
Encapsulation in Java

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Encapsulation (1.1)
Consider the following problem:
● A person has a name, a weight , and a height .
● A person’s weight may be in kilograms or pounds.
● A person’s height may be in meters or inches.
● A person’s BMI is calculated using their height in meters and

weight in kilograms.
Consider a first solution:
class Person {
public String name;
public double weight; /* in kilograms */
public double height; /* in meters */
public double getBMI() { return weight / (height * height); }

}

● Since both attributes height and weight are declared as
public, we do not need the setter methods for them.

2 of 9



Encapsulation (1.2)
Say an application of the Person class mistakenly thinks that the
height in inches and weight in pounds should be set:

1 class BMICalculator {
2 public static void main(String args[]) {
3 Person jim = new Person();
4 /* Jim’s height and weight are 1.78 m and 85 kg */
5 jim.weight = 85 * 2.2;
6 jim.height = 1.78 * 39;
7 System.out.println(jim.getBMI());
8 } }

● Line 7: 85×2.2
(1.78×39)2 = 0.038, rather than 85

1.782 = 26.827!!!
● Solution:
○ Disallow any application class of Person to directly assign to
weight and height.

○ Provide proper setter methods as the only means for assigning
these two attributes.

3 of 9



Encapsulation (2.1)

Now consider a better solution:
class Person {
public String name;

private double weight; /* in kilograms */

private double height; /* in meters */

public void setWeightInKilograms(double k) { weight = k; }
public void setWeightInPounds(double p) { weight = p / 2.2; }
public void setHeightInMeters(double m) { height = m; }
public void setHeightInInches(double i) { height = i / 39; }
public double getBMI() { return weight / (height * height); }

}

Exercise: Modify the Person class so that weight is
measured in pounds and hegiht is measured in inches.

4 of 9



Encapsulation (2.2)

Now an application of the Person class may only set the weight
and height of a person by calling the appropriate methods:

1 class BMICalculator {
2 public static void main(String args[]) {
3 Person jim = new Person();
4 /* Jim’s height and weight are 1.78 m and 85 kg */
5 jim.setWeightInPounds(85 * 2.2);
6 jim.setHeightInInches(1.78 * 39);
7 System.out.println(jim.getBMI());
8 } }

● Since both attributes weight and height in class Person are
declared as private, it is disallowed in any other class (e.g.,
BMICalculator) to access them (e.g., jim.weight).

● Line 7 now should return the correct BMI value.

5 of 9



Encapsulation (3.1)

● Question : What if in the Person class, we want the weight
attribute to mean pounds and height to mean inches?

● Hint: Which classes will you have to change? Person?
BMICalculator? Both?

● Modify the setter methods in Person accordingly. [Exercise!]
● No change is needed in the BMICalculator!
○ Since class BMICalculator was disallowed to access weight

and height, as soon as the setter definitions are modified in
Person, the calculation will still work!

● What we have achieved:
○ Implementation details in Person (i.e., weight and height) are

hidden from all potential applications (e.g., BMICalculator).
○ When these implementation details are changed in Person (e.g.,
weight interpreted in pounds rather than in kilograms):
● Only the Person class has to be changed .
● All existing application classes can remain unchanged .

6 of 9



Encapsulation (3.2)

● A software component hides the internal
details of its implementation, so that:
○ It has a stable interface;
○ Programmers of other components can

only depend on its public interface, rather
than writing code that depends on those
implementation decisions ;

○ The component developer may change
the implementation without affecting the
code of any other components.

● In Java, we achieve this by
○ declaring attributes or helper methods as

private;
○ providing public accessors or mutators.

7 of 9



Encapsulation (3.3)

● Follow this tutorial video:
https:
//www.youtube.com/watch?v=d2Q-uasRmAU&index=1&
list=PL5dxAmCmjv_492h1b0yiZSyhC3ImEetLV

● For complete details about controlling the access for attributes,
refer to:
https://docs.oracle.com/javase/tutorial/java/
javaOO/accesscontrol.html

8 of 9

https://www.youtube.com/watch?v=d2Q-uasRmAU&index=1&list=PL5dxAmCmjv_492h1b0yiZSyhC3ImEetLV
https://www.youtube.com/watch?v=d2Q-uasRmAU&index=1&list=PL5dxAmCmjv_492h1b0yiZSyhC3ImEetLV
https://www.youtube.com/watch?v=d2Q-uasRmAU&index=1&list=PL5dxAmCmjv_492h1b0yiZSyhC3ImEetLV
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html


Index (1)

Encapsulation (1.1)

Encapsulation (1.2)

Encapsulation (2.1)

Encapsulation (2.2)

Encapsulation (3.1)

Encapsulation (3.2)

Encapsulation (3.3)

9 of 9


	Encapsulation (1.1)
	Encapsulation (1.2)
	Encapsulation (2.1)
	Encapsulation (2.2)
	Encapsulation (3.1)
	Encapsulation (3.2)
	Encapsulation (3.3)

