Writing Complete Contracts

EECS3311: Software Design

' Fall 2017

3 CHEN-WEI WANG
Y

/|

How are contracts checked at runtime? s

¢ All contracts are specified as Boolean expressions.
¢ Right before a feature call (e.g., | acc.withdraw(10) ‘):

o The current state of is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.

o Cache values of all expressions involving the old keyword in the

post-condition .

e.g., cache the value of | old balance | via old_balance := balance

¢ Right after the feature call:

o The current state of is called its post-state.
o Evaluate invariant using current values of attributes and queries.

o Evaluate post-condition using both current values and
“cached” values of attributes and queries.

e

When are contracts complete?

e In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-siate value.
o Eiffel supports this purpose using the old keyword.
This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.

e.g., INTEGER, BOOLEAN are simple-structured.
Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

The second contract is much harder to specify:

o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across]

e

ACCOU I’lt LASSONDE
class

ACCOUNT
. . deposit (a: INTEGER)
inherit do

ANY

. . balance := balance + a
redefine is_equal end
create ensure
balance = old balance + a
make
end

feature

is_equal (other: ACCOUNT): BOOLEAN

owner: STRING
do

balance: INTEGER

Result :=
owner ~ other.owner
k : STRING
make (n) and balance = other.balance
do
end

owner := n end

balance := 0
end

Bank

class BANK

create make

feature
accounts: ARRAY[ACCOUNT
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT

require
existing: across accounts as acc some acc.item.owner ~ n end
do ...
ensure Result.owner ~ n
end
add (n: STRING)
require

non_existing:
across accounts as acc all acc.item.owner /~ n end
local new_account: ACCOUNT
do
create new_account.make (n)

accounts.force (new_account, accounts.upper + 1)
end

end
50f25

Roadmap of lllustrations LASSONDE

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes
6 of 25

Object Structure for lllustration

We will test each version by starting with the same runtime object
structure:

o

.accounts

accounts

ACCOUNT ACCOUNT

“Steve”

70f25

Version 1: oot

Incomplete Contracts, Correct Implementation

class BANK
deposit_on_vl (n: STRING; a: INTEGER)

require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i :=1+1
end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of n_increased:
account_of (n).balance = old account_of (n).balance + a

Test of Version 1 LASSONDE Version 2:
Incomplete Contracts, Wrong Implementation

class BANK

\n,

class TEST BANK

ti?t_ﬁ?nk_dep051t_correct_lnlencomplete_contract: BOOLEAN deposit_on v2 (n: STRING; a: INTEGER)
3:? BANK require across accounts as acc some acc.item.owner ~ n end
: local i: INTEGER
do
do

comment ("tl: correct imp and incomplete contract")
create b.make
b.add ("Bill") 21so dep

b.add ("Steve") I : | e
accounts[accounts.lower].deposit (a)

, , ensure
- dollars TCo oSt acc
b.d (nst " 100) num_of_accounts_unchanged:
o.aepo I / teve 4
- - / oY accounts.count = old accounts.count

Result £ o("BilL" 7 _ balance_of_n_increased:
b.account_o ("Bi) .balance =0 account_of (n) .balance = old account_of (n).balance + a
and b.account_of ("Steve").balance = 100 end
check Result end
end
end
end Current postconditions lack a check that accounts other than n
are unchanged.

10f25

— e —

Test of Version 1: Result LASSONDE Test of Version 2

class TEST BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

APPLICATION local
b: BANK
Note: * indicates a violation test case do

- comment ("t2: wrong imp and incomplete contract!)
create b.make
PASSED (1 t of 1 .
peada (BT
ase_type "Se °" b.add ("Steve™)

Violation

Boolean 1 1 — d
ALl Cases b.depos

1 1
| State [Contract Violation] TestName | Result :=
TEST_BANK b.account_of ("Bill").balance = 0
PASSED NONE tl: test deposit_on with correct imp and incomplete contract and b.account_of ("Steve").balance = 100

check Result end
end
end

) dollars to S

on.v2 ("Steve"”, 100)

Test of Version 2: Result R Test of Version 3

S50 o masueag LASSONDE
class TEST BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN
APPLICATION local
b: BANK
Note: * indicates a violation test case do
comment ("t3: wrong imp and complete contract with ref copy")
[FAILED (1 failed & 1 passed out of 2) create b.make
b.add ("Bill™)
Violation 0 e] b.add ("Steve")
Boolean 1 2
All Cases 1 2 -— d t 100 dc s
Testl Result :=
PASSED NONE [t1: test deposit_on with correct imp and incomplete contract| b.account_of ("Bill").balance = 0
FAILED [Check assertion violated.|[t2: test deposit_on with wrong imp but incomplete contract and b.account_of ("Steve").balance = 100
check Result end
end
end
13 0f 25 150f 25

Version 3: LASSONDE Test of Version 3: Result
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)

LASSONDE

require across accounts as acc some acc.item.owner ~ n end APPLICATION
local i: INTEGER Note: * indicates a violation test case
do

FAILED (2 failed & 1 passed out of 3)

also deposit

i
counts[accounts.lower].deposit (a) violatio] oo | 9
ensure Boolean 1 3
num_of_accounts_unchanged: accounts.count = old accounts.count ALl Cases 1 3
balance_of_n_increased:
account_of(n) .balance = old account_of(n).balance + a
h hanged : PASSED NONE tl: test deposit_on with correct imp and incomplete contract
QENSIFSLNE g : FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
across old accounts as cursor FAILED |Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
all cursor.item.owner /~ n implies

cursor.item ~ account_of (cursor.item.owner)
end
end
end
—14of25

16 of 25

Version 4: e

Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

do
- so deposit 1in f ac
acco .lower] .deposit
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count

balance_of n_increased:
account_of (n).balance = old account_of (n).balance + a
others_unchanged
across old accounts.twin as cursor
all cursor.item.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)

end
end
end
|

Test of Version 4 [i=SoNDE

class TEST_BANK JN
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE
local
b: BANK
do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make
b.add ("Bill")
b.add ("Steve")

dol rs to

_v4 ("Steve", 100)

b.deposi

Result :=
b.account_of ("Bill") .balance = 0
and b.account_of ("Steve").balance = 100
check Result end
end
end
18 of 25

Test of Version 4: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (3 failed & 1 passed out of 4)
Total

\Violation] 0
Boolean 1 4

/ALl Cases 1 4

Test Name

PASSED NONE tl: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy

FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy

19 0f 25

Version 5: Ae=oND:

Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

do
- o deposit in the
acc nts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count

balance_of n_increased:
account_of (n).balance = old account_of (n).balance + a
others_unchanged :
across old accounts.deep_-twin as cursor
all cursor.item.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)
end
end
end
—200of25

Test of Version 5 LASSONDE Exercise

class TEST BANK e Consider the query account of (n: STRING) of BANK.
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN . i .
local e How do we specify (part of) its postcondition to assert that the
d°b= BANK state of the bank remains unchanged:
comment ("t5: wrong imp and complete contract with deep copy") o laccounts - old accounts‘ X
create b.make -
b.add ("Bill") o laccounts = old accounts.tw:Ln‘ X]
b.add ("Steve") O | accounts = old accounts.deep_twin‘ X
. 100 dollars to Steve’s O | accounts ~ old accounts‘ [X
b.deposit_on.v5 ("Steve", 100) O | accounts ~ old accounts.twin‘ [><
Result := o ’accounts ~ old accounts.deepftwin‘ [
b.account_of ("Bill") .balance = 0
and b.account_of ("Steve").balance = 100 e Which equality of the above is appropriate for the
check Result end t dt n
end postconaition
end e Why is each one of the other equalities not appropriate?
21 of 25 23 of 25

Test of Version 5: Result LASSONDE Index (1)

How are contracts checked at runtime?
When are contracts complete?

APPLICATION Account

Note: * indicates a violation test case Bank
|

FAILED (4 failed & 1 passed out of 5) i
Ro?dmap of lllustrations .
Violation ° 0 Object Structure for lllustration
ALl Cases 1 5 Version 1:
Incomplete Contracts, Correct Implementation

PASSED NONE t1l: test deposit_on with correct imp and incomplete contract

Test of Version 1

FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy TeSt _Of VerSIon 1 " Resu"
FAILED Postcondition violuted) t5: test deposit_on with wrong imp, complete contract with deep object copy VerSIon 2:

Incomplete Contracts, Wrong Implementation
Test of Version 2
Test.of Version 2: Result

FAILED Check assertion violated. t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. [t3: test deposit_on with wrong imp, complete contract with reference copy

22 of 25

Index (2) EASSONDE
Version 3:
Complete Contracts with Reference Copy

Test of Version 3

Test of Version 3: Result
Version 4:
Complete Contracts with Shallow Object Copy

Test of Version 4

Test of Version 4: Result
Version 5:
Complete Contracts with Deep Object Copy

Test of Version 5
Test of Version 5: Result

Exercise
25 of 25

