank) instance.
● When a user’s request is made:
○ A command object of the corresponding type is created, which

invokes relevant feature(s) in the model cluster.
○ Updates to the model are published to the output handler.

10 of 12



ETF: Input Errors

11 of 12



Index (1)
Bank ATM

Separation of Concerns

Prototyping System with Abstract UI

Abstract Events: Bank ATM

ETF in a Nutshell

Workflow: Develop-Connect-Test

ETF: Abstract User Interface

ETF: Generating a New Project

ETF: Architecture

ETF: Input Errors
12 of 12


	Bank ATM
	Separation of Concerns
	Prototyping System with Abstract UI
	Abstract Events: Bank ATM
	ETF in a Nutshell
	Workflow: Develop-Connect-Test
	ETF: Abstract User Interface
	ETF: Generating a New Project
	ETF: Architecture
	ETF: Input Errors

