
Syntax of Eiffel: a Brief Overview

EECS3311: Software Design
Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Escape Sequences

Escape sequences are special characters to be placed in your
program text.
○ In Java, an escape sequence starts with a backward slash \

e.g., \n for a new line character.
○ In Eiffel, an escape sequence starts with a percentage sign %

e.g., %N for a new line characgter.

See here for more escape sequences in Eiffel: https://www.
eiffel.org/doc/eiffel/Eiffel%20programming%
20language%20syntax#Special_characters

2 of 30

https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters
https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters
https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters

Commands, and Queries, and Features

● In a Java class:
○ Attributes: Data
○ Mutators: Methods that change attributes without returning
○ Accessors: Methods that access attribute values and returning

● In an Eiffel class:
○ Everything can be called a feature.
○ But if you want to be specific:
● Use attributes for data
● Use commands for mutators
● Use queries for accessors

3 of 30

Naming Conventions

● Cluster names: all lower-cases separated by underscores
e.g., root, model, tests, cluster number one

● Classes/Type names: all upper-cases separated by
underscores
e.g., ACCOUNT, BANK ACCOUNT APPLICATION

● Feature names (attributes, commands, and queries): all
lower-cases separated by underscores
e.g., account balance, deposit into, withdraw from

4 of 30

Operators: Assignment vs. Equality
● In Java:

○ Equal sign = is for assigning a value expression to some variable.
e.g., x = 5 * y changes x’s value to 5 * y
This is actually controversial, since when we first learned about =,
it means the mathematical equality between numbers.

○ Equal-equal == and bang-equal != are used to denote the equality
and inequality.
e.g., x == 5 * y evaluates to true if x’s value is equal to the
value of 5 * y, or otherwise it evaluates to false.

● In Eiffel:
○ Equal = and slash equal /= denote equality and inequality.

e.g., x = 5 * y evaluates to true if x’s value is equal to the value
of 5 * y, or otherwise it evaluates to false.

○ We use := to denote variable assignment.
e.g., x := 5 * y changes x’s value to 5 * y

○ Also, you are not allowed to write shorthands like x++,
just write x := x + 1.5 of 30

Attribute Declarations

● In Java, you write: int i, Account acc

● In Eiffel, you write: i: INTEGER, acc: ACCOUNT

Think of : as the set membership operator ∈:
e.g., The declaration acc: ACCOUNT means object acc is a
member of all possible instances of ACCOUNT.

6 of 30

Method Declaration
● Command

deposit (amount: INTEGER)
do
balance := balance + amount

end

Notice that you don’t use the return type void
● Query

sum_of (x: INTEGER; y: INTEGER): INTEGER
do
Result := x + y

end

○ Input parameters are separated by semicolons ;
○ Notice that you don’t use return; instead assign the return value

to the pre-defined variable Result.7 of 30

Operators: Logical Operators (1)

● Logical operators (what you learned from EECS1090) are for
combining Boolean expressions.

● In Eiffel, we have operators that EXACTLY correspond to
these logical operators:

LOGIC EIFFEL

Conjunction ∧ and
Disjunction ∨ or
Implication ⇒ implies

Equivalence ≡ =

8 of 30

Review of Propositional Logic (1)

● A proposition is a statement of claim that must be of either
true or false, but not both.

● Basic logical operands are of type Boolean: true and false.
● We use logical operators to construct compound statements.

○ Binary logical operators: conjunction (∧), disjunction (∨),
implication (⇒), and equivalence (a.k.a if-and-only-if ⇐⇒)

p q p ∧ q p ∨ q p⇒ q p ⇐⇒ q
true true true true true true
true false false true false false
false true false true true false
false false false false true true

○ Unary logical operator: negation (¬)
p ¬p

true false
false true

9 of 30

Review of Propositional Logic: Implication
○ Written as p⇒ q
○ Pronounced as “p implies q”
○ We call p the antecedent, assumption, or premise.
○ We call q the consequence or conclusion.
○ Compare the truth of p⇒ q to whether a contract is honoured : p ≈

promised terms; and q ≈ obligations.
○ When the promised terms are met, then:
● The contract is honoured if the obligations are fulfilled.
● The contract is breached if the obligations are not fulfilled.

○ When the promised terms are not met, then:
● Fulfilling the obligation (q) or not (¬q) does not breach the contract.

p q p⇒ q
true true true
true false false
false true true
false false true

10 of 30

Review of Propositional Logic (2)
● Axiom: Definition of⇒

p⇒ q ≡ ¬p ∨ q
● Theorem: Identity of⇒

true⇒ p ≡ p
● Theorem: Zero of⇒

false⇒ p ≡ true
● Axiom: De Morgan

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

● Axiom: Double Negation

p ≡ ¬ (¬ p)
● Theorem: Contrapositive

p⇒ q ≡ ¬q ⇒ ¬p
11 of 30

Review of Predicate Logic (1)

● A predicate is a universal or existential statement about
objects in some universe of disclosure.

● Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.

● We use the following symbols for common numerical ranges:
○ Z: the set of integers
○ N: the set of natural numbers

● Variable(s) in a predicate may be quantified :
○ Universal quantification :

All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.

○ Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.

12 of 30

Review of Predicate Logic (2.1)
● A universal quantification has the form (∀X ∣ R ● P)

○ X is a list of variable declarations
○ R is a constraint on ranges of declared variables
○ P is a property
○ (∀X ∣ R ● P) ≡ (∀X ● R ⇒ P)

e.g., (∀X ∣ True ● P) ≡ (∀X ● True⇒ P) ≡ (∀X ● P)
e.g., (∀X ∣ False ● P) ≡ (∀X ● False⇒ P) ≡ (∀X ● True) ≡ True

● For all (combinations of) values of variables declared in X that
satisfies R, it is the case that P is satisfied.
○ ∀i ∣ i ∈ N ● i ≥ 0 [true]
○ ∀i ∣ i ∈ Z ● i ≥ 0 [false]
○ ∀i , j ∣ i ∈ Z ∧ j ∈ Z ● i < j ∨ i > j [false]

● The range constraint of a variable may be moved to where the
variable is declared.
○ ∀i ∶ N ● i ≥ 0
○ ∀i ∶ Z ● i ≥ 0
○ ∀i , j ∶ Z ● i < j ∨ i > j

13 of 30

Review of Predicate Logic (2.2)
● An existential quantification has the form (∃X ∣ R ● P)

○ X is a list of variable declarations
○ R is a constraint on ranges of declared variables
○ P is a property
○ (∃X ∣ R ● P) ≡ (∃X ● R ∧P)

e.g., (∃X ∣ True ● P) ≡ (∃X ● True ∧P) ≡ (∀X ● P)
e.g., (∃X ∣ False ● P) ≡ (∃X ● False ∧P) ≡ (∃X ● False) ≡ False

● There exists a combination of values of variables declared in X
that satisfies R and P.
○ ∃i ∣ i ∈ N ● i ≥ 0 [true]
○ ∃i ∣ i ∈ Z ● i ≥ 0 [true]
○ ∃i , j ∣ i ∈ Z ∧ j ∈ Z ● i < j ∨ i > j [true]

● The range constraint of a variable may be moved to where the
variable is declared.
○ ∃i ∶ N ● i ≥ 0
○ ∃i ∶ Z ● i ≥ 0
○ ∃i , j ∶ Z ● i < j ∨ i > j

14 of 30

Predicate Logic (3)

● Conversion between ∀ and ∃
(∀X ∣ R ●P) ⇐⇒ ¬(∃X ●R ⇒ ¬P)
(∃X ∣ R ●P) ⇐⇒ ¬(∀X ●R ⇒ ¬P)

● Range Elimination

(∀X ∣ R ●P) ⇐⇒ (∀X ●R ⇒ P)
(∃X ∣ R ●P) ⇐⇒ (∃X ●R ∧P)

15 of 30

Operators: Logical Operators (2)
● How about Java?

○ Java does not have an operator for logical implication.
○ The == operator can be used for logical equivalence.
○ The && and || operators only approximate conjunction and

disjunction, due to the short-circuit effect (SCE):
● When evaluating e1 && e2, if e1 already evaluates to false, then e1

will not be evaluated.
e.g., In (y != 0) && (x / y > 10), the SCE guards the division
against division-by-zero error.

● When evaluating e1 || e2, if e1 already evaluates to true, then e1
will not be evaluated.
e.g., In (y == 0) || (x / y > 10), the SCE guards the division
against division-by-zero error.

○ However, in math, we always evaluate both sides.
● In Eiffel, we also have the version of operators with SCE:

short-circuit conjunction short-circuit disjunction
Java && ||
Eiffel and then or else

16 of 30

Operators: Division and Modulo

Division Modulo (Remainder)
Java 20 / 3 is 6 20 % 3 is 2
Eiffel 20 // 3 is 6 20 \\ 3 is 2

17 of 30

Class Declarations

● In Java:

class BankAccount {
/* attributes and methods */

}

● In Eiffel:

class BANK_ACCOUNT
/* attributes, commands, and queries */

end

18 of 30

Class Constructor Declarations (1)
● In Eiffel, constructors are just commands that have been

explicitly declared as creation features:

class BANK_ACCOUNT
-- List names commands that can be used as constructors
create
make

feature -- Commands
make (b: INTEGER)
do balance := b end

make2
do balance := 10 end

end

● Only the command make can be used as a constructor.
● Command make2 is not declared explicitly, so it cannot be used

as a constructor.19 of 30

Creations of Objects (1)

● In Java, we use a constructor Accont(int b) by:
○ Writing Account acc = new Account(10) to create a named

object acc
○ Writing new Account(10) to create an anonymous object

● In Eiffel, we use a creation feature (i.e., a command explicitly
declared under create) make (int b) in class ACCOUNT by:

○ Writing create {ACCOUNT} acc.make (10) to create a
named object acc

○ Writing create {ACCOUNT}.make (10) to create an
anonymous object

● Writing create {ACCOUNT} acc.make (10)

is really equivalent to writing

acc := create {ACCOUNT}.make (10)

20 of 30

Selections

if B1 then
-- B1
-- do something

elseif B2 then
-- B2 ∧ (¬B1)
-- do something else

else
-- (¬B1) ∧ (¬B2)
-- default action

end

21 of 30

Loops (1)

● In Java, the Boolean conditions in for and while loops are
stay conditions.

void printStuffs() {
int i = 0;
while(i < 10) {
System.out.println(i);
i = i + 1;

}
}

● In the above Java loop, we stay in the loop
as long as i < 10 is true.

● In Eiffel, we think the opposite: we exit the loop
as soon as i >= 10 is true.

22 of 30

Loops (2)
In Eiffel, the Boolean conditions you need to specify for loops
are exit conditions (logical negations of the stay conditions).

print_stuffs
local
i: INTEGER

do
from
i := 0

until
i >= 10

loop
print (i)
i := i + 1

end -- end loop
end -- end command

○ Don’t put () after a command or query with no input parameters.
○ Local variables must all be declared in the beginning.

23 of 30

Library Data Structures

Enter a DS name. Explore supported features.

24 of 30

Data Structures: Arrays
● Creating an empty array:

local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make empty

○ This creates an array of lower and upper indices 1 and 0.
○ Size of array a: a.upper - a.lower + 1 .

● Typical loop structure to iterate through an array:
local
a: ARRAY[INTEGER]
i, j: INTEGER

do
. . .

from
j := a.lower

until
j > a.upper

do
i := a [j]
j := j + 1

end25 of 30

Data Structures: Linked Lists (1)

26 of 30

Data Structures: Linked Lists (2)
● Creating an empty linked list:

local
list: LINKED_LIST[INTEGER]

do
create {LINKED_LIST[INTEGER]} list.make

● Typical loop structure to iterate through a linked list:
local
list: LINKED_LIST[INTEGER]
i: INTEGER

do
. . .

from
list.start

until
list.after

do
i := list.item
list.forth

end
27 of 30

Using across for Quantifications
● across . . . as . . . all . . . end

A Boolean expression acting as a universal quantification (∀)
1 local
2 allPositive: BOOLEAN
3 a: ARRAY[INTEGER]
4 do
5 . . .
6 Result :=
7 across
8 a.lower |..| a.upper as i
9 all

10 a [i.item] > 0
11 end

○ L8: a.lower |..| a.upper denotes a list of integers.
○ L8: as i declares a list cursor for this list.
○ L10: i.item denotes the value pointed to by cursor i.

● L9: Changing the keyword all to some makes it act like an
existential quantification ∃.

28 of 30

Index (1)
Escape Sequences
Commands, Queries, and Features
Naming Conventions
Operators: Assignment vs. Equality
Attribute Declarations
Method Declaration
Operators: Logical Operators (1)
Review of Propositional Logic (1)
Review of Propositional Logic: Implication
Review of Propositional Logic (2)
Review of Predicate Logic (1)
Review of Predicate Logic (2.1)
Review of Predicate Logic (2.2)
Predicate Logic (3)

29 of 30

Index (2)
Operators: Logical Operators (2)
Operators: Division and Modulo
Class Declarations
Class Constructor Declarations (1)
Creations of Objects (1)
Selections
Loops (1)
Loops (2)
Library Data Structures
Data Structures: Arrays
Data Structures: Linked Lists (1)
Data Structures: Linked Lists (2)
Using across to for Quantifications

30 of 30

	Escape Sequences
	Commands, Queries, and Features
	Naming Conventions
	Operators: Assignment vs. Equality
	Attribute Declarations
	Method Declaration
	Operators: Logical Operators (1)
	Review of Propositional Logic (1)
	Review of Propositional Logic: Implication
	Review of Propositional Logic (2)
	Review of Predicate Logic (1)
	Review of Predicate Logic (2.1)
	Review of Predicate Logic (2.2)
	Predicate Logic (3)
	Operators: Logical Operators (2)
	Operators: Division and Modulo
	Class Declarations
	Class Constructor Declarations (1)
	Creations of Objects (1)
	Selections
	Loops (1)
	Loops (2)
	Library Data Structures
	Data Structures: Arrays
	Data Structures: Linked Lists (1)
	Data Structures: Linked Lists (2)
	Using across to for Quantifications

