
The Visitor Design Pattern

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

Motivating Problem (1)
Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

2 of 12

Open/Closed Principle

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

⇒When extending the behaviour of a system, we may add

new code, but we should not modify the existing code.
e.g., In the design for structures of expressions:○ Closed : Syntactic constructs of the language [stable]○ Open: New operations on the language [unstable]

3 of 12

Motivating Problem (2)
Extend the composite pattern to support operations such as
evaluate, pretty printing (print prefix, print postfix),
and type check.

4 of 12



Problems of Extended Composite Pattern

● Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :

To add/delete/modify an operation⇒ Change of all descendants of EXPRESSION
● Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.⇒ Confusing to mix codes for evaluation, pretty printing, and type
checking.⇒We want to avoid “polluting” the classes with these various
unrelated operations.

5 of 12

Visitor Pattern

●
Separation of concerns :
○ Set of language constructs [closed , stable]○ Set of operations [open, unstable]⇒ Classes from these two sets are decoupled and organized into

two separate clusters.

6 of 12

Visitor Pattern: Architecture

7 of 12

Visitor Pattern Implementation: Structures
Cluster expression language○ Declare deferred feature accept(v: VISITOR) in EXPRSSION.○ Implement accept feature in each of the descendant classes.

class CONSTANT
. . .
accept(v: VISITOR)
do
v.visit_ constant (Current)

end
end

class ADDITION
. . .
accept(v: VISITOR)
do
v.visit_ addition (Current)

end
end

8 of 12



Visitor Pattern Implementation: Operations
Cluster expression operations○ For each descendant class C of EXPRESSION, declare a deferred

feature visit_c (e: C) in the deferred class VISITOR.

class VISITOR
visit_constant(c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end

end

○ Each descendant of VISITOR denotes a kind of operation.
class EVALUATOR

value : INTEGER

visit_constant(c: CONSTANT) do value := c.value end
visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)

a.right.accept(eval_right)

value := eval_left.value + eval_right.value
end

end
9 of 12

Testing the Visitor Pattern
1 test_expression_evaluation: BOOLEAN
2 local add, c1, c2: EXPRESSION ; v: VISITOR
3 do
4 create {CONSTANT} c1.make (1) ; create {CONSTANT} c2.make (2)
5 create {ADDITION} add.make (c1, c2)
6 create {EVALUATOR} v.make

7 add.accept(v)

8 check attached {EVALUATOR} v as eval then
9 Result := eval.value = 3

10 end
11 end

Double Dispatch in Line 7:

1. DT of add is ADDITION⇒ Call accept in ADDITION

v.visit addition (add)

2. DT of v is EVALUATOR⇒ Call visit addition in EVALUATOR

visiting result of add.left + visiting result of add.right
10 of 12

To Use or Not to Use the Visitor Pattern
● In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?○ Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class C CODE GENERATOR of VISITOR,
then implement how to handle each language element in that class.
⇒ Single Choice Principle is obeyed .○ Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSION,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new visit multiplication operation.

⇒ Single Choice Principle is violated .● The applicability of the visitor pattern depends on to what
extent the structure will change.⇒ Use visitor if operations applied to structure might change.⇒ Do not use visitor if the structure might change.

11 of 12

Index (1)
Motivating Problem (1)

Open/Closed Principle

Motivating Problem (2)

Problems of Extended Composite Pattern

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures

Visitor Pattern Implementation: Operations

Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern
12 of 12


