
Inheritance
Readings: OOSCS2 Chapters 14 – 16

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

2 of 63

The COURSE Class

class
COURSE

create -- Declare commands that can be used as constructors
make

feature -- Attributes
title: STRING
fee: REAL

feature -- Commands
make (t: STRING; f: REAL)

-- Initialize a course with title ’t’ and fee ’f’.
do
title := t
fee := f

end
end

3 of 63

No Inheritance: RESIDENT STUDENT Class
class RESIDENT STUDENT
create make
feature -- Attributes
name: STRING
courses: LINKED_LIST[COURSE]

premium rate: REAL

feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set pr (r: REAL) do premium rate := r end

register (c: COURSE) do courses.extend (c) end
feature -- Queries
tuition: REAL
local base: REAL
do base := 0.0

across courses as c loop base := base + c.item.fee end

Result := base * premium rate

end
end

4 of 63

No Inheritance: RESIDENT STUDENT Class
class NON RESIDENT STUDENT
create make
feature -- Attributes
name: STRING
courses: LINKED_LIST[COURSE]

discount rate: REAL
feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set dr (r: REAL) do discount rate := r end

register (c: COURSE) do courses.extend (c) end
feature -- Queries
tuition: REAL
local base: REAL
do base := 0.0

across courses as c loop base := base + c.item.fee end

Result := base * discount rate
end

end

5 of 63

No Inheritance: Testing Student Classes

test_students: BOOLEAN
local
c1, c2: COURSE
jim: RESIDENT_STUDENT
jeremy: NON_RESIDENT_STUDENT

do
create c1.make ("EECS2030", 500.0)
create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25)
jim.register (c1)
jim.register (c2)
Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75)
jeremy.register (c1)
jeremy.register (c2)
Result := jeremy.tuition = 750

end

6 of 63

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.
⇒ This violates the Single Choice Principle

7 of 63

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,

register(Course c)
do
if courses.count >= MAX_CAPACITY then
-- Error: maximum capacity reached.

else
courses.extend (c)

end
end

We need to change the register commands in both student
classes!
⇒ Violation of the Single Choice Principle

8 of 63

No Inheritance: Maintainability of Code (2)

What if a new way for base tuition calculation is to be
implemented?
e.g.,

tuition: REAL
local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base * inflation rate * . . .

end

We need to change the tuition query in both student
classes.
⇒ Violation of the Single Choice Principle

9 of 63

No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
rs : LINKED_LIST[RESIDENT STUDENT]
nrs : LINKED_LIST[NON RESIDENT STUDENT]
add_rs (rs: RESIDENT STUDENT) do . . . end
add_nrs (nrs: NON RESIDENT STUDENT) do . . . end
register_all (Course c) -- Register a common course ’c’.
do
across rs as c loop c.item.register (c) end
across nrs as c loop c.item.register (c) end

end
end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the
same manner, separately !

10 of 63

Inheritance Architecture

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

11 of 63

Inheritance: The STUDENT Parent Class

1 class STUDENT
2 create make
3 feature -- Attributes
4 name: STRING
5 courses: LINKED_LIST[COURSE]
6 feature -- Commands that can be used as constructors.
7 make (n: STRING) do name := n ; create courses.make end
8 feature -- Commands
9 register (c: COURSE) do courses.extend (c) end

10 feature -- Queries
11 tuition: REAL
12 local base: REAL
13 do base := 0.0
14 across courses as c loop base := base + c.item.fee end
15 Result := base
16 end
17 end

12 of 63

Inheritance:
The RESIDENT STUDENT Child Class

1 class
2 RESIDENT_STUDENT
3 inherit
4 STUDENT
5 redefine tuition end
6 create make
7 feature -- Attributes

8 premium rate : REAL
9 feature -- Commands

10 set pr (r: REAL) do premium_rate := r end
11 feature -- Queries
12 tuition: REAL
13 local base: REAL

14 do base := Precursor ; Result := base * premium rate end
15 end

● L3: RESIDENT STUDENT inherits all features from STUDENT.
● There is no need to repeat the register command
● L14: Precursor returns the value from query tuition in STUDENT.13 of 63

Inheritance:
The NON RESIDENT STUDENT Child Class

1 class
2 NON_RESIDENT_STUDENT
3 inherit
4 STUDENT
5 redefine tuition end
6 create make
7 feature -- Attributes

8 discount rate : REAL
9 feature -- Commands

10 set dr (r: REAL) do discount_rate := r end
11 feature -- Queries
12 tuition: REAL
13 local base: REAL

14 do base := Precursor ; Result := base * discount rate end
15 end

● L3: NON RESIDENT STUDENT inherits all features from STUDENT.
● There is no need to repeat the register command
● L14: Precursor returns the value from query tuition in STUDENT.

14 of 63

Inheritance Architecture Revisited

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

● The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

● Each “specialized” class is called a child , sub , or
descendent class.

15 of 63

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:
○ Factor out common features (attributes, commands, queries) in a

separate class.
e.g., the STUDENT class

○ Define an “specialized” version of the class which:
● inherits definitions of all attributes, commands, and queries

e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition

This means code reuse and elimination of code duplicates!
● defines new features if necessary

e.g., set pr for RESIDENT STUDENT
e.g., set dr for NON RESIDENT STUDENT

● redefines features if necessary
e.g., compounded tuition for RESIDENT STUDENT
e.g., discounted tuition for NON RESIDENT STUDENT

16 of 63

Testing the Two Student Sub-Classes
test_students: BOOLEAN
local
c1, c2: COURSE
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT
do
create c1.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25) ; jim.register (c1); jim.register (c2)
Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75); jeremy.register (c1); jeremy.register (c2)
Result := jeremy.tuition = 750
end

● The software can be used in exactly the same way as before
(because we did not modify feature signatures).

● But now the internal structure of code has been made
maintainable using inheritance .

17 of 63

Static Type vs. Dynamic Type
● In object orientation , an entity has two kinds of types:

○ static type is declared at compile time [unchangeable]
An entity’s ST determines what features may be called upon it.

○ dynamic type is changeable at runtime
● In Java:

Student s = new Student("Alan");
Student rs = new ResidentStudent("Mark");

● In Eiffel:
local s: STUDENT

rs: STUDENT
do create {STUDENT} s.make ("Alan")

create {RESIDENT STUDENT} rs.make ("Mark")

○ In Eiffel, the dynamic type can be ignored if it is meant to be the
same as the static type:
local s: STUDENT
do create s.make ("Alan")

18 of 63

Inheritance Architecture Revisited

NON_RESIDENT_STUDENT

STUDENT

RESIDENT_STUDENT

name: STRING
courses: LINKED_LIST[COUNRSE]

register (Course c)
tuition: REAL

/* new features */
premium_rate: REAL
set_pr (r: REAL)
/* redefined features */
tuition: REAL

/* new features */
discount_rate: REAL
set_dr (r: REAL)
/* redefined features */
tuition: REAL

s1,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs : NON RESIDENT STUDENT
create {STUDENT} s1.make ("S1")
create {RESIDENT STUDENT} s2.make ("S2")
create {NON RESIDENT STUDENT} s3.make ("S3")
create {RESIDENT STUDENT} rs.make ("RS")
create {NON RESIDENT STUDENT} nrs.make ("NRS")

name courses reg tuition pr set pr dr set dr

s1. ✓ ×

s2. ✓ ×

s3. ✓ ×

rs. ✓ ✓ ×

nrs. ✓ × ✓

19 of 63

Polymorphism: Intuition (1)

1 local
2 s: STUDENT
3 rs: RESIDENT_STUDENT
4 do
5 create s.make ("Stella")
6 create rs.make ("Rachael")
7 rs.set_pr (1.25)
8 s := rs /* Is this valid? */
9 rs := s /* Is this valid? */

● Which one of L8 and L9 is valid? Which one is invalid?
○ L8: What kind of address can s store? [STUDENT]
∴ The context object s is expected to be used as:
● s.register(eecs3311) and s.tuition

○ L9: What kind of address can rs store? [RESIDENT STUDENT]
∴ The context object rs is expected to be used as:
● rs.register(eecs3311) and rs.tuition
● rs.set pr (1.50) [increase premium rate]

20 of 63

Polymorphism: Intuition (2)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */

● rs := s (L6) should be invalid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● rs declared of type RESIDENT STUDENT
∴ calling rs.set pr(1.50) can be expected.

● rs is now pointing to a STUDENT object.
● Then, what would happen to rs.set pr(1.50)?

CRASH ∵ rs.premium rate is undefined !!
21 of 63

Polymorphism: Intuition (3)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */

● s := rs (L5) should be valid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● Since s is declared of type STUDENT, a subsequent call
s.set pr(1.50) is never expected.

● s is now pointing to a RESIDENT STUDENT object.
● Then, what would happen to s.tuition?

OK ∵ s.premium rate is just never used !!
22 of 63

Dynamic Binding: Intuition (1)
1 local c : COURSE ; s : STUDENT
2 do crate c.make ("EECS3311", 100.0)
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON RESIDENT STUDENT} nrs.make("Nancy")
5 rs.set_pr(1.25); rs.register(c)
6 nrs.set_dr(0.75); nrs.register(c)
7 s := rs; ; check s .tuition = 125.0 end
8 s := nrs; ; check s .tuition = 75.0 end

After s := rs (L7), s points to a RESIDENT STUDENT object.
⇒ Calling s .tuition applies the premium rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT
courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

23 of 63

Dynamic Binding: Intuition (2)
1 local c : COURSE ; s : STUDENT
2 do crate c.make ("EECS3311", 100.0)
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON RESIDENT STUDENT} nrs.make("Nancy")
5 rs.set_pr(1.25); rs.register(c)
6 nrs.set_dr(0.75); nrs.register(c)
7 s := rs; ; check s .tuition = 125.0 end
8 s := nrs; ; check s .tuition = 75.0 end

After s:=nrs (L8), s points to a NON RESIDENT STUDENT object.
⇒ Calling s .tuition applies the discount rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT
courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

24 of 63

Multi-Level Inheritance Architecture (1)

DOMESTIC_RESIDENT_STUDENT DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

DOMESTIC_STUDENT FOREIGN_STUDENT

STUDENT

25 of 63

Multi-Level Inheritance Architecture (2)

IPHONE_6S IPHONE_6S_PLUS SAMSUNG HTC

IOS ANDROID

SMART_PHONE

GALAXY_S6_EDGE GALAXY_S6_EDGE_PLUS HTC_ONE_A9 HTC_ONE_M9

dial /* basic function */
surf_web /* basic function */

surf_web /* redefined using safari */

facetime /* new method */

surf_web /* redefined using firefox */

skype /* new method */

26 of 63

Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.

○ Every class can be used as a type: the set of runtime objects.
● Use of inheritance creates a hierarchy of classes:

○ (Implicit) Root of the hierarchy is ANY.
○ Each inherit declaration corresponds to an upward arrow.
○ The inherit relationship is transitive: when A inherits B and B

inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.

● Ancestor vs. Descendant classes:
○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, inherits.
● A inherits all features from its ancestor classes.
∴ A’s instances have a wider range of expected usages (i.e.,
attributes, queries, commands) than instances of its ancestor classes.

○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.
● Code defined in A is inherited to all its descendant classes.

27 of 63

Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:
○ A descendant class inherits all code from its ancestor classes.
○ A descendant class may also:

● Declare new attributes.
● Define new queries or commands.
● Redefine inherited queries or commands.

● Consequently:
○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).

○ When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.

○ e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT STUDENT or a NON RESIDENT STUDENT object.

○ Justification: A descendant class contains at least as many
features as defined in its ancestor classes (but not vice versa!).

28 of 63

Substitutions via Assignments
● By declaring v1:C1 , reference variable v1 will store the

address of an object of class C1 at runtime.
● By declaring v2:C2 , reference variable v2 will store the

address of an object of class C2 at runtime.
● Assignment v1:=v2 copies the address stored in v2 into v1.

○ v1 will instead point to wherever v2 is pointing to. [object alias]

……

C1v1

……

C2v2

● In such assignment v1:=v2 , we say that we substitute an
object of type C1 with an object of type C2.

● Substitutions are subject to rules!
29 of 63

Rules of Substitution
Given an inheritance hierarchy:
1. When expecting an object of class A, it is safe to substitute it

with an object of any descendant class of A (including A).
○ e.g., When expecting an IOS phone, you can substitute it with

either an IPhone6s or IPhone6sPlus.
○ ∵ Each descendant class of A is guaranteed to contain all code

of (non-private) attributes, commands, and queries defined in A.
○ ∴ All features defined in A are guaranteed to be available in the

new substitute.
2. When expecting an object of class A, it is unsafe to substitute

it with an object of any ancestor class of A’s parent .
○ e.g., When expecting an IOS phone, you cannot substitute it with

just a SmartPhone, because the facetime feature is not
supported in an Android phone.

○ ∵ Class A may have defined new features that do not exist in any
of its parent’s ancestor classes .

30 of 63

Reference Variable: Static Type
● A reference variable’s static type is what we declare it to be.

○ e.g., jim:STUDENT declares jim’s static type as STUDENT.
○ e.g., my phone:SMART PHONE

declares a variable my phone of static type SmartPhone.
○ The static type of a reference variable never changes.

● For a reference variable v , its static type C defines the

expected usages of v as a context object .
● A feature call v.m(. . .) is compilable if m is defined in C .

○ e.g., After declaring jim:STUDENT , we
● may call register and tuition on jim
● may not call set pr (specific to a resident student) or set dr

(specific to a non-resident student) on jim

○ e.g., After declaring my phone:SMART PHONE , we
● may call dial and surf web on my phone
● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on my phone31 of 63

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.
○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
○ There are two ways to re-assigning a reference variable.

32 of 63

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.
○ e.g., Given the declaration jim:STUDENT :

● create {RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to RESIDENT STUDENT.
● create {NON RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to NON RESIDENT STUDENT.

○ e.g., Given an alternative declaration jim:RESIDENT STUDENT :

● e.g., create {STUDENT} jim.make("Jim") is illegal
because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT STUDENT).

33 of 63

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.
○ e.g.,

jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON RESIDENT STUDENT
create {STUDENT} jim.make (. . .)
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.make (. . .)

● rs := jim ×

● nrs := jim ×

● jim := rs ✓

changes the dynamic type of jim to the dynamic type of rs
● jim := nrs ✓

changes the dynamic type of jim to the dynamic type of nrs
34 of 63

Polymorphism and Dynamic Binding (1)
● Polymorphism : An object variable may have “multiple possible

shapes” (i.e., allowable dynamic types).
○ Consequently, there are multiple possible versions of each feature

that may be called.
● e.g., 3 possibilities of tuition on a STUDENT reference variable:

In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium rate
In NON RESIDENT STUDENT: base amount with discount rate

● Dynamic binding : When a feature m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
jim: STUDENT; rs: RESIDENT STUDENT; nrs: NON STUDENT
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.nrs (. . .)
jim := rs
jim.tuitoion; /* version in RESIDENT STUDENT */
jim := nrs
jim.tuition; /* version in NON RESIDENT STUDENT */

35 of 63

Polymorphism and Dynamic Binding (2.1)
1 test_polymorphism_students
2 local
3 jim: STUDENT
4 rs: RESIDENT STUDENT
5 nrs: NON RESIDENT STUDENT
6 do
7 create {STUDENT} jim.make ("J. Davis")
8 create {RESIDENT STUDENT} rs.make ("J. Davis")
9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")

10 jim := rs ✓
11 rs := jim ×
12 jim := nrs ✓
13 rs := jim ×
14 end

In (L3, L7), (L4, L8), (L5, L9), ST = DT , so we may abbreviate:
L7: create jim.make ("J. Davis")

L8: create rs.make ("J. Davis")

L9: create nrs.make ("J. Davis")

36 of 63

Polymorphism and Dynamic Binding (2.2)
test_dynamic_binding_students: BOOLEAN
local
jim: STUDENT
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE

do
create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)

jim := rs

Result := jim.tuition = 750.0
check Result end
create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)
nrs.set_dr (0.5)

jim := nrs

Result := jim.tuition = 250.0
end

37 of 63

Reference Type Casting: Motivation
1 local jim: STUDENT; rs: RESIDENT STUDENT
2 do create {RESIDENT STUDENT} jim.make ("J. Davis")
3 rs := jim
4 rs.setPremiumRate(1.5)

● Line 2 is legal : RESIDENT_STUDENT is a descendant class of the
static type of jim (i.e., STUDENT).

● Line 3 is illegal : jim’s static type (i.e., STUDENT) is not a
descendant class of rs’s static type (i.e., RESIDENT_STUDENT).

● Eiffel compiler is unable to infer that jim’s dynamic type in

Line 4 is RESIDENT_STUDENT. [Undecidable]
● Force the Eiffel compiler to believe so, by replacing L3, L4 by a

type cast (which temporarily changes the ST of jim):
check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim

end
rs.set_pr (1.5)

38 of 63

Reference Type Casting: Syntax
1 check attached {RESIDENT STUDENT} jim as rs_jim then
2 rs := rs_jim
3 end
4 rs.set_pr (1.5)

L1 is an assertion:
○ attached RESIDENT STUDENT jim is a Boolean expression

that is to be evaluated at runtime .
● If it evaluates to true, then the as rs jim expression has the effect

of assigning “the cast version” of jim to a new variable rs jim.
● If it evaluates to false, then a runtime assertion violation occurs.

○ Dynamic Binding : Line 4 executes the correct version of set pr.
● It is equivalent to the following Java code:

if(jim instanceof ResidentStudent) {
ResidentStudent rs_jim = (ResidentStudent) jim; }

else { throw new Exception("Illegal Cast"); }
rs.set_pr (1.5)

39 of 63

Notes on Type Cast (1)
● Given v of static type ST , it is compilable to cast v to C , as

long as C is a descendant or ancestor class of ST .
● Why Cast?

○ Without cast, we can only call features defined in ST on v .
○ By casting v to C , we change the static type of v from ST to C .
⇒ All features that are defined in C can be called.

my_phone: IOS
create {IPHONE 6S PLUS} my_phone.make
-- can only call features defined in IOS on myPhone
-- dial, surf_web, facetime ✓ three_d_touch, skype ×
check attached {SMART PHONE} my_phone as sp then
-- can now call features defined in SMART_PHONE on sp
-- dial, surf_web ✓ facetime, three_d_touch, skype ×

end
check attached {IPHONE 6S PLUS} my_phone as ip6s_plus then
-- can now call features defined in IPHONE_6S_PLUS on ip6s_plus
-- dial, surf_web, facetime, three_d_touch ✓ skype ×

end

40 of 63

Notes on Type Cast (2)
● A cast being compilable is not necessarily runtime-error-free!
● A cast check attached {C} v as ... triggers an assertion

violation if C is not along the ancestor path of v’s DT .
test_smart_phone_type_cast_violation
local mine: ANDROID
do create {SAMSUNG} mine.make

-- ST of mine is ANDROID; DT of mine is SAMSUNG
check attached {SMART PHONE} mine as sp then ... end
-- ST of sp is SMART_PHONE; DT of sp is SAMSUNG
check attached {SAMSUNG} mine as samsung then ... end
-- ST of android is SAMSNG; DT of samsung is SAMSUNG
check attached {HTC} mine as htc then ... end
-- Compiles ∵ HTC is descendant of mine’s ST (ANDROID)
-- Assertion violation
-- ∵ HTC is not ancestor of mine’s DT (SAMSUNG)
check attached {GALAXY S6 EDGE} mine as galaxy then ... end
-- Compiles ∵ GALAXY_S6_EDGE is descendant of mine’s ST (ANDROID)
-- Assertion violation
-- ∵ GALAXY_S6_EDGE is not ancestor of mine’s DT (SAMSUNG)

end
41 of 63

Why Inheritance:
A Collection of Various Kinds of Students

How do you define a class STUDENT MANAGEMENT SYSETM
that contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST[STUDENT]
add_student(s: STUDENT)
do
students.extend (s)

end
registerAll (c: COURSE)
do
across
students as s

loop
s.item.register (c)

end
end

end

42 of 63

Polymorphism and Dynamic Binding:
A Collection of Various Kinds of Students

test_sms_polymorphism: BOOLEAN
local
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE
sms: STUDENT_MANAGEMENT_SYSTEM

do
create rs.make ("Jim")
rs.set_pr (1.5)
create nrs.make ("Jeremy")
nrs.set_dr (0.5)
create sms.make
sms.add_s (rs)
sms.add_s (nrs)
create c.make ("EECS3311", 500)
sms.register_all (c)
Result := sms.ss[1].tuition = 750 and sms.ss[2].tuition = 250

end

43 of 63

Polymorphism: Feature Call Arguments (1)
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss : ARRAY[STUDENT] -- ss[i] has static type Student
3 add_s (s: STUDENT) do ss[0] := s end
4 add_rs (rs: RESIDENT STUDENT) do ss[0] := rs end
5 add_nrs (nrs: NON RESIDENT STUDENT) do ss[0] := nrs end

● L4: ss[0]:=rs is valid. ∵ RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.

● Say we have a STUDENT MANAGEMENT SYSETM object sms:
○ ∵ call by reference , sms.add rs(o) attempts the following

assignment (i.e., replace parameter rs by a copy of argument o):

rs := o

○ Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class C, then we may call feature m by passing objects whose
static types are C’s descendants.

44 of 63

Polymorphism: Feature Call Arguments (2)

test_polymorphism_feature_arguments
local
s1, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON RESIDENT STUDENT
sms: STUDENT_MANAGEMENT_SYSTEM

do
create sms.make
create {STUDENT} s1.make ("s1")
create {RESIDENT_STUDENT} s2.make ("s2")
create {NON_RESIDENT_STUDENT} s3.make ("s3")
create {RESIDENT_STUDENT} rs.make ("rs")
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (s1) ✓ sms.add_s (s2) ✓ sms.add_s (s3) ✓
sms.add_s (rs) ✓ sms.add_s (nrs) ✓
sms.add_rs (s1) × sms.add_rs (s2) × sms.add_rs (s3) ×
sms.add_rs (rs) ✓ sms.add_rs (nrs) ×
sms.add_nrs (s1) × sms.add_nrs (s2) × sms.add_nrs (s3) ×
sms.add_nrs (rs) × sms.add_nrs (nrs) ✓

end

45 of 63

Polymorphism: Return Values (1)
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss: LINKED_LIST[STUDENT]
3 add_s (s: STUDENT)
4 do
5 ss.extend (s)
6 end
7 get_student(i: INTEGER): STUDENT
8 require 1 <= i and i <= ss.count
9 do

10 Result := ss[i]
11 end
12 end

● L2: ST of each stored item (ss[i]) in the list: [STUDENT]
● L3: ST of input parameter s: [STUDENT]
● L7: ST of return value (Result) of get student: [STUDENT]
● L11: ss[i]’s ST is descendant of Result’ ST .

Question: What can be the dynamic type of s after Line 11?
Answer: All descendant classes of Student.

46 of 63

Polymorphism: Return Values (2)
1 test_sms_polymorphism: BOOLEAN
2 local
3 rs: RESIDENT_STUDENT ; nrs: NON_RESIDENT_STUDENT
4 c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM
5 do
6 create rs.make ("Jim") ; rs.set_pr (1.5)
7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)
8 create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
9 create c.make ("EECS3311", 500) ; sms.register_all (c)

10 Result :=
11 get_student(1).tuition = 750
12 and get_student(2).tuition = 250
13 end

● L11: get student(1)’s dynamic type? [RESIDENT_STUDENT]
● L11: Version of tuition? [RESIDENT_STUDENT]
● L12: get student(2)’s dynamic type? [NON_RESIDENT_STUDENT]
● L12: Version of tuition? [NON_RESIDENT_STUDENT]
47 of 63

Design Principle: Polymorphism
● When declaring an attribute a: T

⇒ Choose static type T which “accumulates” all features that
you predict you will want to call on a.

e.g., Choose s: STUDENT if you do not intend to be specific about
which kind of student s might be.
⇒ Let dynamic binding determine at runtime which version of
tuition will be called.

● What if after declaring s: STUDENT you find yourself often
needing to cast s to RESIDENT STUDENT in order to access
premium rate?
check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(. . .) end

⇒ Your design decision should have been: s:RESIDENT_STUDENT

● Same design principle applies to:
○ Type of feature parameters: f(a: T)

○ Type of queries: q(...): T
48 of 63

Inheritance and Contracts (1)
● The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE 6S PLUS
samsung_phone: GALAXY S6 EDGE
htc_phone: HTC ONE A9

do my_phone := i_phone
my_phone := samsung_phone
my_phone := htc_phone

suggests that these instances may substitute for each other.
● Intuitively, when expecting SMART PHONE, we can substitute it

by instances of any of its descendant classes.
∵ Descendants accumulate code from its ancestors and can
thus meet expectations on their ancestors.

● Such substitutability can be reflected on contracts, where a

substitutable instance will:
○ Not require more from clients for using the services.
○ Not ensure less to clients for using the services.49 of 63

Inheritance and Contracts (2.1)

50 of 63

Inheritance and Contracts (2.2)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.05 -- 5%

ensure then
δ: ∀e ∶ Result ∣ e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_6S_PLUS are suitable.
○ Require the same or less α⇒ γ

Clients satisfying the precondition for SMART_PHONE are not shocked
by not being to use the same feature for IPHONE_6S_PLUS.

51 of 63

Inheritance and Contracts (2.3)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.05 -- 5%

ensure then
δ: ∀e ∶ Result ∣ e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_6S_PLUS are suitable.
○ Ensure the same or more δ⇒ β

Clients benefiting from SMART_PHONE are not shocked by failing to
gain at least those benefits from same feature in IPHONE_6S_PLUS.

52 of 63

Inheritance and Contracts (2.4)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.15 -- 15%

ensure then
δ: ∀e ∶ Result ∣ e happens today or tomorrow

end

Contracts in descendant class IPHONE_6S_PLUS are not suitable.
(battery level ≥ 0.1⇒ battery level ≥ 0.15) is not a tautology.
e.g., A client able to get reminders on a SMART_PHONE, when batter
level is 12%, will fail to do so on an IPHONE_6S_PLUS.

53 of 63

Inheritance and Contracts (2.5)
class SMART_PHONE
get_reminders: LIST[EVENT]
require
α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e ∶ Result ∣ e happens today

end

class IPHONE_6S_PLUS
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
γ: battery_level ≥ 0.15 -- 15%

ensure then
δ: ∀e ∶ Result ∣ e happens today or tomorrow

end

Contracts in descendant class IPHONE_6S_PLUS are not suitable.
(e happens ty. or tw.) ⇒ (e happens ty.) not tautology.
e.g., A client receiving today’s reminders from SMART_PHONE are
shocked by tomorrow-only reminders from IPHONE_6S_PLUS.

54 of 63

Contract Redeclaration Rule (1)
● In the context of some feature in a descendant class:

○ Use require else to redeclare its precondition.
○ Use ensure then to redeclare its precondition.

● The resulting runtime assertions checks are:
○ original_pre or else new_pre

⇒ Clients able to satisfy original pre will not be shocked.
∵ true ∨ new pre ≡ true
A precondition violation will not occur as long as clients are able
to satisfy what is required from the ancestor classes.

○ original_post and then new_post

⇒ Failing to gain original post will be reported as an issue.
∵ false ∧ new post ≡ false
A postcondition violation occurs (as expected) if clients do not
receive at least those benefits promised from the ancestor classes.

55 of 63

Contract Redeclaration Rule (2)
class FOO
f require

original pre
do . . .
end

end

class BAR
inherit FOO redefine f end
f

do . . .
end

end

● Unspecified new pre is as if declaring require else false

∵ original pre ∨ false ≡ original pre
class FOO
f

do . . .
ensure

original post
end

end

class BAR
inherit FOO redefine f end
f
do . . .
end

end

● Unspecified new post is as if declaring ensure then true

∵ original post ∧ true ≡ original post
56 of 63

Invariant Accumulation
● Every class inherits invariants from all its ancestor classes.
● Since invariants are like postconditions of all features, they are

“conjoined” to be checked at runtime.
class POLYGON
vertices: ARRAY[POINT]

invariant
vertices.count ≥ 3

end

class RECTANGLE
inherit POLYGON
invariant
vertices.count = 4

end

● What is checked on a RECTANGLE instance at runtime:
(vertices.count ≥ 3) ∧ (vertices.count = 4) ≡ (vertices.count = 4)

● Can PENTAGON be a descendant class of RECTANGLE?
(vertices.count = 5) ∧ (vertices.count = 4) ≡ false

57 of 63

Inheritance and Contracts (3)
class FOO
f

require
original pre

ensure
original post

end
end

class BAR
inherit FOO redefine f end
f
require else

new pre
ensure then
new post

end
end

(Static) Design Time :
○ original pre ⇒ new pre should prove as a tautology

○ new post ⇒ original post should prove as a tautology

(Dynamic) Runtime :
○ original pre ∨ new pre is checked

○ original post ∧ new post is checked
58 of 63

Index (1)
Why Inheritance: A Motivating Example
The COURSE Class
No Inheritance: RESIDENT STUDENT Class
No Inheritance: RESIDENT STUDENT Class
No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes
No Inheritance: Maintainability of Code (1)
No Inheritance: Maintainability of Code (2)
No Inheritance:
A Collection of Various Kinds of Students
Inheritance Architecture
Inheritance: The STUDENT Parent Class
Inheritance:
The RESIDENT STUDENT Child Class

59 of 63

Index (2)
Inheritance:
The NON RESIDENT STUDENT Child Class
Inheritance Architecture Revisited
Using Inheritance for Code Reuse
Testing the Two Student Sub-Classes
Static Type vs. Dynamic Type
Inheritance Architecture Revisited
Polymorphism: Intuition (1)
Polymorphism: Intuition (2)
Polymorphism: Intuition (3)
Dynamic Binding: Intuition (1)
Dynamic Binding: Intuition (2)
Multi-Level Inheritance Architecture (1)
Multi-Level Inheritance Architecture (2)

60 of 63

Index (3)
Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse
Substitutions via Assignments
Rules of Substitution
Reference Variable: Static Type
Reference Variable: Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)
Polymorphism and Dynamic Binding (1)
Polymorphism and Dynamic Binding (2.1)
Polymorphism and Dynamic Binding (2.2)
Reference Type Casting: Motivation

61 of 63

Index (4)
Reference Type Casting: Syntax
Notes on Type Cast (1)
Notes on Type Cast (2)
Why Inheritance:
A Collection of Various Kinds of Students
Polymorphism and Dynamic Binding:
A Collection of Various Kinds of Students
Polymorphism: Feature Call Arguments (1)
Polymorphism: Feature Call Arguments (2)
Polymorphism: Return Values (1)
Polymorphism: Return Values (2)
Design Principle: Polymorphism
Inheritance and Contracts (1)
Inheritance and Contracts (2.1)
Inheritance and Contracts (2.2)

62 of 63

Index (5)
Inheritance and Contracts (2.3)

Inheritance and Contracts (2.4)

Inheritance and Contracts (2.5)

Contract Redeclaration Rule (1)

Contract Redeclaration Rule (2)

Invariant Accumulation

Inheritance and Contracts (3)

63 of 63

	Why Inheritance: A Motivating Example
	The COURSE Class
	No Inheritance: RESIDENT_STUDENT Class
	No Inheritance: RESIDENT_STUDENT Class
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Inheritance Architecture
	Inheritance: The STUDENT Parent Class
	Inheritance: The RESIDENT_STUDENT Child Class
	Inheritance: The NON_RESIDENT_STUDENT Child Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Testing the Two Student Sub-Classes
	Static Type vs. Dynamic Type
	Inheritance Architecture Revisited
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture (1)
	Multi-Level Inheritance Architecture (2)
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Static Type
	Reference Variable: Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Reference Type Casting: Motivation
	Reference Type Casting: Syntax
	Notes on Type Cast (1)
	Notes on Type Cast (2)
	Why Inheritance: A Collection of Various Kinds of Students
	Polymorphism and Dynamic Binding: A Collection of Various Kinds of Students
	Polymorphism: Feature Call Arguments (1)
	Polymorphism: Feature Call Arguments (2)
	Polymorphism: Return Values (1)
	Polymorphism: Return Values (2)
	Design Principle: Polymorphism
	Inheritance and Contracts (1)
	Inheritance and Contracts (2.1)
	Inheritance and Contracts (2.2)
	Inheritance and Contracts (2.3)
	Inheritance and Contracts (2.4)
	Inheritance and Contracts (2.5)
	Contract Redeclaration Rule (1)
	Contract Redeclaration Rule (2)
	Invariant Accumulation
	Inheritance and Contracts (3)

