EECS2030 Fall 2017 Additional Notes Solving Problems Recursively

Chen-Wei Wang

Given a problem of size n (e.g., an integer of value n, an array of n elements, etc.), adopt the following steps to solve the problem recursively:

Step 1: Understand the Problem We denote the original problem to be solved as P_{n}
(i.e,. a problem P, where the subscript n denotes its size). For example:

Example 1. Compute the factorial of n.
Example 2. Compute the $n^{\text {th }}$ number in the Fibonacci sequence.
Example 3. Compute if a string s of length n is a palindrome.
Example 4. Compute the reverse of a string s of length n.
Example 5. Compute the number of occurrences of a character c in a string s of length n.
Example 6. Compute if elements in index range [from, to] of an array a are all positive.
Example 7. Compute if elements in index range [from, to] of an array a are sorted in a non-descending order.
Example 8. Compute if elements in index range [from, to] of a sorted array a contain a value k.
Step 2: Define the Base Cases We first define the solutions to the same problem whose sizes are small so that they can be solved immediately: P_{0}, P_{1}, P_{2}, etc. For example:

Example 1. Factorial 0 is just 1.
Example 2. The first and second Fibonacci numbers are both 1.
Example 3. An empty string and a string of length one are both palindromes.
Example 4. The reverse of an empty string or of a string of length one is simply the string itself.
Example 5. The number of occurrences of any character in an empty string is 0 .

1. If index range [from, to] is such that from $>$ to, e.g., $[3,2]$, then there is an empty collection of elements to be considered.

Example 6. Since you cannot find a counter-example (i.e., a number which is not positive) from an empty collection, the result of determining all numbers being positive is simply true.
Example 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted in a non-descending order) from an empty collection, the result of determining all numbers in an empty collection being sorted in a non-descending order is simply true.
Example 8. Since an empty collection contains nothing, the result of determining if any value k exists in an empty collection is simply false.
2. If index range $[$ from, to $]$ is such that from $==$ to, e.g., $[3,3]$, then there is a collection of exactly one element to be considered. We call such a collection a singleton collection. Say e is such an element that a singleton collection contains.

Example 6. The result of determining all numbers being positive is simply $e>0$.
Example 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted in a non-descending order) from a collection of just one number, the result of determining all numbers in a singleton collection being sorted in a non-descending order is simply true.
Example 8. The result of determining if any value k exists in a singleton collection is simply $k==e$.

Step 3: Assume that Solutions to Smaller Problems Exist We then assume that there exist solutions to sub-problems whose sizes are strictly smaller than the original problem: e.g., P_{n-1}, P_{n-2}, etc. For example:

Example 1. Assume the factorial of $n-1$ already exists (where $n>0$). We denote this solution as P_{n-1} as its input size (i.e., value of number) is exactly one less than the original problem.
Example 2. Assume the $(n-1)^{t h}$ and $(n-2)^{t h}$ numbers in the Fibonacci sequence already exist (where $n>2$). We denote these solutions as P_{n-1} and P_{n-2} as their input sizes (i.e., position in the Fibonacci sequence) are exactly, respectively, one and two less than the original problem.
Example 3. Assume we already know if a smaller substring of s (where s.length ()>1), with the first and last characters of s taken out, is a palindrome. We denote this solution as P_{n-2} as its input size (i.e., length of string) is two less than the original problem.
Example 4. Assume we already know the reverse of a smaller substring of s (where $\operatorname{s.length}()>1$), with the first character of s taken out. We denote this solution as P_{n-1} as its input size (i.e., length of string) is one less than the original problem.
Example 5. Assume we already know the the number of occurrences of a character c in a smaller substring of s (where s.length ()>0), with the first character of s taken out. We denote this solution as P_{n-1} as its input size (i.e., length of string) is one less than the original problem.
We assume we already know the solution for elements in a smaller index range [from $+1, t o]$ of an array a :
Example 6. We denote P_{n-1} as the solution for if the $n-1$ elements are all positive.
Example 7. We denote P_{n-1} as the solution for if the $n-1$ elements are sorted in a non-descending order.
Example 8. We denote $P_{\text {left }}$ as the solution for if the left half (of roughly $\frac{n}{2}$ elements) of a sorted array contains a value k. Similarly, we denote $P_{\text {right }}$ as the solution for if the right half (of roughly $\frac{n}{2}$ elements) of a sorted array contains a value k.

Step 4: Define the Recursive Cases We finally define the solution to the original problem P_{n} in terms of the solutions to other strictly smaller sub-problems: $P_{n}=f\left(P_{n-1}, P_{n-2}, \ldots\right)$. That is, P_{n} is defined as a function f that combines solutions to strictly smaller problems P_{n-1}, P_{n-2}, etc. via some simple calculations. Informally speaking, we "massage" solutions to smaller problems into the solution to a bigger problem. For example:

Example 1. We define $P_{n}=n \times P_{n-1}$.
Example 2. We define $P_{n}=P_{n-1}+P_{n-2}$.
Example 3. We define $P_{n}=\left(c 1==c 2 \& \& P_{n-2}\right)$ (where $c 1$ and $c 2$ are, respectively, the first and the last characters of s). For example, $a b c b c$ is a palindrome because $a==c$ and $b c b$ is a palindrome. However, $a b c c c$ is not a palindrome because $b c c$ is not a palindrome, even though $a==c$.
Example 4. We define $P_{n}=P_{n-1}+c 1$ (where $c 1$ is the first character of s, and the operator + means string concatenation). For example, the reverse of $a b c d$ is the reverse of $a b c$ (which is $d c b$) concatenated with a.
Example 5. We define $P_{n}=1+P_{n-1}$ if the first character of s matches c, and in case they do not match, we define $P_{n}=0+P_{n-1}$. For example, the number of occurrences of character a in string $a b a b a$ is $1(\because a$ matches the first character in the string) plus the number of occurrences of a in baba (which is 2). But, the number of occurrences of character b in string $a b a b a$ is $0(\because b$ does not the first character a in the string $)$ plus the number of occurrences of b in $b a b a$ (which is 2).
Example 6. We define $P_{n}=a[$ from $]>0 \& \& P_{n-1}$. For example, numbers in $\{1,2,3,4,5\}$ are all positive because $1>0$ and numbers in $\{2,3,4,5\}$ are all positive. But, numbers in $\{-1,2,3,4,5\}$ are not all positive because $-1>0$ is false, even though and numbers in $\{2,3,4,5\}$ are all positive. Also, numbers in $\{1,2,-3,4,5\}$ are not all positive because numbers in $\{2,-3,4,5\}$ are not all positive, even though $1>0$ is true.
Example 7. We define $P_{n}=a[$ from $] \leq a[$ from +1$] \& \& P_{n-1}$. For example, say from is 0 , then numbers in $\{1,2,2,3,4\}$ are sorted because $1 \leq 2$ and numbers in $\{2,2,3,4\}$ are sorted. But, numbers in $\{1,-1,2,3,4\}$ are not sorted because $1 \leq-1$ is false, even though numbers in $\{-1,2,3,4\}$ are sorted. Also, numbers in $\{1,2,2,-1,4\}$ are not sorted because numbers in $\{2,2,-1,4\}$ are not sorted, even though $2 \leq 2$ is true.
Example 8. We exploit the fact that array a is sorted: for each element in a, all elements to its left are smaller, whereas all elements to its right are larger. We calculate a middle index $m=\frac{\text { from+to }}{2}$ (where we have an integer division in Java, and this is mathematically equivalent to the calculation of its floor $\left\lfloor\frac{f r o m+t o}{2}\right\rfloor$), and compare $a[m]$ against the value k being searched. We define $P_{n}=$ true if $a[m]==k$ (i.e., it is found). If k is not found immediately but $k<a[m]$, then we know that if k exists, it must be to the left of $a[m]: P_{n}=P_{\text {left }}$. Symmetrically, if k is not found immediately but $k>a[m]$, then we know that if k exists, it must be to the right of $a[m]: P_{n}=P_{\text {right }}$.

Problem $\left(P_{n}\right)$	$\begin{aligned} & \text { Base Case(s) } \\ & \left(P_{0}, P_{1}, P_{2}\right) \end{aligned}$	Recursive Solution(s) to Sub-Problem(s) $\left(P_{n-1}, P_{n-2}\right)$	Solution
factorial(n)	$P_{0}=$ factorial $(0)=1$	$P_{n-1}=$ factorial $(n-1)$	$n \times P_{n-1}$
$f i b(n)$	$\begin{aligned} & \hline P_{1}=f i b(1)=1 \\ & P_{2}=f i b(2)=1 \end{aligned}$	$\begin{aligned} & P_{n-1}=f i b(n-1) \\ & P_{n-2}=f i b(n-2) \end{aligned}$	$P_{n-1}+P_{n-2}$
is $P(s)$	$\begin{aligned} & \hline P_{0}=\text { is } P(" ")=\text { true } \\ & P_{1}=\text { is } P(\text { "a" })=\text { true } \end{aligned}$	$P_{n-2}=$ isP(s.substring $(1$, s.length ()$\left.-1)\right)$	$\begin{aligned} & \text { s.char } A t(0)==\operatorname{char} A t(\operatorname{s.length}()-1) \\ & \& \& \\ & P_{n-2} \end{aligned}$
$\operatorname{rev}(s)$	$\begin{aligned} & \hline P_{0}=\operatorname{rev}(" \mathrm{"})=\text { "" } \\ & P_{1}=\operatorname{rev}(\text { "a" })=\text { "a" } \end{aligned}$	$P_{n-1}=\operatorname{rev}($ s.substring $(1$, s.length ()$)$)	$P_{n-1}+$ s.substring(0)
occ (s, c)	$P_{0}=o c c(" ", c)=0$	$P_{n-1}=\operatorname{occ}($ s.substring $(1$, s.length ()$), c)$	$\begin{aligned} & 1+P_{n-1} \text { if } \text { s.charAt }(0)==c \\ & 0+P_{n-1} \text { if } \text { s.charAt }(0) \quad!=c \\ & \hline \end{aligned}$
allPosH(a, from, to $)$	$$	$P_{n-1}=\operatorname{allPosH}(a$, from +1, to $)$	$a[0]>0 \& \& P_{n-1}$
isSortedH(a, from, to) isSortedH(a, from, to)	$\begin{aligned} \hline \hline P_{0} & =\text { isSortedH }(a, \text { from, to }) \\ & =\text { true } \quad \text { if from }>\text { to } \\ P_{1} & =\text { isSortedH }(a, \text { from, to }) \\ & =\text { true } \quad \text { if from }==\text { to } \end{aligned}$	$P_{n-1}=i s \operatorname{SortedH}(a$, from +1, to $)$	$a[$ from $] \leq a[$ from +1$] \& P_{n-1}$
binSearchH(a, from, to, k)	$\begin{aligned} \hline \hline P_{0} & =\text { binSearchH }(a, \text { from, to, } k) \\ & =\text { false } \quad \text { if from }>\text { to } \\ P_{1} & =\operatorname{binSearchH}(a, \text { from, to, } k) \\ & =a[\text { from }]==k \\ & \text { if } \text { from }==\text { to } \end{aligned}$	$P_{\text {left }}=\operatorname{binSearch} H\left(a, 0,\left\lfloor\frac{\text { from }+ \text { to }}{2}\right\rfloor-1, k\right)$ $P_{\text {right }}=\text { binSearch } H\left(a,\left\lfloor\frac{\text { from }+ \text { to }}{2}\right\rfloor+1, \text { to, } k\right)$	$\begin{array}{ll}P_{\text {left }} & \text { if } k<a\left[\left\lfloor\frac{\text { from }+ \text { to }}{2}\right\rfloor\right] \\ P_{\text {right }} & \text { if } k>a\left[\left\lfloor\frac{\text { from }+ \text { to }}{2}\right\rfloor\right] \\ \text { true } & \text { if } k==a\left[\left\lfloor\frac{\text { from }+ \text { to }}{2}\right\rfloor\right]\end{array}$

