Syntax of Eiffel: a Brief Overview

EECS3311: Software Design Fall 2017

CHEN-WEI WANG

Escape sequences are special characters to be placed in your program text.

- $\circ~$ In Java, an escape sequence starts with a backward slash $\setminus~$ e.g., $\setminus n$ for a new line character.
- In Eiffel, an escape sequence starts with a percentage sign % e.g., %N for a new line characgter.

See here for more escape sequences in Eiffel: https://www. eiffel.org/doc/eiffel/Eiffel%20programming% 20language%20syntax#Special_characters

- In a Java class:
 - Attributes: Data
 - Mutators: Methods that change attributes without returning
 - Accessors: Methods that access attribute values and returning
- In an Eiffel class:
 - Everything can be called a *feature*.
 - But if you want to be specific:
 - Use attributes for data
 - Use *commands* for mutators
 - Use queries for accessors

Naming Conventions

- Cluster names: all lower-cases separated by underscores e.g., root, model, tests, cluster_number_one
- Classes/Type names: all upper-cases separated by underscores

e.g., ACCOUNT, BANK_ACCOUNT_APPLICATION

• Feature names (attributes, commands, and queries): all lower-cases separated by underscores

e.g., account_balance, deposit_into, withdraw_from

Operators: Assignment vs. Equality

- In Java:
 - Equal sign = is for assigning a value expression to some variable.
 e.g., x = 5 * y changes x's value to 5 * y
 This is actually controversial, since when we first learned about =, it means the mathematical equality between numbers.
 - Equal-equal == and bang-equal != are used to denote the equality and inequality.

e.g., x = 5 * y evaluates to *true* if x's value is equal to the value of 5 * y, or otherwise it evaluates to *false*.

- In Eiffel:
 - Equal = and slash equal /= denote equality and inequality.
 e.g., x = 5 * y evaluates to *true* if x's value is equal to the value of 5 * y, or otherwise it evaluates to *false*.
 - We use := to denote variable assignment.

e.g., x := 5 * y changes x's value to 5 * y

 $\circ~$ Also, you are not allowed to write shorthands like $\rm x++,$

 $_{5 \text{ of } 30}$ just write x := x + 1.

- In Java, you write: int i, Account acc
- In Eiffel, you write: i: INTEGER, acc: ACCOUNT Think of : as the set membership operator ε: e.g., The declaration acc: ACCOUNT means object acc is a member of all possible instances of ACCOUNT.

Method Declaration

• Command

```
deposit (amount: INTEGER)
  do
    balance := balance + amount
  end
```

Notice that you don't use the return type void

Query

```
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
    Result := x + y
end
```

· Input parameters are separated by semicolons ;

Notice that you don't use return; instead assign the return value
 ^{7 of 30} to the pre-defined variable **Decult**

- Logical operators (what you learned from EECS1090) are for combining Boolean expressions.
- In Eiffel, we have operators that *EXACTLY* correspond to these logical operators:

	Logic	EIFFEL
Conjunction	^	and
Disjunction	V	or
Implication	\Rightarrow	implies
Equivalence	≡	=

Review of Propositional Logic (1)

- A *proposition* is a statement of claim that must be of either *true* or *false*, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.

 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), and equivalence (a.k.a if-and-only-if ⇐⇒)

р	q	$p \land q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$
true	true	true	true	true	true
true	false	false	true	false	false
false	true	false	true	true	false
false	false	false	false	true	true

• Unary logical operator: negation (\neg)

()
$\neg p$
false
true

Review of Propositional Logic: Implication

- Written as $p \Rightarrow q$
- Pronounced as "p implies q"
- We call *p* the antecedent, assumption, or premise.
- We call q the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*: $p \approx$ promised terms; and $q \approx$ obligations.
- When the promised terms are met, then:
 - The contract is *honoured* if the obligations are fulfilled.
 - The contract is *breached* if the obligations are not fulfilled.
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not $(\neg q)$ does *not breach* the contract.

р	q	$p \Rightarrow q$
true	true	true
true	false	false
false	true	true
false	false	true

Review of Propositional Logic (2)

• **Axiom**: Definition of \Rightarrow

• Axiom: De Morgan

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

11 of 30

false
$$\Rightarrow p \equiv true$$

true \Rightarrow *p* \equiv *p*

 $p \Rightarrow q \equiv \neg p \lor q$

false
$$\Rightarrow p \equiv true$$

Review of Predicate Logic (1)

- A *predicate* is a *universal* or *existential* statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using *variables*, each of which declared with some *range* of values.
- We use the following symbols for common numerical ranges:
 - $\circ \mathbb{Z}$: the set of integers
 - $\circ~\mathbb{N}$: the set of natural numbers
- Variable(s) in a predicate may be *quantified*:
 - Universal quantification :

All values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.

• Existential quantification :

Some value that a variable may take satisfies certain property.

e.g., Given that *i* is an integer, *i can be* negative.

Review of Predicate Logic (2.1)

- A *universal quantification* has the form $(\forall X | R \bullet P)$
 - X is a list of variable declarations
 - R is a constraint on ranges of declared variables
 - *P* is a *property*
 - $(\forall X | R \bullet P) \equiv (\forall X \bullet R \Rightarrow P)$ e.g., $(\forall X | True \bullet P) \equiv (\forall X \bullet True \Rightarrow P) \equiv (\forall X \bullet P)$ e.g., $(\forall X | False \bullet P) \equiv (\forall X \bullet False \Rightarrow P) \equiv (\forall X \bullet True) \equiv True$
- For all (combinations of) values of variables declared in X that satisfies R, it is the case that P is satisfied.
 - $\circ \quad \forall i \mid i \in \mathbb{N} \quad \bullet \quad i \ge 0 \qquad [true] \\ \circ \quad \forall i \mid i \in \mathbb{Z} \quad \bullet \quad i \ge 0 \qquad [false]$
- $\circ \forall i, j \mid i \in \mathbb{Z} \land j \in \mathbb{Z} \bullet i < j \lor i > j$ [false]
- The range constraint of a variable may be moved to where the variable is declared.
 - $\circ \quad \forall i : \mathbb{N} \quad \bullet \quad i \ge \mathbf{0}$
 - $\circ \quad \forall i:\mathbb{Z} \quad \bullet \quad i \geq 0$

$$\circ \quad \forall i,j: \mathbb{Z} \bullet i < j \lor i > j$$

13 of 30

Review of Predicate Logic (2.2)

- An *existential quantification* has the form $(\exists X \mid R \bullet P)$
 - X is a list of variable declarations
 - R is a constraint on ranges of declared variables
 - *P* is a property
 - $(\exists X \mid R \bullet P) \equiv (\exists X \bullet R \land P)$ e.g., $(\exists X \mid True \bullet P) \equiv (\exists X \bullet True \land P) \equiv (\forall X \bullet P)$ e.g., $(\exists X \mid False \bullet P) \equiv (\exists X \bullet False \land P) \equiv (\exists X \bullet False) \equiv False$
- *There exists* a combination of values of variables declared in *X* that satisfies *R* and *P*.
 - $\circ \exists i \mid i \in \mathbb{N} \bullet i \ge 0$ $\circ \exists i \mid i \in \mathbb{Z} \bullet i \ge 0$ [true]
 - $\circ \exists i, j \mid i \in \mathbb{Z} \land j \in \mathbb{Z} \bullet i < j \lor i > j$

- [true] [true]
- The range constraint of a variable may be moved to where the variable is declared.

```
\circ \exists i : \mathbb{N} \bullet i \ge 0

\circ \exists i : \mathbb{Z} \bullet i \ge 0

\circ \exists i, j : \mathbb{Z} \bullet i < j \lor i > j
```

14 of 30

Predicate Logic (3)

• Conversion between \forall and \exists

$$(\forall X \mid R \bullet P) \iff \neg (\exists X \bullet R \Rightarrow \neg P) \\ (\exists X \mid R \bullet P) \iff \neg (\forall X \bullet R \Rightarrow \neg P)$$

Range Elimination

$$(\forall X \mid R \bullet P) \iff (\forall X \bullet R \Rightarrow P) \\ (\exists X \mid R \bullet P) \iff (\exists X \bullet R \land P)$$

Operators: Logical Operators (2)

• How about Java?

16 of 30

- Java does not have an operator for logical implication.
- $\circ~$ The == operator can be used for logical equivalence.
- The && and || operators only **approximate** conjunction and disjunction, due to the *short-circuit effect* (*SCE*):
 - When evaluating e1 && e2, if e1 already evaluates to *false*, then e1 will **not** be evaluated.
 - e.g., In $(y \ != \ 0)$ $~\&\&~~(x \ / \ y \ > \ 10)$, the SCE guards the division against division-by-zero error.
 - When evaluating e1 || e2, if e1 already evaluates to *true*, then e1 will **not** be evaluated.

e.g., In $(y == 0) \mid \mid (x \neq y > 10)$, the SCE guards the division against division-by-zero error.

- However, in math, we always evaluate both sides.
- In Eiffel, we also have the version of operators with SCE:

short-circuit conjunction | short-circuit disjunction

Java	& &	
Eiffel	and then	or else

Operators: Division and Modulo

	Division	Modulo (Remainder)
Java	20 / 3 is 6	20 % 3 is 2
Eiffel	20 / 3 is 6 20 // 3 is 6	20 \\ 3 is 2

Class Declarations

• In Java:

class BankAccount {
 /* attributes and methods */
}

• In Eiffel:

```
class BANK_ACCOUNT
  /* attributes, commands, and queries */
end
```

Class Constructor Declarations (1)

• In Eiffel, constructors are just commands that have been *explicitly* declared as **creation features**:

```
class BANK ACCOUNT
-- List names commands that can be used as constru
create
 make
feature -- Commands
 make (b: INTEGER)
  do balance := b end
 make2
  do balance := 10 end
end
```

- Only the command make can be used as a constructor.
- Command make2 is not declared explicitly, so it cannot be used 19 as a constructor.

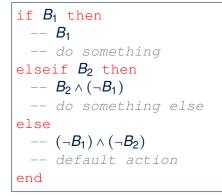
Creations of Objects (1)

- In Java, we use a constructor Accont (int b) by:
 - Writing Account acc = **new** Account (10) to create a named object acc
 - Writing **new** Account (10) to create an anonymous object
- In Eiffel, we use a creation feature (i.e., a command explicitly declared under create) make (int b) in class ACCOUNT by:
 - Writing create {ACCOUNT} acc.make (10) to create a named object acc
 - Writing create {ACCOUNT}.make (10) to create an anonymous object
- Writing create {ACCOUNT} acc.make (10)

is really equivalent to writing

```
acc := create {ACCOUNT}.make (10)
```

Selections



Loops (1)

• In Java, the Boolean conditions in for and while loops are **stay** conditions.

```
void printStuffs() {
    int i = 0;
    while(i < 10) {
        System.out.println(i);
        i = i + 1;
    }
}</pre>
```

- In the above Java loop, we *stay* in the loop as long as i < 10 is true.
- In Eiffel, we think the opposite: we *exit* the loop as soon as i >= 10 is true.

Loops (2)

In Eiffel, the Boolean conditions you need to specify for loops are **exit** conditions (logical negations of the stay conditions).

```
print_stuffs
   local
    i: INTEGER
   do
    from
      i := 0
    until
      i >= 10
    loop
      print (i)
      i := i + 1
    end -- end loop
   end -- end command
23 of 30
```

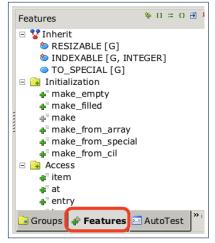
Library Data Structures

Enter a DS name.

 Eile
 Edit
 View
 Favorites
 Project
 E;

 <td
 <td
 <td
 <td
 <td

Explore supported features.



Data Structures: Arrays

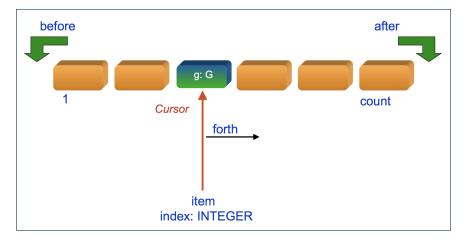
• Creating an empty array:

```
local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make_empty
```

- This creates an array of lower and upper indices 1 and 0.
- Size of array a: a.upper a.lower + 1
- Typical loop structure to iterate through an array:

```
local
    a: ARRAY[INTEGER]
    i, j: INTEGER
    do
        ...
    from
        j := a.lower
    until
        j > a.upper
    do
        i := a [j]
        j := j + 1
        or30
```

Data Structures: Linked Lists (1)



26 of 30

Data Structures: Linked Lists (2)

• Creating an empty linked list:

```
local
   list: LINKED_LIST[INTEGER]
do
   create {LINKED_LIST[INTEGER]} list.make
```

• Typical loop structure to iterate through a linked list:

```
local
  list: LINKED_LIST[INTEGER]
  i: INTEGER
  do
    ...
  from
    list.start
    until
    list.after
  do
    i := list.item
    list.forth
  end
27 of 30
```

Using across for Quantifications

• across ... as ... all ... end

A Boolean expression acting as a universal quantification (\forall)

```
local
 1
 2
      allPositive: BOOLEAN
 3
      a: ARRAY [INTEGER]
 4
    do
 5
 6
      Result :=
 7
       across
 8
         a.lower |... | a.upper as i
9
       all
10
         a [i.item] > 0
11
       end
```

- L8: a.lower |..| a.upper denotes a list of integers.
- $\circ~$ L8: as ~ i declares a list cursor for this list.
- **L10**: i.item denotes the value pointed to by cursor i.
- L9: Changing the keyword **all** to *some* makes it act like an existential quantification \exists .

Index (1)

Escape Sequences Commands, Queries, and Features Naming Conventions Operators: Assignment vs. Equality Attribute Declarations Method Declaration **Operators: Logical Operators (1) Review of Propositional Logic (1) Review of Propositional Logic: Implication Review of Propositional Logic (2) Review of Predicate Logic (1) Review of Predicate Logic (2.1) Review of Predicate Logic (2.2)** Predicate Logic (3)

Index (2)

Operators: Logical Operators (2) Operators: Division and Modulo Class Declarations Class Constructor Declarations (1) Creations of Objects (1) Selections Loops (1) Loops (2) Library Data Structures Data Structures: Arrays Data Structures: Linked Lists (1) Data Structures: Linked Lists (2) Using across to for Quantifications 30 of 30