
Abstract Data Types (ADTs),
Classes, and Objects
Readings: OOSC2 Chapters 6, 7, 8

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Abstract Data Types (ADTs)

● Given a problem, you are required to filter out irrelevant details.
● The result is an abstract data type (ADT) , whose interface

consists of a list of (unimplemented) operations.

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier ’s Obligations:
○ Implement all operations
○ Choose the “right” data structure (DS)

● Client ’s Benefits:
○ Correct output
○ Efficient performance

● The internal details of an implemented ADT should be hidden.
2 of 33

Building ADTs for Reusability
● ADTs are reusable software components

e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs
● An ADT, once thoroughly tested, can be reused by:
○ Suppliers of other ADTs
○ Clients of Applications

● As a supplier, you are obliged to:
○ Implement given ADTs using other ADTs (e.g., arrays, linked lists,

hash tables, etc.)
○ Design algorithms that make use of standard ADTs

● For each ADT that you build, you ought to be clear about:
○ The list of supported operations (i.e., interface)

● The interface of an ADT should be more than method signatures and
natural language descriptions:

● How are clients supposed to use these methods? [preconditions]

● What are the services provided by suppliers? [postconditions]

○ Time (and sometimes space) complexity of each operation
3 of 33

Why Java Interfaces Unacceptable ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.
● A reasonably intuitive overview of the ADT.

Java 8 List API
4 of 33

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Why Java Interfaces Unacceptable ADTs (2)
Methods described in a natural language can be ambiguous:

5 of 33

Why Eiffel Contract Views are ADTs (1)
class interface ARRAYED_CONTAINER
feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position ’i’ to ’s’.
require
valid_index: 1 <= i and i <= count

ensure
size_unchanged:
imp.count = (old imp.twin).count

item_assigned:
imp [i] ∼ s

others_unchanged:
across
1 |..| imp.count as j

all
j.item /= i implies imp [j.item] ∼ (old imp.twin) [j.item]

end
count: INTEGER

invariant
consistency: imp.count = count

end -- class ARRAYED_CONTAINER

6 of 33

Why Eiffel Contract Views are ADTs (2)
Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

7 of 33

Uniform Access Principle (1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.
○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● How the Point is implemented is irrelevant to users:
○ Imp. 1: Store x and y. [Compute r and phi on demand]
○ Imp. 2: Store r and phi. [Compute x and y on demand]

● As far as users of a Point object p is concerned, having a
uniform access by always being able to call p.x and p.y is
what matters, despite Imp. 1 or Imp. 2 being current strategy.

8 of 33

Uniform Access Principle (2)
class
POINT

create
make_cartisian, make_polar

feature -- Public, Uniform Access to x- and y-coordinates
x : REAL
y : REAL

end

● A class Point declares how users may access a point: either
get its x coordinate or its y coordinate.

● We offer two possible ways to instantiating a 2-D point:
○ make cartisian (nx: REAL; ny: REAL)
○ make polar (nr: REAL; np: REAL)

● Features x and y, from the client’s point of view, cannot tell
whether it is implemented via:
○ Storage [x and y stored as real-valued attributes]
○ Computation [x and y defined as queries returning real values]

9 of 33

Uniform Access Principle (3)
Let’s say the supplier decides to adopt strategy Imp. 1.
class POINT -- Version 1
feature -- Attributes
x : REAL
y : REAL

feature -- Constructors
make_cartisian(nx: REAL; nx: REAL)
do
x := nx
y := ny

end
end

● Attributes x and y represent the Cartesian system
● A client accesses a point p via p.x and p.y.
○ No Extra Computations: just returning current values of x and y.

● However, it’s harder to implement the other constructor: the
body of make polar (nr: REAL; np: REAL) has to
compute and store x and y according to the inputs nr and np.

10 of 33

Uniform Access Principle (4)
Let’s say the supplier decides (secretly) to adopt strategy Imp. 2.
class POINT -- Version 2
feature -- Attributes
r : REAL
p : REAL

feature -- Constructors
make_polar(nr: REAL; np: REAL)
do
r := nr
p := np

end
feature -- Queries
x : REAL do Result := r × cos(p) end
x : REAL do Result := r × sin(p) end

end

● Attributes r and p represent the Polar system
● A client still accesses a point p via p.x and p.y.
○ Extra Computations: computing x and y according to the current

values of r and p.
11 of 33

Uniform Access Principle (5.1)

Let’s consider the following scenario as an example:

Note: 360○ = 2π
12 of 33

Uniform Access Principle (5.2)

1 test_points: BOOLEAN
2 local
3 A, X, Y: REAL
4 p1, p2: POINT
5 do
6 comment("test: two systems of points")

7 A := 5; X := A ×√3; Y := A
8 create {POINT} p1.make_cartisian (X, Y)
9 create {POINT} p2.make_polar (2 × A, 1

6π)
10 Result := p1.x = p2.x and p1.y = p2.y
11 end

● If strategy Imp. 1 is adopted:
○ L8 is computationally cheaper than L9. [x and y attributes]
○ L10 requires no computations to access x and y.
If strategy Imp. 2 is adopted:
○ L9 is computationally cheaper than L8. [r and p attributes]
○ L10 requires computations to access x and y.

13 of 33

Uniform Access Principle (6)
The Uniform Access Principle :
● Allows clients to use services (e.g., p.x and p.y) regardless of

how they are implemented.
● Gives suppliers complete freedom as to how to implement the

services (e.g., Cartesian vs. Polar).
○ No right or wrong implementation; it depends!
○ Choose for storage if the services are frequently accessed and

their computations are expensive.
e.g. balance of a bank involves a large number of accounts
⇒ Implement balance as an attribute

○ Choose for computation if the services are not keeping their
values in sync is complicated.
e.g., update balance upon a local deposit or withdrawal
⇒ Implement balance as a query

● Whether it’s storage or computation, you can always change
secretly , since the clients’ access to the services is uniform .

14 of 33

Generic Collection Class: Motivation (1)
class STRING _STACK
feature {NONE} -- Implementation

imp: ARRAY[STRING] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: STRING do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: STRING) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

○ Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type STRING
(e.g., at, append)? [NO!]

○ How would you implement another class ACCOUNT STACK?
15 of 33

Generic Collection Class: Motivation (2)

class ACCOUNT _STACK
feature {NONE} -- Implementation

imp: ARRAY[ACCOUNT] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: ACCOUNT do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: ACCOUNT) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

○ Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)? [NO!]

16 of 33

Generic Collection Class: Supplier
● Your design “smells” if you have to create an almost identical

new class (hence code duplicates) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, etc.).

● Instead, as supplier, use G to parameterize element type:
class STACK [G]

feature {NONE} -- Implementation

imp: ARRAY[G] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: G do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: G) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

17 of 33

Generic Collection Class: Client (1.1)
As client, declaring ss: STACK[STRING] instantiates every
occurrence of G as STRING.

class STACK [�G STRING]

feature {NONE} -- Implementation

imp: ARRAY[�G STRING] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: �G STRING do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: �G STRING) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

18 of 33

Generic Collection Class: Client (1.2)
As client, declaring ss: STACK[ACCOUNT] instantiates every
occurrence of G as ACCOUNT.

class STACK [�G ACCOUNT]

feature {NONE} -- Implementation

imp: ARRAY[�G ACCOUNT] ; i: INTEGER
feature -- Queries
count: INTEGER do Result := i end

-- Number of items on stack.

top: �G ACCOUNT do Result := imp [i] end
-- Return top of stack.

feature -- Commands

push (v: �G ACCOUNT) do imp[i] := v; i := i + 1 end
-- Add ’v’ to top of stack.

pop do i := i - 1 end
-- Remove top of stack.

end

19 of 33

Generic Collection Class: Client (2)
As client, instantiate the type of G to be the one needed.

1 test_stacks: BOOLEAN
2 local
3 ss: STACK[STRING] ; sa: STACK[ACCOUNT]
4 s: STRING ; a: ACCOUNT
5 do
6 ss.push("A")
7 ss.push(create {ACCOUNT}.make ("Mark", 200))
8 s := ss.top
9 a := ss.top

10 sa.push(create {ACCOUNT}.make ("Alan", 100))
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

● L3 commits that ss stores STRING objects only.
○ L8 and L10 valid ; L9 and L11 invalid .

● L4 commits that sa stores ACCOUNT objects only.
○ L12 and L14 valid ; L13 and L15 invalid .

20 of 33

Expanded Class: Modelling
● We may want to have objects which are:
○ Integral parts of some other objects
○ Not shared among objects
e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.

21 of 33

Expanded Class: Programming (2)
class KEYBOARD . . . end class CPU . . . end
class MONITOR . . . end class NETWORK . . . end
class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end

Alternatively:
expanded class KEYBOARD . . . end
expanded class CPU . . . end
expanded class MONITOR . . . end
class NETWORK . . . end
class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK

end
22 of 33

Expanded Class: Programming (3)

expanded class
B

feature
change_i (ni: INTEGER)
do
i := ni

end
feature
i: INTEGER

end

1 test_expanded: BOOLEAN
2 local
3 eb1, eb2: B
4 do
5 Result := eb1.i = 0 and eb2.i = 0
6 check Result end
7 Result := eb1 = eb2
8 check Result end
9 eb2.change_i (15)

10 Result := eb1.i = 0 and eb2.i = 15
11 check Result end
12 Result := eb1 /= eb2
13 check Result end
14 end

● L5: object of expanded type is automatically initialized.
● L9 & L10: no sharing among objects of expanded type.
● L7 & L12: = between expanded objects compare their contents.
23 of 33

Reference vs. Expanded (1)

● Every entity must be declared to be of a certain type (based on
a class).

● Every type is either referenced or expanded .
● In reference types:
○ y denotes a reference to some object
○ x := y attaches x to same object as does y
○ x = y compares references

● In expanded types:
○ y denotes some object (of expanded type)
○ x := y copies contents of y into x
○ x = y compares contents [x ∼ y]

24 of 33

Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author expanded-typed author

25 of 33

Copying Objects
Say variables c1 and c2 are both declared of type C. [c1, c2: C]
● There is only one attribute a declared in class C.
● c1.a and c2.a may be of either:
○ expanded type or
○ reference type

a

C

c1

a

C

c2

c1.a

c2.a

26 of 33

Copying Objects: Reference Copy
Reference Copy c1 := c2

○ Copy the address stored in variable c2 and store it in c1.
⇒ Both c1 and c2 point to the same object.
⇒ Updates performed via c1 also visible to c2. [aliasing]

a

C

c1

a

C

c2

c1.a

c2.a

27 of 33

Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object. [c1 /= c2]
⇒ c1.a and c2.a are pointing to the same object.
⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

28 of 33

Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is expanded (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object.
⇒ c1.a and c2.a are not pointing to the same object.
⇒ No aliasing occurs at any levels.

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

c2.a.deep_twin

29 of 33

Copying Objects: Example

EECS, York University Object Oriented Software Construction 15-05-27 16:29 28

Shallow and deep cloning

!  Initial situation:

!  Result of:

b := a

c := a.twin

d := a.deep_twin

“Almaviva” name
landlord

loved_one

a
O1

“Figaro”
O2

“Susanna”
O3

b

“Almaviva” O4

c

“Almaviva” name
landlord

loved_one

O5

“Figaro”
O6

“Susanna”
O7

d

30 of 33

Index (1)
Abstract Data Types (ADTs)
Building ADTs for Reusability
Why Java Interfaces Unacceptable ADTs (1)
Why Java Interfaces Unacceptable ADTs (2)
Why Eiffel Contract Views are ADTs (1)
Why Eiffel Contract Views are ADTs (2)
Uniform Access Principle (1)
Uniform Access Principle (2)
Uniform Access Principle (3)
Uniform Access Principle (4)
Uniform Access Principle (5.1)
Uniform Access Principle (5.2)
Uniform Access Principle (6)
Generic Collection Class: Motivation (1)

31 of 33

Index (2)
Generic Collection Class: Motivation (2)
Generic Collection Class: Supplier
Generic Collection Class: Client (1.1)
Generic Collection Class: Client (1.2)
Generic Collection Class: Client (2)
Expanded Class: Modelling
Expanded Class: Programming (2)
Expanded Class: Programming (3)
Reference vs. Expanded (1)
Reference vs. Expanded (2)
Copying Objects
Copying Objects: Reference Copy
Copying Objects: Shallow Copy
Copying Objects: Deep Copy

32 of 33

Index (3)
Copying Objects: Example

33 of 33

	Abstract Data Types (ADTs)
	Building ADTs for Reusability
	Why Java Interfaces Unacceptable ADTs (1)
	Why Java Interfaces Unacceptable ADTs (2)
	Why Eiffel Contract Views are ADTs (1)
	Why Eiffel Contract Views are ADTs (2)
	Uniform Access Principle (1)
	Uniform Access Principle (2)
	Uniform Access Principle (3)
	Uniform Access Principle (4)
	Uniform Access Principle (5.1)
	Uniform Access Principle (5.2)
	Uniform Access Principle (6)
	Generic Collection Class: Motivation (1)
	Generic Collection Class: Motivation (2)
	Generic Collection Class: Supplier
	Generic Collection Class: Client (1.1)
	Generic Collection Class: Client (1.2)
	Generic Collection Class: Client (2)
	Expanded Class: Modelling
	Expanded Class: Programming (2)
	Expanded Class: Programming (3)
	Reference vs. Expanded (1)
	Reference vs. Expanded (2)
	Copying Objects
	Copying Objects: Reference Copy
	Copying Objects: Shallow Copy
	Copying Objects: Deep Copy
	Copying Objects: Example

