Writing Complete Contracts

EECS3311: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

How are contracts checked at runtime? Lassonpe

e All contracts are specified as Boolean expressions.
¢ Right before a feature call (e.qg., | acc.withdraw(10) ‘):

o The current state of is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.

o Cache values of all expressions involving the old keyword in the

post-condition .

e.g., cache the value of | old balance |via old_balance := balance

¢ Right after the feature call:

o The current state of is called its post-state.

o Evaluate invariant using current values of attributes and queries.

o Evaluate post-condition using both current values and
“cached” values of attributes and queries.

20125

When are contracts complete? Lassonpe

In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.

o Eiffel supports this purpose using the old keyword.

This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:

1. The intended change is present; and

2. The rest of the structure is unchanged .

The second contract is much harder to specify:

o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across |

e

SSONDE

/|

Account LA
et
class
ACCOUNT ,
. . deposit (a: INTEGER)
inherit do
ANY
, , balance := balance + a
redefine is_equal end
create ensure
balance = old balance + a
make
end
feature is_equal (other: ACCOUNT): BOOLEAN
owner: STRING &; q : !
1 : INTEGER
balance (e} Result :—
owner ~ other.owner
: STRING
(n) and balance = other.balance
end
end

make
do
owner := n
balance := 0
end
e

/|

Ban k _ilaASSONDE
class BANK
create make
feature
accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require
across accounts as acc some acc.item.owner ~ n end

existing:

do ...
ensure Result.owner ~ n

end
add (n: STRING)
cross accounts as acc all acc.item.owner /~ n end

require
non_existing:
ACCOUNT

a
local new_account:
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)
end
end
B ——

/|

|

Roadmap of lllustrations

SSONDE
We examine 5 different versions of a command
deposit_on (n: STRING; a: INTEGER)
VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

Object Structure for lllustration

LASSONDE
i

We will test each version by starting with the same runtime object

structure:

b.accounts

accounts

ACCOUNT

owner

balance

“Bill”

ACCOUNT
owner “Steve”

balance

Version 1:

/|

LASSONDE
Incomplete Contracts, Correct Implementation
class BANK
deposit_on_vl

(n: STRING;

a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER
do
from 1

accounts.lower

until i > accounts.upper
loop

if accounts[i].owner ~ n then accounts[i].deposit (a)
i :=1+1
end

end
ensure

num_of_accounts_unchanged:
accounts.count old accounts.count
balance_of_n_increased:

account_of (n) .balance = old account_of
end
end

(n) .balance + a
8025

;#
SSONDE

Test of Version 1 9
et
class TEST_ BANK
test_bank_deposit_correct_imp_incomplete_ contract: BOOLEAN
local
b: BANK
do
comment ("tl: correct imp and incomplete contract")
create b.make

b.add ("Bill")
b.add ("Steve")

100 dol

t.on.vl ("Steve", 100

dep
b.depos
Result :=
b.account_of ("Bill") .balance
and b.account_of ("Steve").balance
check Result end

= 100

end

end
e

SSONDE

ks

Test of Version 1: Result

APPLICATION
Note: * indicates a violation test case
PASSED (1 out of 1)
1
TEST_BANK

Violation
Boolean
[ALL Cases

hl test deposit_on with correct imp and incomplete contract

NONE

[PASSED

/|

Version 2: LASSONDE
Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER
do

ong é so deposit in the first accoun
accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:
account_of (n) .balance = old account_of (n).balance + a
end
end

Current postconditions lack a check that accounts other than n

are unchanged.
ilat25

/|

SSONDE
BOOLEAN

Test of Version 2

|

class TEST_ BANK
test_bank_deposit_wrong_imp_incomplete_contract:

wrong imp and incomplete contract")

local
b: BANK
do
comment ("t2:
create b.make
b.add ("Bill")
b.add ("Steve")
it 100 dollars to Steve’s acc
"Steve", 100)
=0

100

(

dep

b.deposit_on-v2
("Bill") .balance

("Steve") .balance

Result
b.account_of
and b.account_of
check Result end
end
end
e

- . =
Test of Version 2: Result LassoNDE
APPLICATION
Note: * indicates a violation test case
FAILED (1 failed & 1 passed out of 2)
CaseTypel Possed | Total |
\Violation]]
Boolean 1 2
A1l Cases 1 2
Contract Vislation
Testl TEST_BANK
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract

|

Version 3:
Complete Contracts with Reference Copy

/|

\n,

LASSONDE
et

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

accounts[accounts.lower].deposit (a)
ensure

balance_of_n _increased:
account_of(n) .balance = old account_of(n).balance + a
others_unchanged :
across old accounts as cursor
all cursor.item.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)
end
end
end

p JoamA~cit 1n +Fhe i 1ra ~AA117 7
- m) o deposit in the first accoun

num_of_accounts_unchanged: accounts.count = old accounts.count

izof2s

SSONDE

Test of Version 3

|

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local
b: BANK

do
comment ("t3: wrong imp and complete contract with ref copy")
create b.make

b.add ("Bill")
b.add ("Steve")

100 dol

t_on.v3 ("Steve", 100

dep
b.depos
Result :=
b.account_of ("Bill") .balance
and b.account_of ("Steve").balance
check Result end

= 100

end

end
e

Test of Version 3: Result

SSONDE

|

APPLICATION

Note: * indicates a violation test case

FAILED (2 failed & 1 passed out of 3)

Cose Type] _____Passed | Total

Violation 0 4
Boolean 1 3
All Cases 1

3
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated. [t3: test deposit_on with wrong imp, complete contract with reference copy

LASSONDE
et

Version 4:
Complete Contracts with Shallow Object Copy

class BANK
(n: STRING; a: INTEGER)

deposit_on_v4
require across accounts as acc some acc.item.owner ~ n end

local i: INTEGER

> d osit 1n the first accoul
a)

(

deposi

s.lower].

accounts [account
= old accounts.count

accounts.count

ensure
num_of_accounts_unchanged:
balance_of_n _increased:
= old account_of (n).balance + a

account_of (n).balance

others_unchanged :
twin as cursor

across old accounts.
all cursor.item.owner /~ n implies
(cursor.item.owner)

cursor.item ~ account_of

end

end
end
e

ASSONDE

Test of Version 4

| gl

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE

local
b: BANK

do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make

b.add ("Bill")
b.add ("Steve")

100 dol

t_on-v4 ("Steve", 100

dep
b.depos
Result :=
b.account_of ("Bill") .balance
and b.account_of ("Steve").balance
check Result end

= 100

end

end
e

Test of Version 4: Result

\n,

LASSONDE

Note:

APPLICATION

* indicates a violation test case

FAILED (3 failed & 1 passed out of 4)

Total
Violation] 0

Boolean 1 4
A1l Cases 1

Contract Viola

4
TEST_BANK

PASSED NONE t1l: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy

\n,

#
LASSONDE
et

Version 5:
Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER
do
- g o deposit in the first account
accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n _increased:
= old account_of (n).balance + a

account_of (n).balance

others_unchanged :
across old accounts.deep_-twin as cursor

all cursor.item.owner /~ n implies
(cursor.item.owner)

cursor.item ~ account_of

end
end
end
e

SSONDE

Test of Version 5

|

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local
b: BANK

do
comment ("t5: wrong imp and complete contract with deep copy")
create b.make

b.add ("Bill")
b.add ("Steve")

dep
b.depos
Result :=
b.account_of ("Bill") .balance
and b.account_of ("Steve").balance
check Result end

= 100

end

end
e

/|

Test of Version 5: Result LASSONDE

\n,

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)

Total
Violation] 0

‘ Boolean 1 5
\All Cases 1 5

PASSED NONE tl: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated. |[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
‘FAILED Check assertion violated. [t4: test deposit_on with wrong imp, complete contract with shallow object copy

‘FAILED Postcondition violuted) t5: test deposit_on with wrong imp, complete contract with deep object copy

e

/|

Exercise

LASSONDE
i

e Consider the query account_of (n: STRING) of BANK.

* How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o laccounts old accounts‘ [X]
o ’accounts old accounts.twin‘ X
o ’accounts old accounts.deepftwin‘ X
O | accounts old accounts‘ X
O | accounts old accounts.twin‘ X
o ’accounts ” old accounts.deep_twin‘]

e Which equality of the above is appropriate for the
postcondition?

e Why is each one of the other equalities not appropriate?

23.0t.25

Index (1) _;HASSONDE

How are contracts checked at runtime?

When are contracts complete?

Account

Bank

Roadmap of lllustrations

Object Structure for lllustration

Version 1:

Incomplete Contracts, Correct Implementation

Jest of Version 1

Jest of Version 1: Result

Version 2:

Incomplete Contracts, Wrong Implementation

Iest of Version 2

Test.af Version 2: Result
e

Index (2) e
Version 3:

Complete Contracts with Reference Copy

Jlest of Version 3

Iest of Version 3: Result

Version 4:
Complete Contracts with Shallow Object Copy
Iest of Version 4

Iest of Version 4: Result

Version 5:

Complete Contracts with Deep Object Copy
Iest of Version 5

Iest of Version 5: Result

Exercise

23.0£25

	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Exercise

