Abstractions via Mathematical Models

EECS3311: Software Design Fall 2017

CHEN-WEI WANG

Motivating Problem: Complete Contracts

- Recall what we learned in the Complete Contracts lecture:
 - In post-condition, for each attribute, specify the relationship between its pre-state value and its post-state value.
 - Use the old keyword to refer to post-state values of expressions.
 - For a *composite*-structured attribute (e.g., arrays, linked-lists, hash-tables, *etc.*), we should specify that after the update:
 - 1. The intended change is present; and
 - **2.** The rest of the structure is unchanged .
- Let's now revisit this technique by specifying a LIFO stack.

Motivating Problem: LIFO Stack (1)

• Let's consider three different implementation strategies:

Stack Feature	Array	Linked List	
	Strategy 1	Strategy 2	Strategy 3
count	imp.count		
top	imp[imp.count]	imp.first	imp.last
push(g)	imp.force(g, imp.count + 1)	imp.put_font(g)	imp.extend(g)
рор	imp.list.remove_tail (1)	list.start	imp.finish
		list.remove	imp.remove

 Given that all strategies are meant for implementing the same ADT, will they have identical contracts?

Motivating Problem: LIFO Stack (2.1)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 1: array
 imp: ARRAY[G]
feature -- Initialization
 make do create imp.make empty ensure imp.count = 0 end
feature -- Commands
 push(a: G)
  do imp.force(q, imp.count + 1)
  ensure
    changed: imp[count] ~ g
    unchanged: across 1 | .. | count - 1 as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item] end
  end
 pop
  do imp.remove_tail(1)
   ensure
    changed: count = old count - 1
    unchanged: across 1 | .. | count as i all
                 imp[i.item] ~ (old imp.deep twin)[i.item] end
  end
```


Motivating Problem: LIFO Stack (2.2)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
 imp: LINKED LIST[G]
feature -- Initialization
 make do create imp.make ensure imp.count = 0 end
feature -- Commands
 push(a: G)
  do imp.put front(q)
  ensure
    changed: imp.first ~ g
    unchanged: across 2 | . . | count as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item] end
  end
 pop
  do imp.start; imp.remove
   ensure
    changed: count = old count - 1
    unchanged: across 1 | . . | count as i all
                 imp[i.item] ~ (old imp.deep twin)[i.item + 1] end
  end
```


Motivating Problem: LIFO Stack (2.3)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
 imp: LINKED LIST[G]
feature -- Initialization
 make do create imp.make ensure imp.count = 0 end
feature -- Commands
 push(a: G)
  do imp.extend(q)
  ensure
    changed: imp.last ~ q
    unchanged: across 1 | . . | count - 1 as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item] end
  end
 pop
  do imp.finish; imp.remove
  ensure
    changed: count = old count - 1
    unchanged: across 1 | . . | count as i all
                 imp[i.item] ~ (old imp.deep twin)[i.item] end
  end
```


Motivating Problem: LIFO Stack (3)

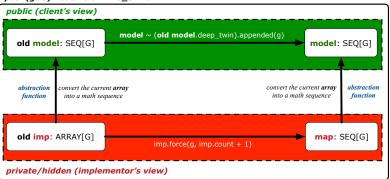
- *Postconditions* of all 3 versions of stack are *complete*. i.e., Not only the new item is *pushed/popped*, but also the remaining part of the stack is *unchanged*.
- But they violate the principle of *information hiding*: Changing the **secret**, internal workings of data structures should not affect any existing clients.
- How so? The private attribute imp is referenced in the postconditions, exposing the implementation strategy not relevant to clients:
 - Top of stack may be imp[count], imp.first, or imp.last
 - Remaining part of stack may be across 1 | . . | count 1 across 2 | . . | count |
 - ⇒ Changing the implementation strategy from one to another will also change the contracts for **all** features.
 - ⇒ This also violates the Single Choice Principle.

Implementing an Abstraction Function (1)

```
class LIFO STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
 imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
  do create Result.make_from_array (imp)
   ensure
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[i.item]
   end
feature -- Commands
 make do create imp.make_empty ensure model.count = 0 end
 push (q: G) do imp.force(q, imp.count + 1)
  ensure pushed: model ~ (old model.deep_twin).appended(q) end
 pop do imp.remove_tail(1)
  ensure popped: model ~ (old model.deep_twin).front end
end
```


Abstracting ADTs as Math Models (1)

'push(g: G)' feature of LIFO_STACK ADT



- **Strategy 1** Abstraction function: Convert the implementation array to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same:

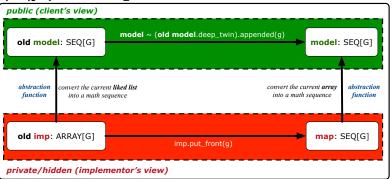
```
model ~ (old model.deep_twin).appended(g)
```


Implementing an Abstraction Function (2)

```
class LIFO STACK[G -> attached ANY] create make
feature (NONE) -- Implementation Strategy 2 (first as top)
 imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
  do create Result.make empty
     across imp as cursor loop Result.prepend(cursor.item) end
   ensure
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[count - i.item + 1]
  end
feature -- Commands
 make do create imp.make ensure model.count = 0 end
 push (g: G) do imp.put_front(g)
  ensure pushed: model ~ (old model.deep_twin).appended(q) end
 pop do imp.start ; imp.remove
  ensure popped: model ~ (old model.deep_twin).front end
end
```


Abstracting ADTs as Math Models (2)

'push(g: G)' feature of LIFO_STACK ADT



- **Strategy 2** Abstraction function: Convert the implementation list (first item is top) to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same:

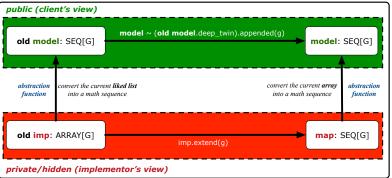
```
model ~ (old model.deep_twin).appended(g)
```


Implementing an Abstraction Function (3)

```
class LIFO STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
 imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
  do create Result.make empty
     across imp as cursor loop Result.append(cursor.item) end
   ensure
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[i.item]
  end
feature -- Commands
 make do create imp.make ensure model.count = 0 end
 push (g: G) do imp.extend(g)
  ensure pushed: model ~ (old model.deep_twin).appended(q) end
 pop do imp.finish; imp.remove
  ensure popped: model ~ (old model.deep_twin).front end
end
```


Abstracting ADTs as Math Models (3)

'push(g: G)' feature of LIFO_STACK ADT



- **Strategy 3** Abstraction function: Convert the implementation list (last item is top) to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same:

```
model ~ (old model.deep_twin).appended(g)
```

Solution: Abstracting ADTs as Math Models LASSOND

- Writing contracts in terms of implementation attributes (arrays, LL's, hash tables, etc.) violates information hiding principle.
- Instead:
 - For each ADT, create an <u>abstraction</u> via a <u>mathematical model</u>.
 e.g., Abstract a LIFO_STACK as a mathematical sequence.
 - For each ADT, define an abstraction function (i.e., a query) whose return type is a kind of mathematical model.
 e.g., Convert implementation array to mathematical sequence
 - Write contracts in terms of the abstract math model.
 e.g., When pushing an item g onto the stack, specify it as appending g into its model sequence.
 - Upon changing the implementation:
 - No change on what the abstraction is, hence no change on contracts.
 - Only change <u>how</u> the abstraction is constructed, hence changes on the body of the abstraction function.
 - e.g., Convert implementation linked-list to mathematical sequence
 - ⇒ The Single Choice Principle is obeyed.

Math Review: Set Definitions and Membershipone

- A set is a collection of objects.
 - Objects in a set are called its elements or members.
 - Order in which elements are arranged does not matter.
 - o An element can appear at most once in the set.
- We may define a set using:
 - Set Enumeration: Explicitly list all members in a set. e.g., {1,3,5,7,9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.
 - e.g., $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$
- An empty set (denoted as {} or Ø) has no members.
- We may check if an element is a *member* of a set:

e.g.,
$$5 \in \{1,3,5,7,9\}$$

e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$

[true] [true]

The number of elements in a set is called its cardinality.

e.g.,
$$|\emptyset| = 0$$
, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

Math Review: Set Relations

Given two sets S_1 and S_2 :

• S_1 is a *subset* of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S_1 \Rightarrow x \in S_2)$$

• S_1 and S_2 are *equal* iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a *proper subset* of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

Math Review: Set Operations

Given two sets S_1 and S_2 :

• Union of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

 Difference of S₁ and S₂ is a set whose members are in S₁ but not S₂.

$$S_1 \setminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

Math Review: Power Sets

The *power set* of a set *S* is a *set* of all *S' subsets*.

$$\mathbb{P}(S) = \{ s \mid s \subseteq S \}$$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality 0, 1, 2, or 3:

$$\left\{ \begin{array}{l} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array} \right\}$$

Math Review: Set of Tuples

Given n sets S_1, S_2, \ldots, S_n , a *cross product* of theses sets is a set of n-tuples.

Each n-tuple (e_1, e_2, \dots, e_n) contains n elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$$

e.g., $\{a,b\} \times \{2,4\} \times \{\$,\&\}$ is a set of triples:

$$\{a,b\} \times \{2,4\} \times \{\$,\&\}$$

$$= \{ (e_1, e_2, e_3) \mid e_1 \in \{a,b\} \land e_2 \in \{2,4\} \land e_3 \in \{\$,\&\} \}$$

$$= \{ (a,2,\$), (a,2,\&), (a,4,\$), (a,4,\&),$$

$$(b,2,\$), (b,2,\&), (b,4,\$), (b,4,\&) \}$$

Math Models: Relations (1)

- A <u>relation</u> is a collection of mappings, each being an <u>ordered</u> pair that maps a member of set S to a member of set T.
 e.g., Say S = {1,2,3} and T = {a,b}
 - ∘ Ø is an empty relation.
 - $S \times T$ is a relation (say r_1) that maps from each member of S to each member in T: $\{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - ∘ $\{(x,y): S \times T \mid x \neq 1\}$ is a relation (say r_2) that maps only some members in S to every member in $T: \{(2,a),(2,b),(3,a),(3,b)\}$.
- Given a relation r:
 - Domain of r is the set of S members that r maps from.

$$dom(r) = \{s : S \mid (\exists t \bullet (s, t) \in r)\}$$

e.g., $dom(r_1) = \{1, 2, 3\}, dom(r_2) = \{2, 3\}$

Range of r is the set of T members that r maps to.

$$\operatorname{ran}(r) = \{t : T \mid (\exists s \bullet (s, t) \in r)\}$$
 e.g.,
$$\operatorname{ran}(r_1) = \{a, b\} = \operatorname{ran}(r_2)$$

Math Models: Relations (2)

 We use the power set operator to express the set of all possible relations on S and T:

$$\mathbb{P}(S \times T)$$

 To declare a relation variable r, we use the colon (:) symbol to mean set membership:

$$r: \mathbb{P}(S \times T)$$

Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

Math Models: Relations (3.1)

Say
$$r = \{(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d,1), (e,2), (f,3)\}$$

- r.domain: set of first-elements from r
 - \circ r.**domain** = { $d \mid (d, r) \in r$ }
 - e.g., r.**domain** = $\{a, b, c, d, e, f\}$
- r.range: set of second-elements from r
 - r.range = $\{ r | (d, r) \in r \}$
 - \circ e.g., r.**range** = $\{1, 2, 3, 4, 5, 6\}$
- | r.*inverse* |: a relation like *r* except elements are in reverse order
 - r.inverse = $\{ (r, d) | (d, r) \in r \}$
 - e.g., r.**inverse** = $\{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$

Math Models: Relations (3.2)

Say
$$r = \{(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d,1), (e,2), (f,3)\}$$

- r.domain_restricted(ds): sub-relation of r with domain ds.
 - ∘ r.domain_restricted(ds) = { $(d,r) | (d,r) \in r \land d \in ds$ }
 - e.g., r.domain_restricted($\{a, b\}$) = $\{(a, 1), (b, 2), (a, 4), (b, 5)\}$
- $r.domain_subtracted(ds)$: sub-relation of r with domain $\underline{not} ds$.
 - ∘ r.domain_subtracted(ds) = $\{ (d,r) | (d,r) \in r \land d \notin ds \}$
 - $\circ \ \text{ e.g., r.} \\ \textbf{domain_subtracted}(\{a,b\}) = \{(\textbf{c},6), (\textbf{d},1), (\textbf{e},2), (\textbf{f},3)\}$
- $r.range_restricted$ (rs): sub-relation of r with range rs.
 - ∘ r.range_restricted(rs) = $\{ (d,r) | (d,r) \in r \land r \in rs \}$
 - e.g., r.range_restricted($\{1, 2\}$) = $\{(a, 1), (b, 2), (d, 1), (e, 2)\}$
- r.range_subtracted(ds): sub-relation of r with range not ds.
 - r.range_subtracted(rs) = $\{ (d,r) \mid (d,r) \in r \land r \notin rs \}$
 - e.g., r.range_subtracted($\{1, 2\}$) = $\{(c, 3), (a, 4), (b, 5), (c, 6)\}$

Math Models: Relations (3.3)

Say
$$r = \{(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d,1), (e,2), (f,3)\}$$

- r. overridden(t): a relation which agrees on r outside domain of t.domain, and agrees on t within domain of t.domain
 - ∘ r.overridden(t) $t \cup r$.domain_subtracted(t.domain)

$$r.\mathbf{overridden}(\underbrace{\{(a,3),(c,4)\}}_{t}) \\ = \underbrace{\{(a,3),(c,4)\}}_{t} \cup \underbrace{\{(b,2),(b,5),(d,1),(e,2),(f,3)\}}_{r.\mathsf{domain_subtracted}(\underbrace{t.\mathsf{domain}}_{\{a,e\}})}_{\{a,e\}}$$

$$= \{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)\}$$

0

Math Review: Functions (1)

A *function* f on sets S and T is a *specialized form* of relation: it is forbidden for a member of S to map to more than one members of T.

$$\forall s: S; t_1: T; t_2: T \bullet (s, t_1) \in f \land (s, t_2) \in f \Rightarrow t_1 = t_2$$

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$, which of the following relations are also functions?

\circ $S \times T$	[No]
$\circ (S \times T) - \{(x,y) \mid (x,y) \in S \times T \land x = 1\}$	[No]
$\circ \{(1,a),(2,b),(3,a)\}$	[Yes]
$\circ \{(1,a),(2,b)\}$	[Yes]

Math Review: Functions (2)

 We use set comprehension to express the set of all possible functions on S and T as those relations that satisfy the functional property:

$$\{r: S \leftrightarrow T \mid (\forall s: S; t_1: T; t_2: T \bullet (s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2) \}$$

- This set (of possible functions) is a subset of the set (of possible relations): P(S × T) and S ↔ T.
- We abbreviate this set of possible functions as S → T and use it to declare a function variable f:

$$f: S \rightarrow T$$

Math Review: Functions (3.1)

Given a function $f: S \rightarrow T$:

• *f* is *injective* (or an injection) if *f* does not map a member of *S* to more than one members of *T*.

```
f is injective \iff (\forall s_1: S; s_2: S; t: T \bullet (s_1, t) \in r \land (s_2, t) \in r \Rightarrow s_1 = s_2)
```

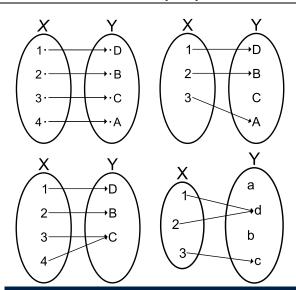
e.g., Considering an array as a function from integers to objects, being injective means that the array does not contain any duplicates.

• *f* is *surjective* (or a surjection) if *f* maps to all members of *T*.

$$f$$
 is surjective \iff ran $(f) = T$

• *f* is *bijective* (or a bijection) if *f* is both injective and surjective.

Math Review: Functions (3.2)



Math Models: Command-Query Separation

Command	Query
domain_restrict	domain_restrict ed
domain_restrict_by	domain_restrict ed _by
domain_subtract	domain_subtract ed
domain_subtract_by	domain_subtract ed _by
range_restrict	range_restrict ed
range_restrict_by	range_restrict ed _by
range_subtract	range_subtract ed
range_subtract_by	range_subtract ed _by
override	overrid den
override_by	overrid den _by

Say
$$r = \{(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d,1), (e,2), (f,3)\}$$

Commands modify the context relation objects.

 $r.domain_restrict({a})$ changes r to $\{(a,1),(a,4)\}$

Queries return new relations without modifying context objects.

r. domain_restricted ({a}) returns $\{(a,1),(a,4)\}$ with r untouched

Math Models: Example Test

```
test rel: BOOLEAN
 local
  r, t: REL[STRING, INTEGER]
  ds: SET[STRING]
 do
   create r.make from tuple array (
    <<["a", 1], ["b", 2], ["c", 3],
      ["a", 4], ["b", 5], ["c", 6],
      ["d", 1], ["e", 2], ["f", 3]>>)
   create ds.make from arrav (<<"a">>>)
   -- r is not changed by the query 'domain subtracted'
   t := r.domain_subtracted (ds)
  Result :=
    t /~ r and not t.domain.has ("a") and r.domain.has ("a")
   check Result end
   -- r is changed by the command 'domain subtract'
   r.domain_subtract (ds)
  Result :=
    t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
end
```


Math Models: Command or Query

• Use the state-changing *commands* to define the body of an *abstraction function*.

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation
  imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
  model: SEQ[G]
  do create Result.make_empty
     across imp as cursor loop Result.append(cursor.item) end
  end
```

Use the side-effect-free queries to write contracts.

```
class LIFO_STACK[G -> attached ANY] create make
feature -- Abstraction function of the stack ADT
  model: SEQ[G]
feature -- Commands
  push (g: G)
  ensure pushed: model ~ (old model.deep_twin).appended(g) end
```

Beyond this lecture ...

Familiarize yourself with the features of classes REL and SET for the exam.

Index (1)

Motivating Problem: Complete Contracts

Motivating Problem: LIFO Stack (1)

Motivating Problem: LIFO Stack (2.1)

Motivating Problem: LIFO Stack (2.2)

Motivating Problem: LIFO Stack (2.3)

Motivating Problem: LIFO Stack (3)

Implementing an Abstraction Function (1)

Abstracting ADTs as Math Models (1)

Implementing an Abstraction Function (2)

Abstracting ADTs as Math Models (2)

Implementing an Abstraction Function (3)

Abstracting ADTs as Math Models (3)

Solution: Abstracting ADTs as Math Models

Math Review: Set Definitions and Membership

Index (2)

Math Review: Set Relations

Math Review: Set Operations

Math Review: Power Sets

Math Review: Set of Tuples

Math Models: Relations (1)

Math Models: Relations (2)

Math Models: Relations (3.1)

Math Models: Relations (3.2)

Matte Mandala Dalatiana (0.0)

Math Models: Relations (3.3)

Math Review: Functions (1)

Math Review: Functions (2)

Math Review: Functions (3.1)

Math Review: Functions (3.2)

Math Models: Command-Query Separation

34 of 35

Math Models: Example Test

Math Models: Command or Query

Beyond this lecture ...