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How are contracts checked at runtime?

● All contracts are specified as Boolean expressions.
● Right before a feature call (e.g., acc.withdraw(10) ):

○ The current state of acc is called its pre-state.
○ Evaluate pre-condition using current values of attributes/queries.
○ Cache values of all expressions involving the old keyword in the

post-condition .

e.g., cache the value of old balance via old balance ∶= balance
● Right after the feature call:

○ The current state of acc is called its post-state.
○ Evaluate invariant using current values of attributes and queries.
○ Evaluate post-condition using both current values and

“cached” values of attributes and queries.
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When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● The second contract is much harder to specify:
○ Reference aliasing [ ref copy vs. shallow copy vs. deep copy ]
○ Iterable structure [ use across ]
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Account

class
ACCOUNT

inherit
ANY
redefine is_equal end

create
make

feature
owner: STRING
balance: INTEGER

make (n: STRING)
do
owner := n
balance := 0

end

deposit(a: INTEGER)
do
balance := balance + a

ensure
balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN
do
Result :=

owner ∼ other.owner
and balance = other.balance

end
end
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Bank
class BANK
create make
feature
accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require
existing: across accounts as acc some acc.item.owner ∼ n end

do . . .
ensure Result.owner ∼ n
end

add (n: STRING)
require
non_existing:
across accounts as acc all acc.item.owner /∼ n end

local new_account: ACCOUNT
do
create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end
end
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Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)

VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes
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Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b

accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts
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Version 1:
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ∼ n then accounts[i].deposit(a) end
i := i + 1

end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end
end

8 of 25



Test of Version 1

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v1 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end
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Test of Version 1: Result
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Version 2:
Incomplete Contracts, Wrong Implementation
class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1

-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end
end

Current postconditions lack a check that accounts other than n
are unchanged.
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Test of Version 2

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v2 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end

12 of 25



Test of Version 2: Result
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Version 3:
Complete Contracts with Reference Copy
class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of(n).balance = old account_of(n).balance + a

others unchanged :

across old accounts as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end
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Test of Version 3

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN
local
b: BANK

do
comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v3 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end
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Test of Version 3: Result
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Version 4:
Complete Contracts with Shallow Object Copy
class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER
do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :

across old accounts.twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end
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Test of Version 4

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN
local
b: BANK

do
comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v4 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end
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Test of Version 4: Result
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Version 5:
Complete Contracts with Deep Object Copy
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end
local i: INTEGER

do
-- same loop as in version 1
-- wrong implementation: also deposit in the first account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :

across old accounts.deep twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end
end
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Test of Version 5

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK

do
comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v5 ("Steve", 100)
Result :=

b.account_of ("Bill").balance = 0
and b.account_of ("Steve").balance = 100

check Result end
end

end
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Test of Version 5: Result
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Exercise

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [ × ]
○ accounts = old accounts.twin [ × ]
○ accounts = old accounts.deep_twin [ × ]
○ accounts ˜ old accounts [ × ]
○ accounts ˜ old accounts.twin [ × ]
○ accounts ˜ old accounts.deep_twin [ ✓ ]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?
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