
Writing Complete Contracts

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

How are contracts checked at runtime?

● All contracts are specified as Boolean expressions.
● Right before a feature call (e.g., acc.withdraw(10)):

○ The current state of acc is called its pre-state.
○ Evaluate pre-condition using current values of attributes/queries.
○ Cache values of all expressions involving the old keyword in the

post-condition .

e.g., cache the value of old balance via old balance ∶= balance
● Right after the feature call:

○ The current state of acc is called its post-state.
○ Evaluate invariant using current values of attributes and queries.
○ Evaluate post-condition using both current values and

“cached” values of attributes and queries.

2 of 25

When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● The second contract is much harder to specify:
○ Reference aliasing [ref copy vs. shallow copy vs. deep copy]
○ Iterable structure [use across]

3 of 25

Account

class
ACCOUNT

inherit
ANY
redefine is_equal end

create
make

feature
owner: STRING
balance: INTEGER

make (n: STRING)
do
owner := n
balance := 0

end

deposit(a: INTEGER)
do
balance := balance + a

ensure
balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN
do
Result :=

owner ∼ other.owner
and balance = other.balance

end
end

4 of 25

Bank
class BANK
create make
feature
accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require
existing: across accounts as acc some acc.item.owner ∼ n end

do . . .
ensure Result.owner ∼ n
end

add (n: STRING)
require
non_existing:
across accounts as acc all acc.item.owner /∼ n end

local new_account: ACCOUNT
do
create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end
end

5 of 25

Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)

VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

6 of 25

Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b

accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts

7 of 25

Version 1:
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ∼ n then accounts[i].deposit(a) end
i := i + 1

end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end
end

8 of 25

Test of Version 1

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v1 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

9 of 25

Test of Version 1: Result

10 of 25

Version 2:
Incomplete Contracts, Wrong Implementation
class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1

-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end
end

Current postconditions lack a check that accounts other than n
are unchanged.

11 of 25

Test of Version 2

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v2 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

12 of 25

Test of Version 2: Result

13 of 25

Version 3:
Complete Contracts with Reference Copy
class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of(n).balance = old account_of(n).balance + a

others unchanged :

across old accounts as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

14 of 25

Test of Version 3

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN
local
b: BANK

do
comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v3 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

15 of 25

Test of Version 3: Result

16 of 25

Version 4:
Complete Contracts with Shallow Object Copy
class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :

across old accounts.twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

17 of 25

Test of Version 4

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN
local
b: BANK

do
comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v4 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

18 of 25

Test of Version 4: Result

19 of 25

Version 5:
Complete Contracts with Deep Object Copy
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER

do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :

across old accounts.deep twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end

20 of 25

Test of Version 5

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK

do
comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v5 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

21 of 25

Test of Version 5: Result

22 of 25

Exercise

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [×]
○ accounts = old accounts.twin [×]
○ accounts = old accounts.deep_twin [×]
○ accounts ˜ old accounts [×]
○ accounts ˜ old accounts.twin [×]
○ accounts ˜ old accounts.deep_twin [✓]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?

23 of 25

Index (1)
How are contracts checked at runtime?
When are contracts complete?
Account
Bank
Roadmap of Illustrations
Object Structure for Illustration
Version 1:
Incomplete Contracts, Correct Implementation
Test of Version 1
Test of Version 1: Result
Version 2:
Incomplete Contracts, Wrong Implementation
Test of Version 2
Test of Version 2: Result

24 of 25

Index (2)
Version 3:
Complete Contracts with Reference Copy

Test of Version 3

Test of Version 3: Result
Version 4:
Complete Contracts with Shallow Object Copy

Test of Version 4

Test of Version 4: Result
Version 5:
Complete Contracts with Deep Object Copy

Test of Version 5

Test of Version 5: Result

Exercise
25 of 25

	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Exercise

