Abstractions via Mathematical Models

YORK
 UN IVERSITÉ UN I VERS I TY
 U

EECS3311: Software Design

CHEN-WEI Wang

Motivating Problem: Complete Contracts

- Recall what we learned in the Complete Contracts lecture:
- In post-condition, for each attribute, specify the relationship between its pre-state value and its post-state value.
- Use the old keyword to refer to post-state values of expressions.
- For a composite-structured attribute (e.g., arrays, linked-lists, hash-tables, etc.), we should specify that after the update:

1. The intended change is present; and
2. The rest of the structure is unchanged .

- Let's now revisit this technique by specifying a LIFO stack.
- Let's consider three different implementation strategies:

Stack Feature	Array	Linked List	
	Strategy 1	Strategy 2	Strategy 3
count	imp.count		
top	imp[imp.count]	imp.first	imp.last
push(g)	imp.force(g, imp.count + 1)	imp.put_font(g)	imp.extend(g)
pop	imp.list.remove_tail (1)	list.start list.remove	imp.finish imp.remove

- Given that all strategies are meant for implementing the same ADT, will they have identical contracts?

3 of 35

Motivating Problem: LIFO Stack (2.1)

```
class LIFO_STACK[G] create make
    feature {NONE} -- Strategy 1: array
    imp: ARRAY [G]
    feature -- Initialization
    make do create imp.make_empty ensure imp.count = 0 end
    feature -- Commands
    push(g: G)
        do imp.force(g, imp.count + 1)
        nsure
            changed: imp[count] ~ g
            unchanged: across 1 |..| count - 1 as i all
                                    imp[i.item] ~ (old imp.deep_twin)[i.item] end
        end
    pop
        do imp.remove_tail(1)
        ensure
            changed: count = old count - 1
            unchanged: across 1 |..| count as i all
                        imp[i.item] ~ (old imp.deep_twin)[i.item] end
        end
```

Motivating Problem: LIFO Stack (2.2)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
    imp: LINKED_LIST[G]
feature
    make do create imp.make ensure imp.count = 0 end
feature -- Commands
    push(g: G)
        do imp.put_front(g)
    ensure
        changed: imp.first ~ g
        unchanged: across 2 |..| count as i all
                imp[i.item] ~ (old imp.deep_twin)[i.item] end
    end
    pop
        do imp.start ; imp.remove
    ensure
        changed: count = old count - 1
        unchanged: across 1 |..| count as i all
                                imp[i.item] ~ (old imp.deep_twin)[i.item + 1] end
    end
```

 5 of 35

Motivating Problem: LIFO Stack (2.3)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
imp: LINKED_LIST[G]
feature -- Initialization
make do create imp.make ensure imp.count = 0 end
feature -- Commands
    push(g: G)
        do imp.extend(g)
        ensure
            changed: imp.last ~ g
            unchanged: across 1 |..| count - 1 as i all
                            imp[i.item] ~ (old imp.deep_twin)[i.item] end
        end
    pop
        do imp.finish ; imp.remove
        ensure
            changed: count = old count - 1
            unchanged: across 1 |..| count as i all
                            imp[i.item] ~ (old imp.deep_twin)[i.item] end
        end
```


Motivating Problem: LIFO Stack (3)

- Postconditions of all 3 versions of stack are complete. i.e., Not only the new item is pushed/popped, but also the remaining part of the stack is unchanged.
- But they violate the principle of information hiding: Changing the secret, internal workings of data structures should not affect any existing clients.
- How so?

The private attribute imp is referenced in the postconditions,
exposing the implementation strategy not relevant to clients:

- Top of stack may be imp [count], imp.first, or imp.last.
- Remaining part of stack may be across 1 |..| count - 1 or across 2 |.. 1 count.
\Rightarrow Changing the implementation strategy from one to another will also change the contracts for all features.
\Rightarrow This also violates the Single Choice Principle .

Implementing an Abstraction Function (1)

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE}
imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
    model: SEQ[G]
    do create Result.make_from_array (imp)
    ensure
        counts: imp.count = Result.count
        contents: across 1 |..| Result.count as i all
        Result[i.item] ~ imp[i.item]
    end
feature -- Commands
    make do create imp.make_empty ensure model.count = 0 end
    push (g: G) do imp.force(g, imp.count + 1)
    ensure pushed: model ~ (old model.deep_twin).appended(g) end
pop do imp.remove_tail(1)
    ensure popped: model ~ (old model.deep_twin).front end
end
```

8 of 35

Abstracting ADTs as Math Models (1)

 LASSONDE

- Strategy 1 Abstraction function: Convert the implementation array to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same: model ~ (old model.deep_twin).appended(g)
9 of 35

Implementing an Abstraction Function (2)

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
    imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADI
    model: SEQ[G]
        do create Result.make_empty
        across imp as cursor loop Result.prepend(cursor.item) end
        ensure
            counts: imp.count = Result.count
                contents: across 1 |..| Result.count as i all
                        Result[i.item] ~ imp[count - i.item + 1]
        end
feature
    make do create imp.make ensure model.count = 0 en
    push (g: G) do imp.put_front (g)
        ensure pushed: model ~ (old model.deep_twin).appended(g) end
        pop do imp.start ; imp.remove
        ensure popped: model ~ (old model.deep_twin).front end
end
```

 10 of 35

Abstracting ADTs as Math Models (2)

private/hidden (implementor's view)

- Strategy 2 Abstraction function: Convert the implementation list (first item is top) to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same: model ~ (old model.deep_twin).appended (g)
11 of 35

Implementing an Abstraction Function (3)

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADI
    model: SEQ[G]
        do create Result.make_empty
        across imp as cursor loop Result.append(cursor.item) end
        ensure
            counts: imp.count = Result.count
            contents: across 1 |..| Result.count as i all
                Result[i.item] ~ imp[i.item]
        end
feature -- Commands
    make do create imp.make ensure model.count = 0 end
    push (g: G) do imp.extend(g)
        ensure pushed: model ~ (old model.deep_twin).appended(g) end
        pop do imp.finish ; imp.remove
        ensure popped: model ~ (old model.deep_twin).front end
end
```

 12 of 35

Abstracting ADTs as Math Models (3)

'push(g: G)' feature of LIFO_STACK ADT

public (client's view)

- Strategy 3 Abstraction function: Convert the implementation list (last item is top) to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same: model ~ (old model.deep_twin).appended(g)
13 of 35

Math Review: Set Definitions and Membershiposonos

- A set is a collection of objects.
- Objects in a set are called its elements or members.
- Order in which elements are arranged does not matter.
- An element can appear at most once in the set.
- We may define a set using:
- Set Enumeration: Explicitly list all members in a set. e.g., $\{1,3,5,7,9\}$
- Set Comprehension: Implicitly specify the condition that all members satisfy. e.g., $\{x \mid 1 \leq x \leq 10 \wedge x$ is an odd number $\}$
- An empty set (denoted as $\}$ or \varnothing) has no members.
- We may check if an element is a member of a set:

```
e.g., \(5 \in\{1,3,5,7,9\}\)
e.g., \(4 \notin\{x \mid x \leq 1 \leq 10, x\) is an odd number \(\}\)
- The number of elements in a set is called its cardinality.
e.g., \(|\varnothing|=0, \mid\{x \mid x \leq 1 \leq 10, x\) is an odd number \(\} \mid=5\)

15 of 35

\section*{Math Review: Set Relations}

Given two sets \(S_{1}\) and \(S_{2}\) :
- \(S_{1}\) is a subset of \(S_{2}\) if every member of \(S_{1}\) is a member of \(S_{2}\).
\[
S_{1} \subseteq S_{2} \Longleftrightarrow\left(\forall x \bullet x \in S_{1} \Rightarrow x \in S_{2}\right)
\]
- \(S_{1}\) and \(S_{2}\) are equal iff they are the subset of each other.
\[
S_{1}=S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge S_{2} \subseteq S_{1}
\]
- \(S_{1}\) is a proper subset of \(S_{2}\) if it is a strictly smaller subset.
\[
S_{1} \subset S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge|S 1|<|S 2|
\]

\section*{Math Review: Set Operations} LASSONDE

Given two sets \(S_{1}\) and \(S_{2}\) :
- Union of \(S_{1}\) and \(S_{2}\) is a set whose members are in either.
\[
S_{1} \cup S_{2}=\left\{x \mid x \in S_{1} \vee x \in S_{2}\right\}
\]
- Intersection of \(S_{1}\) and \(S_{2}\) is a set whose members are in both.
\[
S_{1} \cap S_{2}=\left\{x \mid x \in S_{1} \wedge x \in S_{2}\right\}
\]
- Difference of \(S_{1}\) and \(S_{2}\) is a set whose members are in \(S_{1}\) but not \(S_{2}\).
\[
S_{1}, S_{2}=\left\{x \mid x \in S_{1} \wedge x \notin S_{2}\right\}
\]

17 of 35

\section*{Math Review: Power Sets}

The power set of a set \(S\) is a set of all \(S^{\prime}\) subsets.
\[
\mathbb{P}(S)=\{s \mid s \subseteq S\}
\]

The power set contains subsets of cardinalities \(0,1,2, \ldots,|S|\). e.g., \(\mathbb{P}(\{1,2,3\})\) is a set of sets, where each member set \(s\) has cardinality \(0,1,2\), or 3 :
\[
\left\{\begin{array}{l}
\varnothing, \\
\{1\},\{2\},\{3\}, \\
\{1,2\},\{2,3\},\{3,1\}, \\
\{1,2,3\}
\end{array}\right\}
\]

Given \(n\) sets \(S_{1}, S_{2}, \ldots, S_{n}\), a cross product of theses sets is a set of \(n\)-tuples.
Each n-tuple ( \(e_{1}, e_{2}, \ldots, e_{n}\) ) contains \(n\) elements, each of which a member of the corresponding set.
\[
S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(e_{1}, e_{2}, \ldots, e_{n}\right) \mid e_{i} \in S_{i} \wedge 1 \leq i \leq n\right\}
\]
e.g., \(\{a, b\} \times\{2,4\} \times\{\$, \&\}\) is a set of triples:
\[
\begin{aligned}
& \{a, b\} \times\{2,4\} \times\{\$, \&\} \\
= & \left\{\left(e_{1}, e_{2}, e_{3}\right) \mid e_{1} \in\{a, b\} \wedge e_{2} \in\{2,4\} \wedge e_{3} \in\{\$, \&\}\right\} \\
= & \{(a, 2, \$),(a, 2, \&),(a, 4, \$),(a, 4, \&), \\
& (b, 2, \$),(b, 2, \&),(b, 4, \$),(b, 4, \&)\}
\end{aligned}
\]

19 of 35

\section*{Math Models: Relations (1)}
- A relation is a collection of mappings, each being an ordered pair that maps a member of set \(S\) to a member of set \(T\).
e.g., Say \(S=\{1,2,3\}\) and \(T=\{a, b\}\)
\(\circ \phi\) is an empty relation.
- \(S \times T\) is a relation (say \(r_{1}\) ) that maps from each member of \(S\) to each member in \(T:\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}\)
- \(\{(x, y): S \times T \mid x \neq 1\}\) is a relation (say \(r_{2}\) ) that maps only some members in \(S\) to every member in \(T:\{(2, a),(2, b),(3, a),(3, b)\}\).
- Given a relation \(r\) :
- Domain of \(r\) is the set of \(S\) members that \(r\) maps from.
\[
\operatorname{dom}(r)=\{s: S \mid(\exists t \bullet(s, t) \in r)\}
\]
e.g., \(\operatorname{dom}\left(r_{1}\right)=\{1,2,3\}, \operatorname{dom}\left(r_{2}\right)=\{2,3\}\)
- Range of \(r\) is the set of \(T\) members that \(r\) maps to.
\[
\operatorname{ran}(r)=\{t: T \mid(\exists s \bullet(s, t) \in r)\}
\]
e.g., \(\operatorname{ran}\left(r_{1}\right)=\{a, b\}=\operatorname{ran}\left(r_{2}\right)\)
- We use the power set operator to express the set of all possible relations on \(S\) and \(T\) :
\[
\mathbb{P}(S \times T)
\]
- To declare a relation variable \(r\), we use the colon (: ) symbol to mean set membership:
\[
r: \mathbb{P}(S \times T)
\]
- Or alternatively, we write:
\[
r: S \leftrightarrow T
\]
where the set \(S \leftrightarrow T\) is synonymous to the set \(\mathbb{P}(S \times T)\)

\section*{Math Models: Relations (3.1)}

Say \(r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}\)
- r.domain: set of first-elements from \(r\)
- r.domain \(=\{d \mid(d, r) \in r\}\)
- e.g., r.domain \(=\{a, b, c, d, e, f\}\)
- r.range: set of second-elements from \(r\)
- r.range \(=\{r \mid(d, r) \in r\}\)
- e.g., r.range \(=\{1,2,3,4,5,6\}\)
- r.inverse: a relation like \(r\) except elements are in reverse order
- r.inverse \(=\{(r, d) \mid(d, r) \in r\}\)
- e.g., r.inverse \(=\{(1, a),(2, b),(3, c),(4, a),(5, b),(6, c),(1, d),(2, e),(3, f)\}\)

A function \(f\) on sets \(S\) and \(T\) is a specialized form of relation: it is forbidden for a member of \(S\) to map to more than one members of \(T\).
\[
\forall s: S ; t_{1}: T ; t_{2}: T \bullet\left(s, t_{1}\right) \in f \wedge\left(s, t_{2}\right) \in f \Rightarrow t_{1}=t_{2}
\]
e.g., Say \(S=\{1,2,3\}\) and \(T=\{a, b\}\), which of the following relations are also functions?
```

- S\timesT
- (S\timesT)-{(x,y)|(x,y)\inS\timesT^x=1}

$$
\circ\{(1, a),(2, b)\}
$$

Given a function $f: S \rightarrow T$:

- f is injective (or an injection) if f does not map a member of S to more than one members of T.

```
f is injective \Longleftrightarrow
(\forall\mp@subsup{s}{1}{}:S;\mp@subsup{s}{2}{}:S;t:T\bullet(\mp@subsup{s}{1}{},t)\inr\wedge(\mp@subsup{s}{2}{},t)\inr=>\mp@subsup{s}{1}{}=\mp@subsup{s}{2}{})
```

e.g., Considering an array as a function from integers to objects, being injective means that the array does not contain any duplicates.

- f is surjective (or a surjection) if f maps to all members of T.

$$
f \text { is surjective } \Longleftrightarrow \operatorname{ran}(f)=T
$$

$\underset{27 \text { of } 35}{\bullet}$ is bijective (or a bijection) if f is both injective and surjective.

Math Review: Functions (3.2)

- We use set comprehension to express the set of all possible functions on S and T as those relations that satisfy the functional property :

$$
\begin{aligned}
& \{r: S \leftrightarrow T \mid \\
& \left.\quad\left(\forall s: S ; t_{1}: T ; t_{2}: T \bullet\left(s, t_{1}\right) \in r \wedge\left(s, t_{2}\right) \in r \Rightarrow t_{1}=t_{2}\right)\right\}
\end{aligned}
$$

- This set (of possible functions) is a subset of the set (of possible relations): $\mathbb{P}(S \times T)$ and $S \leftrightarrow T$.
- We abbreviate this set of possible functions as $S \rightarrow T$ and use it to declare a function variable f :

$$
f: S \rightarrow T
$$

Math Models: Command-Query Separation

Command	Query		
domain_restrict	domain_restricted		
domain_restrict_by			
domain_subtract			
domain_subtract_by		\quad	domain_restricted_by
:---:			
domain_subtracted			
range_restrict			
range_restrict_by			
range_subtract			
range_subtract_by		range_restricted	
:---:			
range_restricted_by			
range_subtracted			
range_subtracted_by			

Say $r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}$

- Commands modify the context relation objects.
r.domain_restrict (\{a\}) changes r to $\{(a, 1),(a, 4)\}$
- Queries return new relations without modifying context objects. r.domain_restricted $\{$ \{a\}) returns $\{(a, 1),(a, 4)\}$ with r untouched 29 of 35

Math Models: Example Test

```
test_rel: BOOLEAN
    local
        r, t: REL[STRING, INTEGER]
        ds: SET[STRING]
    do
        create r.make_from_tuple_array (
            <<["a", 1], ["b", 2], ["c", 3],
            ["a", 4], ["b", 5], ["c", 6],
            ["d", 1], ["e", 2], ["f", 3]>>
    create ds.make_from_array (<<"a">>)
        -- r is not changed by the query 'domain_subtracted'
        t := r.domain_subtracted (ds)
    Result :=
    t /~ r and not t.domain.has ("a") and r.domain.has ("a")
    check Result end
    -- I is changed by the command 'domain_subtract'
    r.domain_subtract (ds)
    Result :=
        t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
```

end

Math Models: Command or Query

- Use the state-changing commands to define the body of an abstraction function .

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation
    imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
    model: SEQ[G]
        do create Result.make_empty
            across imp as cursor loop Result.append(cursor.item) end
        end
```

- Use the side-effect-free queries to write contracts.

```
class LIFO_STACK[G -> attached ANY] create make
feature -- Abstraction function of the stack ADT
model: SEQ[G]
feature -- Commands
    push (g: G)
    ensure pushed: model ~ (old model.deep_twin).appended(g) end
```

31 of 35

Beyond this lecture ..

Familiarize yourself with the features of classes REL and SET for the exam.

Index (1)
Motivating Problem: Complete Contracts
Motivating Problem: LIFO Stack (1)
Motivating Problem: LIFO Stack (2.1)
Motivating Problem: LIFO Stack (2.2)
Motivating Problem: LIFO Stack (2.3)
Motivating Problem: LIFO Stack (3)
Implementing an Abstraction Function (1)
Abstracting ADTs as Math Models (1)
Implementing an Abstraction Function (2)
Abstracting ADTs as Math Models (2)
Implementing an Abstraction Function (3)
Abstracting ADTs as Math Models (3)
Solution: Abstracting ADTs as Math Models
Math Review: Set Definitions and Membership
33of35
Index (2)
Math Review: Set Relations
Math Review: Set Operations
Math Review: Power Sets
Math Review: Set of Tuples
Math Models: Relations (1)
Math Models: Relations (2)
Math Models: Relations (3.1)
Math Models: Relations (3.2)
Math Models: Relations (3.3)
Math Review: Functions (1)
Math Review: Functions (2)
Math Review: Functions (3.1)
Math Review: Functions (3.2)
Math Models: Command-Query Separation
34of 35

Index (3)
Math Models: Example Test

Math Models: Command or Query

Beyond this lecture ...

35 of 35

