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Abstract Data Types (ADTs)

● Given a problem, you are required to filter out irrelevant details.
● The result is an abstract data type (ADT) , whose interface

consists of a list of (unimplemented) operations.
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Abstract Data Type – entity that consists of:
1)  data structure (DS)
2)  set of operation supported on the DS
3)  error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier ’s Obligations:
○ Implement all operations
○ Choose the “right” data structure (DS)

● Client ’s Benefits:
○ Correct output
○ Efficient performance

● The internal details of an implemented ADT should be hidden.
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Building ADTs for Reusability
● ADTs are reusable software components

e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs
● An ADT, once thoroughly tested, can be reused by:
○ Suppliers of other ADTs
○ Clients of Applications

● As a supplier, you are obliged to:
○ Implement given ADTs using other ADTs (e.g., arrays, linked lists,

hash tables, etc.)
○ Design algorithms that make use of standard ADTs

● For each ADT that you build, you ought to be clear about:
○ The list of supported operations (i.e., interface )

● The interface of an ADT should be more than method signatures and
natural language descriptions:

● How are clients supposed to use these methods? [ preconditions ]

● What are the services provided by suppliers? [ postconditions ]

○ Time (and sometimes space) complexity of each operation
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Why Java Interfaces Unacceptable ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.
● A reasonably intuitive overview of the ADT.

Java 8 List API
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https://docs.oracle.com/javase/8/docs/api/?java/util/List.html


Why Java Interfaces Unacceptable ADTs (2)
Methods described in a natural language can be ambiguous:
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Why Eiffel Contract Views are ADTs (1)
class interface ARRAYED_CONTAINER
feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position ’i’ to ’s’.
require
valid_index: 1 <= i and i <= count

ensure
size_unchanged:
imp.count = (old imp.twin).count

item_assigned:
imp [i] ∼ s

others_unchanged:
across
1 |..| imp.count as j

all
j.item /= i implies imp [j.item] ∼ (old imp.twin) [j.item]

end
count: INTEGER

invariant
consistency: imp.count = count

end -- class ARRAYED_CONTAINER
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Why Eiffel Contract Views are ADTs (2)
Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.
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Uniform Access Principle (1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.
○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● How the Point is implemented is irrelevant to users:
○ Imp. 1: Store x and y. [ Compute r and phi on demand ]
○ Imp. 2: Store r and phi. [ Compute x and y on demand ]

● As far as users of a Point object p is concerned, having a
uniform access by always being able to call p.x and p.y is
what matters, despite Imp. 1 or Imp. 2 being current strategy.
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Uniform Access Principle (2)
class
POINT

create
make_cartisian, make_polar

feature -- Public, Uniform Access to x- and y-coordinates
x : REAL
y : REAL

end

● A class Point declares how users may access a point: either
get its x coordinate or its y coordinate.

● We offer two possible ways to instantiating a 2-D point:
○ make cartisian (nx: REAL; ny: REAL)
○ make polar (nr: REAL; np: REAL)

● Features x and y, from the client’s point of view, cannot tell
whether it is implemented via:
○ Storage [ x and y stored as real-valued attributes ]
○ Computation [ x and y defined as queries returning real values ]
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Uniform Access Principle (3)
Let’s say the supplier decides to adopt strategy Imp. 1.
class POINT -- Version 1
feature -- Attributes
x : REAL
y : REAL

feature -- Constructors
make_cartisian(nx: REAL; nx: REAL)
do
x := nx
y := ny

end
end

● Attributes x and y represent the Cartesian system
● A client accesses a point p via p.x and p.y.
○ No Extra Computations: just returning current values of x and y.

● However, it’s harder to implement the other constructor: the
body of make polar (nr: REAL; np: REAL) has to
compute and store x and y according to the inputs nr and np.
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Uniform Access Principle (4)
Let’s say the supplier decides ( secretly ) to adopt strategy Imp. 2.
class POINT -- Version 2
feature -- Attributes
r : REAL
p : REAL

feature -- Constructors
make_polar(nr: REAL; np: REAL)
do
r := nr
p := np

end
feature -- Queries
x : REAL do Result := r × cos(p) end
x : REAL do Result := r × sin(p) end

end

● Attributes r and p represent the Polar system
● A client still accesses a point p via p.x and p.y.
○ Extra Computations: computing x and y according to the current

values of r and p.
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Uniform Access Principle (5.1)

Let’s consider the following scenario as an example:

Note: 360○ = 2π
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Uniform Access Principle (5.2)

1 test_points: BOOLEAN
2 local
3 A, X, Y: REAL
4 p1, p2: POINT
5 do
6 comment("test: two systems of points")

7 A := 5; X := A ×√3; Y := A
8 create {POINT} p1.make_cartisian (X, Y)
9 create {POINT} p2.make_polar (2 × A, 1

6π)
10 Result := p1.x = p2.x and p1.y = p2.y
11 end

● If strategy Imp. 1 is adopted:
○ L8 is computationally cheaper than L9. [ x and y attributes ]
○ L10 requires no computations to access x and y.
If strategy Imp. 2 is adopted:
○ L9 is computationally cheaper than L8. [ r and p attributes ]
○ L10 requires computations to access x and y.
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Uniform Access Principle (6)
The Uniform Access Principle :
● Allows clients to use services (e.g., p.x and p.y) regardless of

how they are implemented.
● Gives suppliers complete freedom as to how to implement the

services (e.g., Cartesian vs. Polar).
○ No right or wrong implementation; it depends!
○ Choose for storage if the services are frequently accessed and

their computations are expensive.
e.g. balance of a bank involves a large number of accounts
⇒ Implement balance as an attribute

○ Choose for computation if the services are not keeping their
values in sync is complicated.
e.g., update balance upon a local deposit or withdrawal
⇒ Implement balance as a query

● Whether it’s storage or computation, you can always change
secretly , since the clients’ access to the services is uniform .
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Generic Collection Class: Motivation (1)
class STRING _STACK
feature {NONE} -- Implementation

imp: ARRAY[ STRING ] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: STRING do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: STRING ) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

○ Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type STRING
(e.g., at, append)? [ NO! ]

○ How would you implement another class ACCOUNT STACK?
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Generic Collection Class: Motivation (2)

class ACCOUNT _STACK
feature {NONE} -- Implementation

imp: ARRAY[ ACCOUNT ] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: ACCOUNT do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: ACCOUNT ) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

○ Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)? [ NO! ]
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Generic Collection Class: Supplier
● Your design “smells” if you have to create an almost identical

new class (hence code duplicates ) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, etc.).

● Instead, as supplier, use G to parameterize element type:
class STACK [G]

feature {NONE} -- Implementation

imp: ARRAY[ G ] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: G do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: G ) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end
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Generic Collection Class: Client (1.1)
As client, declaring ss: STACK[ STRING ] instantiates every
occurrence of G as STRING.

class STACK [�G STRING]

feature {NONE} -- Implementation

imp: ARRAY[ �G STRING ] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: �G STRING do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: �G STRING ) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end
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Generic Collection Class: Client (1.2)
As client, declaring ss: STACK[ ACCOUNT ] instantiates every
occurrence of G as ACCOUNT.

class STACK [�G ACCOUNT]

feature {NONE} -- Implementation

imp: ARRAY[ �G ACCOUNT ] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: �G ACCOUNT do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: �G ACCOUNT ) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

19 of 33



Generic Collection Class: Client (2)
As client, instantiate the type of G to be the one needed.

1 test_stacks: BOOLEAN
2 local
3 ss: STACK[STRING] ; sa: STACK[ACCOUNT]
4 s: STRING ; a: ACCOUNT
5 do
6 ss.push("A")
7 ss.push(create {ACCOUNT}.make ("Mark", 200))
8 s := ss.top
9 a := ss.top

10 sa.push(create {ACCOUNT}.make ("Alan", 100))
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

● L3 commits that ss stores STRING objects only.
○ L8 and L10 valid ; L9 and L11 invalid .

● L4 commits that sa stores ACCOUNT objects only.
○ L12 and L14 valid ; L13 and L15 invalid .
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Expanded Class: Modelling
● We may want to have objects which are:
○ Integral parts of some other objects
○ Not shared among objects
e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.
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Expanded Class: Programming (2)
class KEYBOARD . . . end class CPU . . . end
class MONITOR . . . end class NETWORK . . . end
class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end

Alternatively:
expanded class KEYBOARD . . . end
expanded class CPU . . . end
expanded class MONITOR . . . end
class NETWORK . . . end
class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK

end
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Expanded Class: Programming (3)

expanded class
B

feature
change_i (ni: INTEGER)
do
i := ni

end
feature
i: INTEGER

end

1 test_expanded: BOOLEAN
2 local
3 eb1, eb2: B
4 do
5 Result := eb1.i = 0 and eb2.i = 0
6 check Result end
7 Result := eb1 = eb2
8 check Result end
9 eb2.change_i (15)

10 Result := eb1.i = 0 and eb2.i = 15
11 check Result end
12 Result := eb1 /= eb2
13 check Result end
14 end

● L5: object of expanded type is automatically initialized.
● L9 & L10: no sharing among objects of expanded type.
● L7 & L12: = between expanded objects compare their contents.
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Reference vs. Expanded (1)

● Every entity must be declared to be of a certain type (based on
a class).

● Every type is either referenced or expanded .
● In reference types:
○ y denotes a reference to some object
○ x := y attaches x to same object as does y
○ x = y compares references

● In expanded types:
○ y denotes some object (of expanded type)
○ x := y copies contents of y into x
○ x = y compares contents [x ∼ y]
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Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author expanded-typed author
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Copying Objects
Say variables c1 and c2 are both declared of type C. [ c1, c2: C ]
● There is only one attribute a declared in class C.
● c1.a and c2.a may be of either:
○ expanded type or
○ reference type

a

C

c1

a

C

c2

c1.a

c2.a
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Copying Objects: Reference Copy
Reference Copy c1 := c2

○ Copy the address stored in variable c2 and store it in c1.
⇒ Both c1 and c2 point to the same object.
⇒ Updates performed via c1 also visible to c2. [ aliasing ]

a

C

c1

a

C

c2

c1.a

c2.a
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Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object. [ c1 /= c2 ]
⇒ c1.a and c2.a are pointing to the same object.
⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a
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Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is expanded (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object.
⇒ c1.a and c2.a are not pointing to the same object.
⇒ No aliasing occurs at any levels.

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

c2.a.deep_twin
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Copying Objects: Example

EECS, York University Object Oriented Software Construction     15-05-27 16:29     28 

Shallow and deep cloning 

!  Initial situation: 

!  Result of: 

b := a 

c := a.twin 

d := a.deep_twin 

“Almaviva” name 
landlord 

loved_one 

a 
O1 

“Figaro” 
O2 

“Susanna” 
O3 

b 

“Almaviva” O4 

c 

“Almaviva” name 
landlord 

loved_one 

O5 

“Figaro” 
O6 

“Susanna” 
O7 

d 
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