
Design Patterns:
Singleton and Iterator

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

What are design patterns?

● Solutions to problems that arise when software is being
developed within a particular context.○ Heuristics for structuring your code so that it can be systematically

maintained and extended.○ Caveat : A pattern is only suitable for a particular problem.○ Therefore, always understand problems before solutions!

2 of 31

Singleton Pattern: Motivation

Consider two problems:

1. Bank accounts share a set of data.
e.g., interest and exchange rates, minimum and maximum
balance, etc.

2. Processes are regulated to access some shared, limited
resources.

3 of 31

Shared Data through Inheritance

Client:
class DEPOSIT inherit SHARED_DATA

. . .
end

class WITHDRAW inherit SHARED_DATA
. . .

end

class ACCOUNT inherit SHARED_DATA
feature

deposits: DEPOSIT_LIST
withdraws: WITHDRAW_LIST
. . .

end

Supplier:
class
SHARED_DATA

feature
interest_rate: REAL
exchange_rate: REAL
minimum_balance: INTEGER
maximum_balance: INTEGER
. . .

end

Problems?

4 of 31

Sharing Data through Inheritance:
Architecture

○ Irreverent features are inherited, breaking descendants’ cohesion.○ Same set of data is duplicated as instances are created.
5 of 31

Sharing Data through Inheritance: Limitation

● Each instance at runtime owns a separate copy of the shared
data.

● This makes inheritance not an appropriate solution for both
problems:○ What if the interest rate changes? Apply the change to all

instantiated account objects?○ An update to the global lock must be observable by all regulated
processes.

Solution:○ Separate notions of data and its shared access in two separate
classes.○ Encapsulate the shared access itself in a separate class.

6 of 31

Introducing the Once Routine in Eiffel (1.1)
1 class A
2 create make
3 feature -- Constructor
4 make do end
5 feature -- Query
6 new_once_array (s: STRING): ARRAY[STRING]
7 -- A once query that returns an array.
8 once

9 create {ARRAY[STRING]} Result.make_empty
10 Result.force (s, Result.count + 1)
11 end
12 new_array (s: STRING): ARRAY[STRING]
13 -- An ordinary query that returns an array.
14 do

15 create {ARRAY[STRING]} Result.make_empty
16 Result.force (s, Result.count + 1)
17 end
18 end

L9 & L10 executed only once for initialization.
L15 & L16 executed whenever the feature is called.

7 of 31

Introducing the Once Routine in Eiffel (1.2)

1 test_query: BOOLEAN
2 local
3 a: A
4 arr1, arr2: ARRAY[STRING]
5 do
6 create a.make
7
8 arr1 := a.new_array ("Alan")
9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end
11
12 arr2 := a.new_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Mark"
14 check Result end
15
16 Result := not (arr1 = arr2)
17 check Result end
18 end

8 of 31

Introducing the Once Routine in Eiffel (1.3)

1 test_once_query: BOOLEAN
2 local
3 a: A
4 arr1, arr2: ARRAY[STRING]
5 do
6 create a.make
7
8 arr1 := a.new_once_array ("Alan")
9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end
11
12 arr2 := a.new_once_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Alan"
14 check Result end
15
16 Result := arr1 = arr2
17 check Result end
18 end

9 of 31

Introducing the Once Routine in Eiffel (2)
r (. . .): T

once
-- Some computations on Result
. . .

end

● The ordinary do . . . end is replaced by once . . . end.● The first time the once routine r is called by some client, it
executes the body of computations and returns the computed
result.● From then on, the computed result is “cached”.● In every subsequent call to r , possibly by different clients, the
body of r is not executed at all; instead, it just returns the
“cached” result, which was computed in the very first call.● How does this help us?
Cache the reference to the same shared object!

10 of 31

Introducing the Once Routine in Eiffel (3)
● In Eiffel, the once routine:○ Initializes its return value Result by some computation.○ The initial computation is invoked only once.○ Resulting value from the initial computation is cached and returned

for all later calls to the once routine.● Eiffel once routines are different from Java static accessors
In Java, a static accessor● Does not have its computed return value “cached”● Has its computation performed freshly on every invocation

● Eiffel once routines are different from Java static attributes
In Java, a static attribute● Is a value on storage● May be initialized via some simple expression

e.g., static int counter = 20;
but cannot be initialized via some sophisticated computation.● Note. By putting such initialization computation in a constructor, there
would be a fresh computation whenever a new object is created.

11 of 31

Singleton Pattern in Eiffel

Supplier:
class BANK_DATA
create {BANK_DATA_ACCESS} make
feature {BANK_DATA_ACCESS}
make do . . . end

feature -- Data Attributes
interest_rate: REAL
set_interest_rate (r: REAL)

end

expanded class
BANK_DATA_ACCESS

feature
data: BANK_DATA

-- The one and only access
once create Result.make end

invariant data = data

Client:
class
ACCOUNT

feature
data: BANK_DATA
make (. . .)

-- Init. access to bank data.
local
data_access: BANK_DATA_ACCESS

do
data := data_access.data
. . .

end
end

Writing create data.make in
client’s make feature does not
compile. Why?

12 of 31

Testing Singleton Pattern in Eiffel

test_bank_shared_data: BOOLEAN
-- Test that a single data object is manipulated

local
acc1, acc2: ACCOUNT

do
comment("t1: test that a single data object is shared")
create acc1.make ("Bill")
create acc2.make ("Steve")

Result := acc1.data ∼ acc2.data
check Result end

Result := acc1.data = acc2.data
check Result end

acc1.data.set_interest_rate (3.11)
Result := acc1.data.interest_rate = acc2.data.interest_rate

end

13 of 31

Singleton Pattern: Architecture

DATA_ACCESS +

data: DATA
 -- A shared data object.
 once
 create Result.make
 end

Invariant
shared_instance:
 data = data

DATA +

data +

DATA_ACCESS

v: VALUE
 -- An example query.
c
 -- An example command.

make
 - - Initialize a data object.

CLIENT_1

APPLICATION_2 +

CLIENT_2

APPLICATION_3 +

CLIENT_3

SUPPLIER_OF_SHARED_DATA
APPLICATION_1 +

Important Exercises: Instantiate this architecture to both
problems of shared bank data and shared lock. Draw them in
draw.io.

14 of 31

Iterator Pattern: Motivation

Supplier:
class
CART

feature
orders: ARRAY [ORDER]

end

class
ORDER

feature
price: INTEGER
quantity: INTEGER

end

Problems?

Client:
class
SHOP

feature
cart: CART
checkout: INTEGER
do
from
i := cart.orders.lower

until
i > cart.orders.upper

do
Result := Result +
cart.orders[i].price
*
cart.orders[i].quantity

i := i + 1
end

end
end

15 of 31

Iterator Pattern: Architecture

new_cursor*: ITERATION_CURSOR[G]
 -- Fresh cursor associated with current structure.
 ! Result ≠ Void item*: G

 -- Item at current cursor position.
 ? valid_position: not after

forth*
 -- Move to next position.
 ? valid_position: not after

after*: BOOLEAN
 -- Are there no more items to iterate over?

ITERABLE *

new_cursor*

ITERATION_CURSOR[G] *CLIENT_APPLICATION+

container+
increase_balance(v: INTEGER; name: STRING)
 -- Increase the balance for account with owner name .
 ? across container as cur
 all
 cur.item.balance ≥ v
 end
 ! across old container.deep_twin as cur
 all
 (cur.item.owner ~ name implies
 cur.item.balance = old cur.item.balance + v)
 and
 (cur.item.owner ~ name implies
 cur.item.balance = old cur.item.balance)
 end

container: ITERABLE+
 -- Fresh cursor of the container.

some_account_negative: BOOLEAN
 -- Is there some account negative?
 ! Result =
 across container as cur
 some
 cur.item.balance < v
 end

INDEXABLE_ITERATION_CURSOR[G] +

new_cursor+

after+: BOOLEAN
 -- Are there no more items to iterate over?

item+: G
 -- Item at current cursor position.

forth+
 -- Move to next position.

start+
 -- Move to first position.

CLIENT SUPPLIER

ARRAY[G] +

LINKED_LIST[G] + ARRAYED_LIST[G] +

ITERABLE_COLLECTION

16 of 31

Iterator Pattern: Supplier’s Side

● Information hiding: changing the secret, internal workings of
data structures should not affect any existing clients.

e.g., changing from ARRAY to LINKED LIST in the CART class
● Steps:

1. Let the supplier class inherit from the deferred class
ITERABLE[G] .

2. This forces the supplier class to implement the inherited feature:
new cursor: ITERATION CURSOR [G] , where the type parameter
G may be instantiated (e.g., ITERATION CURSOR[ORDER]).

2.1 If the internal, library data structure is already iterable
e.g., imp: ARRAY[ORDER], then simply return imp.new cursor.

2.2 Otherwise, say imp: MY TREE[ORDER], then create a new class
MY TREE ITERATION CURSOR that inherits from
ITERATION CURSOR[ORDER] , then implement the 3 inherited
features after , item, and forth accordingly.

17 of 31

Iterator Pattern: Supplier’s Implementation (1)

class
CART

inherit
ITERABLE[ORDER]

. . .

feature {NONE} -- Information Hiding
orders: ARRAY[ORDER]

feature -- Iteration
new_cursor: ITERATION_CURSOR[ORDER]
do
Result := orders.new_cursor

end

When the secrete implementation is already iterable, reuse it!

18 of 31

Iterator Pattern: Supplier’s Imp. (2.1)

class
GENERIC_BOOK[G]

inherit
ITERABLE[TUPLE[STRING, G]]

. . .
feature {NONE} -- Information Hiding
names: ARRAY[STRING]
records: ARRAY[G]

feature -- Iteration
new_cursor: ITERATION_CURSOR[TUPLE[STRING, G]]
local
cursor: MY ITERATION CURSOR[G]

do
create cursor.make (names, records)
Result := cursor

end

No Eiffel library support for iterable arrays⇒ Implement it yourself!

19 of 31

Iterator Pattern: Supplier’s Imp. (2.2)
class
MY_ITERATION_CURSOR[G]

inherit
ITERATION_CURSOR[TUPLE[STRING, G]]

feature -- Constructor
make (ns: ARRAY[STRING]; rs: ARRAY[G])
do . . . end

feature {NONE} -- Information Hiding
i: cursor_position
names: ARRAY[STRING]
records: ARRAY[G]

feature -- Cursor Operations
item: TUPLE[STRING, G]
do . . . end

after: Boolean
do . . . end

forth
do . . . end

You need to implement the three inherited features:
item, after, and forth.

20 of 31

Exercises

1. Draw the BON diagram showing how the iterator pattern is
applied to the CART (supplier) and SHOP (client) classes.

2. Draw the BON diagram showing how the iterator pattern is
applied to the supplier classes:○ GENERIC BOOK (a descendant of ITERABLE) and○ MY ITERATION CURSOR (a descendant of

ITERATION CURSOR).

21 of 31

Iterator Pattern: Client’s Side

Information hiding: the clients do not at all depend on how the
supplier implements the collection of data; they are only interested
in iterating through the collection in a linear manner.
Steps:

1. Obey the code to interface, not to implementation principle.
2. Let the client declare an attribute of type ITERABLE[G] (rather

than ARRAY, LINKED LIST, or MY TREE).
e.g., cart: CART, where CART inherits ITERATBLE[ORDER]

3. Eiffel supports, in both implementation and contracts, the
across syntax for iterating through anything that’s iterable.

22 of 31

Iterator Pattern:
Clients using across for Contracts (1)
class
CHECKER

feature -- Attributes
collection: ITERABLE [INTEGER]

feature -- Queries
is all positive: BOOLEAN

-- Are all items in collection positive?
do
. . .

ensure
across
collection as cursor

all
cursor.item > 0

end
end

● Using all corresponds to a universal quantification (i.e., ∀).● Using some corresponds to an existential quantification (i.e., ∃).
23 of 31

Iterator Pattern:
Clients using across for Contracts (2)
class BANK
. . .
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT

-- Search on accounts sorted in non-descending order.
require
across
1 |..| (accounts.count - 1) as cursor

all
accounts [cursor.item].id <= accounts [cursor.item + 1].id

end
do
. . .

ensure
Result.id = acc_id

end

This precondition corresponds to:
∀i ∶ INTEGER � 1 ≤ i < accounts.count ● accounts[i].id ≤ accounts[i +1].id

24 of 31

Iterator Pattern:
Clients using across for Contracts (3)
class BANK
. . .
accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN

-- Does the account list contain duplicate?
do
. . .

ensure∀i, j ∶ INTEGER �
1 ≤ i ≤ accounts.count ∧ 1 ≤ j ≤ accounts.count ●

accounts[i] ∼ accounts[j]⇒ i = j
end

● Exercise: Convert this mathematical predicate for
postcondition into Eiffel.● Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as
necessary.

25 of 31

Iterator Pattern:
Clients using Iterable in Imp. (1)
class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

-- Account with the maximum balance value.
require ??
local
cursor: ITERATION_CURSOR[ACCOUNT]; max: ACCOUNT

do
from max := accounts [1]; cursor := accounts. new cursor

until cursor. after
do
if cursor. item .balance > max.balance then
max := cursor. item

end
cursor. forth

end
ensure ??
end

26 of 31

Iterator Pattern:
Clients using Iterable in Imp. (2)

1 class SHOP
2 cart: CART
3 checkout: INTEGER
4 -- Total price calculated based on orders in the cart.
5 require ??
6 local
7 order: ORDER
8 do
9 across

10 cart as cursor
11 loop
12 order := cursor. item
13 Result := Result + order.price * order.quantity
14 end
15 ensure ??
16 end

● Class CART should inherit from ITERABLE[ORDER] .● L10 implicitly declares: cursor: ITERATION CURSOR[ORDER]
27 of 31

Iterator Pattern:
Clients using Iterable in Imp. (3)
class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

-- Account with the maximum balance value.
require ??
local
max: ACCOUNT

do
max := accounts [1]
across
accounts as cursor
loop

if cursor.item.balance > max.balance then
max := cursor. item

end
end

ensure ??
end

28 of 31

Index (1)
What are design patterns?
Singleton Pattern: Motivation
Shared Data through Inheritance
Sharing Data through Inheritance: Architecture
Sharing Data through Inheritance: Limitation
Introducing the Once Routine in Eiffel (1.1)
Introducing the Once Routine in Eiffel (1.2)
Introducing the Once Routine in Eiffel (1.3)
Introducing the Once Routine in Eiffel (2)
Introducing the Once Routine in Eiffel (3)
Singleton Pattern in Eiffel
Testing Singleton Pattern in Eiffel
Singleton Pattern: Architecture
Iterator Pattern: Motivation

29 of 31

Index (2)
Iterator Pattern: Architecture
Iterator Pattern: Supplier’s Side
Iterator Pattern: Supplier’s Implementation (1)
Iterator Pattern: Supplier’s Imp. (2.1)
Iterator Pattern: Supplier’s Imp. (2.2)
Exercises
Iterator Pattern: Client’s Side
Iterator Pattern:
Clients using across for Contracts (1)
Iterator Pattern:
Clients using across for Contracts (2)
Iterator Pattern:
Clients using across for Contracts (3)
Iterator Pattern:
Clients using Iterable in Imp. (1)

30 of 31

Index (3)
Iterator Pattern:
Clients using Iterable in Imp. (2)

Iterator Pattern:
Clients using Iterable in Imp. (3)

31 of 31

