
Documenting, Using, and Testing Utility Classes

Readings: Chapter 2 of the Course Notes

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Structure of Project: Packages and Classes

A Java project may store a list of Java classes.

You may group each list of related classes into
a package .

To see project structure in Eclipse: Package Explorer view.
2 of 34

Visibility: Project, Packages, Classes

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

3 of 34

Visibility of Classes

● Only one modifier for declaring visibility of classes: public.
● Use of private is forbidden for declaring a class.

e.g., private class Chair is not allowed!!
●

Visibility of a class may be declared using a modifier,
indicating that it is accessible:
1. Across classes within its resident package [no modifier]

e.g., Declare class Chair { . . . }
2. Across packages [public]

e.g., Declare public class Chair { . . . }
● Consider class Chair in: Resident package furniture;

Resident project CollectionOfStuffs.

4 of 34

Visibility of Classes: Across All Classes

Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

class Chair

Desk

Circle

Square

5 of 34

Visibility of Classes: Across All Classes

Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

public class Chair

Desk

Circle

Square

6 of 34

Visibility of Attributes/Methods:

Using Modifiers to Define Scopes

● Two modifiers for declaring visibility of attributes/methods:
public and private●
Visibility of an attribute or a method may be declared using a
modifier, indicating that it is accessible:
1. Within its resident class (most restrictive) [private]

e.g., Declare attribute private static int i;
e.g., Declare method private static void m(){};

2. Across classes within its resident package [no modifier]
e.g., Declare attribute static int i;
e.g., Declare method static void m(){};

3. Across packages (least restrictive) [public]
e.g., Declare attribute public static int i;
e.g., Declare method public static void m(){};● Consider i and m in: Resident class Chair; Resident package

furniture; Resident project CollectionOfStuffs.
7 of 34

Visibility of Attr./Meth.: Across All Methods

Within the Resident Class (private)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

private i, m

8 of 34

Visibility of Attr./Meth.: Across All Classes

Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

i, m

9 of 34

Visibility of Attr./Meth.: Across All Packages

Within the Resident Project (public)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

public i, m

10 of 34

Structure of Utility Classes

●
Utility classes are a special kind of classes, where:

○ All attributes (i.e., stored data) are declared as static.
○ All methods (i.e., stored operations) are declared as static.

● For now, understand all these static attributes and methods
collectively make their resident utility class a single (i.e., one
that cannot be duplicated) machine, upon which you may:○ Access the value of a data item. [attribute]○ Compute and return a value. [accessor]○ Computer and change the data (without returning). [mutator]

● We will later discuss non-static attributes and methods.

To see class structure in Eclipse: Outline view.

11 of 34

Structure of Utility Classes: Example (1.1)

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

Three independent groups of modifiers in the above utility class:
1. Access :private (L2, L13), public (L4, L11, L12),

and no access modifier (L3, L5, L9, L10).
2. Uniqueness :static (all attributes and methods) and non-static

(not in a utility class)
3. Assignable :final (L2, L4) means it is a constant value and can

never be assigned, and non-final attributes are variables.
12 of 34

Structure of Utility Classes: Example (1.2)

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

Each utility class contains a list of attributes and methods:
1. L2 – L4: Three attributes RADIUS TO DIAMETER, radius, PI○ Each of these attributes has an initial value (2, 10, and 3).○ Only the value of radius (non-final) may be changed.
2. L5 – L13: Six methods:○ 1 Mutator (with the return type void): setRadius(int newRadius)○ 5 Accessors (with an explicit return statement):

e.g., getDiameter(), getCircumference(int radius)
13 of 34

Structure of Utility Classes: Example (1.3)

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

Each method has a (possibly empty) list of parameters (i.e.,
inputs) and their types:● e.g., getDiameter (L5) has no parameters

(i.e., it takes no inputs for its computation)● e.g., setRadius (L10) has one parameter
(i.e., newRadius of type int)

We talk about parameters in the context of method declarations.
14 of 34

Structure of Utility Classes: Example (1.4)

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

When the name of a method parameter clashes with the name of
an attribute (L9):
● Any mention about that name (e.g., radius) refers to the

parameter, not the attribute anymore.● To refer to the attribute, write: Utilities.radius● If you know what you’re doing, that’s fine; otherwise, use a
different name (e.g., L10) to avoid unintended errors.

15 of 34

Structure of Utility Classes: Example (1.5)

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

The body (i.e., what’s written between { and }) of a method
(accessor or mutator) may:
1. Declare local variables (e.g., L6) to store intermediate

computation results.
The scope of these local variables is only within that method.

2. Perform assignments to change values of either local variables
(L6) or attributes (L10).

16 of 34

Structure of Utility Classes: Example (1.6)

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

A method body may call another method (i.e., reuse code):
3. Call a utility accessor and use (e.g., store, print, return) its

return value: L11 and L13.●
L11: Since we are in the same class, we do not need to write
CircleUtilities.getDiameter(radius)●
L11: getDiameter(radius) passes method parameter radius
as an argument value to method getDiameter(. . .)●
L11: It is equivalent to write (without reusing any code):
return radius * RADIUS TO DIAMETER * PI

17 of 34

Structure of Utility Classes: Exercise

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

Is the body of method getCircumference1 equivalent to the
body of method getCircumference2? Why or why not?

18 of 34

Structure of Utility Classes: Example (1.7)

1 public class CircleUtilities {
2 private static final int RADIUS_TO_DIAMETER = 2;
3 static int radius = 10;
4 public static final int PI = 3;
5 static int getDiameter() {
6 int diameter = radius * RADIUS_TO_DIAMETER;
7 return diameter;
8 }
9 static int getDiameter(int radius) { return radius * RADIUS_TO_DIAMETER; }

10 static void setRadius(int newRadius) { radius = newRadius; }
11 public static int getCircumference(int radius) { return getDiameter(radius) * PI; }
12 public static int getCircumference1() { return getDiameter() * PI; }
13 private static int getCircumference2() { return getCircumference(radius); }
14 }

A method body may call another method (i.e., reuse code):
4. Call a utility mutator to change some data.
We will see an example about this later.

19 of 34

Visualizing a Utility Class

All static attributes and methods collectively make their resident
utility class a single (i.e., one that cannot be duplicated) machine,
which contains:● Current values of attributes● Definitions of methods (i.e., how computation is to be executed)

2

10

RADIUS_TO_DIAMETER

radius

CircleUtilities

3

int diameter = radius * RADIUS_TO_DIAMETER;
return diameter;

PI

getDiameter()

radius = newRadius;setRadius(int newRadius)

getCircumference(int radius) return getDiameter(radius) * PI;

getCircumference1() return getDiameter() * PI;

getCircumference2() return getCircumference(radius);

20 of 34

Using a Utility Class (1)

● We can either access a static attribute or call a static method in
a utility class using its name.

● e.g., the method call CircleUtilities.setRadius(40)
passes the value 40 as argument , which is used to instantiate
every occurrence of the method parameter newRadius in
method setRadius by 40.

void setRadius(int ((((((
newRadius 40) {

radius = ((((((
newRadius 40;

}

● Consequently, the effect of this method call is to change the
current value of CircleUtilities.radius to 40.

21 of 34

Entry Point of Execution: the “main” Method

The main method is treated by Java as the starting point of
executing your program.

public class CircleUtilitiesApplication {
public static void main(String[] args) {

/* Your programming solution is defined here. */
}

}

The execution starts with the first line in the main method,
proceed line by line, from top to bottom, until there are no more
lines to execute, then it terminates .

22 of 34

Using a Utility Class (2.1)

1 public class CircileUtilitesApplication {
2 public static void main(String[] args) {
3 System.out.println("Initial radius of CU: " + CircleUtilities.radius);
4 int d1 = CircleUtilities.getDiameter();
5 System.out.println("d1 is: " + d1);
6 System.out.println("c1 is: " + CircleUtilities.getCircumference1());
7 System.out.println("======");
8 System.out.println("d2 is: " + CircleUtilities.getDiameter(20));
9 System.out.println("c2 is: " + CircleUtilities.getCircumference(20));

10 System.out.println("======");
11 System.out.println("Change the radius of CU to 30...");
12 CircleUtilities.setRadius(30);
13 System.out.println("======");
14 d1 = CircleUtilities.getDiameter();
15 System.out.println("d1 is: " + d1);
16 System.out.println("c1 is: " + CircleUtilities.getCircumference1());
17 System.out.println("======");
18 System.out.println("d2 is: " + CircleUtilities.getDiameter(20));
19 System.out.println("c2 is: " + CircleUtilities.getCircumference(20));
20 }
21 }

Executing it, what will be output to the console?

23 of 34

Using a Utility Class (2.2)

Initial radius of CU: 10
d1 is: 20
c1 is: 60
======
d2 is: 40
c2 is: 120
======
Change the radius of CU to 30...
======
d1 is: 60
c1 is: 180
======
d2 is: 40
c2 is: 120

24 of 34

Using a Utility Class: Client vs. Supplier (1)

● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.○ The client must follow certain instructions to obtain the service

(e.g., supplier assumes that client powers on, closes door, and
heats something that is not explosive).○ If instructions are followed, the client would expect that the
service does what is required (e.g., a lunch box is heated).○ The client does not care how the supplier implements it.● What then are the benefits and obligations os the two parties?

benefits obligations

CLIENT obtain a service follow instructions
SUPPLIER give instructions provide a service

● There is a contract between two parties, violated if:○ The instructions are not followed. [Client’s fault]○ Instructions followed, but service not satisfactory. [Supplier’s fault]
25 of 34

Using a Utility Class: Client vs. Supplier (2)

class CUtil {
static int PI = 3;
static int getArea(int r) {
/* Assume: r positive */
return r * r * 3;

}
}

1 class CUtilApp {

2 public static void main(. . .) {

3 int radius = ??? ;

4 println(CUtil.getArea(radius));
5 } }

● Method call CircleUtilities.getArea(radius), inside class
CircleUtilitiesApp, suggests a client-supplier relation.○

Client: resident class of the static method call [CUtilApp]○
Supplier: context class of the static method [CUtil]● What if the value of ??? at L3 of CUtilApp is -10?

300

● What’s wrong with this?○ Client CUtil mistakenly gives illegal circle with radius -10.○ Supplier CUtil should have reported a contract violation !
26 of 34

Using a Utility Class: Client vs. Supplier (3)

●
Method Precondition : supplier’s assumed circumstances,
under which the client can expect a satisfactory service.○ Precondition of int divide(int x, int y)? [y != 0]○ Precondition of int getArea(int r)? [r > 0]● When supplier is requested to provide service with
preconditions not satisfied, contract is violated by client.

●
Precondition Violations ≈ IllegalArgumentException.

Use if-elseif statements to determine if a violation occurs.
class CUtil {
static int PI = 3;
static int getArea(int r) throws IllegalArgumentException {

if(r < 0) {
throw new IllegalArgumentException("Circle radius " + r + "is not positive.");

}
else {
return r * r * PI;

}
}

}

27 of 34

Documenting Your Class using Javadoc (1)

There are three types of comments in Java:
● // [line comment]
● /* */ [block comment]○ These two types of comments are only for you as a supplier to

document interworking of your code.○ They are hidden from clients of your software.
● /** */ [block documentation]○ This type of comments is for clients to learn about how to use of

your software.

28 of 34

Documenting Classes using Javadoc (2.1)

/**
* <p> First paragraph about this class.

* <p> Second paragraph about this class.

* @author jackie

*/
public class Example {
/** <p> Summary about attribute ‘i’

* <p> More details about ‘i’

*/
public static int i;
/**
* <p> Summary about accesor method ‘am’ with two parameters.

* <p> More details about ‘am’.

* @return Always false for some reason.

* @param s Documentation about the first parameter

* @param d Documentation about the second parameter

*/
public static boolean am (String s, double d) { return false; }
/**
* <p> Summary about mutator method ‘mm’ with no parameters.

* <p> More details about ‘mm’.

*/
public static void mm () { /* code omitted */ }

}

○ Use @return only for mutator methods (i.e., returning non-void).○ Use @param for each input parameter.
29 of 34

Documenting Classes using Javadoc (2.2)

Generate an HTML documentation using the Javadoc tool
supported by Eclipse:

30 of 34

Exercises

● Implement a utility class named Counter, where○ There is a static integer counter i whose initial value is 5.○ There is a static constant maximum MAX of value 10 for counter i.○ There is a static constant minimum MIN of value 10 for counter i.○ Your implementation should be such that the counter value can
never fall out of the range [5,10].○ There is a mutator method incrementBy which takes an integer
input parameter j, and increments the counter i value by j if
possible (i.e., it would not go above MAX).○ There is a mutator method decrementBy which takes an integer
input parameter j, and decrements the counter i value by j if
possible (i.e., it would not go below MIN).○ There is an accessor method isPositive which takes an integer
input parameter j, and returns true if j is positive, or returns
false if otherwise.● Properly document your Counter class using Javadoc and generate the

HTML documentation using Eclipse.
31 of 34

Index (1)

Structure of Project: Packages and Classes

Visibility: Project, Packages, Classes

Visibility of Classes

Visibility of Classes: Across All Classes

Within the Resident Package (no modifier)

Visibility of Classes: Across All Classes

Within the Resident Package (no modifier)

Visibility of Attributes/Methods:

Using Modifiers to Define Scopes

Visibility of Attr./Meth.: Across All Methods

Within the Resident Class (private)

Visibility of Attr./Meth.: Across All Classes

Within the Resident Package (no modifier)

Visibility of Attr./Meth.: Across All Packages

Within the Resident Project (public)

32 of 34

Index (2)

Structure of Utility Classes

Structure of Utility Classes: Example (1.1)

Structure of Utility Classes: Example (1.2)

Structure of Utility Classes: Example (1.3)

Structure of Utility Classes: Example (1.4)

Structure of Utility Classes: Example (1.5)

Structure of Utility Classes: Example (1.6)

Structure of Utility Classes: Exercise

Structure of Utility Classes: Example (1.7)

Visualizing a Utility Class

Using a Utility Class (1)

Entry Point of Execution: the “main” Method

Using a Utility Class (2.1)

Using a Utility Class (2.2)

33 of 34

Index (3)

Using a Utility Class: Client vs. Supplier (1)

Using a Utility Class: Client vs. Supplier (2)

Using a Utility Class: Client vs. Supplier (3)

Documenting Your Class using Javadoc (1)

Documenting Classes using Javadoc (2.1)

Documenting Classes using Javadoc (2.2)

Exercises

34 of 34

Unit and Regression Testing using JUnit

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

A Simple Counter (1)

Consider a utility class (where attributes and methods are
static) for keeping track of an integer counter value:
public class Counter {
public final static int MAX_COUNTER_VALUE = 3;
public final static int MIN_COUNTER_VALUE = 0;
public static int value = MIN_COUNTER_VALUE;
. . . /* more code later! */

○ When attempting to access the static attribute value outside the
Counter class, write Counter.value.○ Two constants (i.e., final) for lower and upper bounds of the
counter value.○ Initialize the counter value to its lower bound.

○
Requirement :

The counter value must be between its lower and upper bounds.

2 of 29

Encode Precondition Violation
as IllegalArgumentException

Consider two possible scenarios of Precondition Violations (i.e.,
scenarios of throwing IllegalArgumentException):

● When the counter value is attempted (but not yet) to be
updated above its upper bound.

● When the counter value is attempted (but not yet) to be
updated below its upper bound.

3 of 29

A Simple Counter (2)

public static void increment() {

if(value == Counter.MAX COUNTER VALUE) {
/* Precondition Violation */
throw new IllegalArgumentException("Too large to increment");

}
else { value ++; }

}
public static void decrement() {

if(value == Counter.MIN COUNTER VALUE) {
/* Precondition Violation */
throw new IllegalArgumentException("Too small to decrement");

}
else { value --; }

}

○ Change the counter value via two mutator methods.○ Changes on the counter value may violate a precondition:
● Attempt to increment when counter value reaches its maximum.● Attempt to decrement when counter value reaches its minimum.

4 of 29

Testing the Counter Class from Console:
Test Case 1

Consider a class for testing the Counter class:
public class CounterTester1 {
public static void main(String[] args) {
System.out.println("Init val: " + Counter.value);
System.out.println("Attempt to decrement:");
/* Right before calling the decrement mutator,

* Counter.value is 0 and too small to be decremented.

*/
Counter.decrement();

}
}

Executing it as Java Application gives this Console Output:
Init val: 0
Attempt to decrement:
Exception in thread "main"
java.lang.IllegalArgumentException: Too small to decrement

5 of 29

Testing the Counter Class from Console:
Test Case 2

Consider another class for testing the Counter class:
public class CounterTester2 {
public static void main(String[] args) {
Counter.increment(); Counter.increment(); Counter.increment();
System.out.println("Current val: " + Counter.value);
System.out.println("Attempt to increment:");
/* Right before calling the increment mutator,

* Counter.value is 3 and too large to be incremented.

*/
Counter.increment();

}
}

Executing it as Java Application gives this Console Output:
Current val: 3
Attempt to increment:
Exception in thread "main"
java.lang.IllegalArgumentException: Too large to increment

6 of 29

Limitations of Testing from the Console
● Do Test Cases 1 & 2 suffice to test Counter’s correctness?○ Is it plausible to claim that the implementation of Counter is

correct because it passes the two test cases?● What other test cases can you think of?
Counter.value Counter.increment() Counter.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2● So in total we need 8 test cases.⇒ 6 more separate CounterTester classes to create!● Problems? It is inconvenient to:○ Run each TC by executing main of a CounterTester and

comparing console outputs with your eyes.○ Re-run manually all TCs whenever Counter is changed.
Principle: Any change introduced to your software must not

compromise its established correctness.
7 of 29

Why JUnit?

●
Automate the testing of correctness of your Java classes.

● Once you derive the list of tests, translate it into a JUnit test
case, which is just a Java class that you can execute upon.

● JUnit tests are helpful clients of your classes, where each test
may:○ Either attempt to use a method in a legal way (i.e., satisfying its

precondition), and report:
●

Success if the result is as expected●
Failure if the result is not as expected○ Or attempt to use a method in an illegal way (i.e., not satisfying

its precondition), and report:
●

Success if precondition violation
(i.e., IllegalArgumentException) occurs.●
Failure if precondition violation
(i.e., IllegalArgumentException) does not occur.

8 of 29

How to Use JUnit: Packages

Step 1:○ In Eclipse, create a Java project
ExampleTestingUtilityClasses○
Separation of concerns :
● Group classes for implementation (i.e., Counter)

into package implementation.● Group classes classes for testing (to be created)
into package tests.

9 of 29

How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.⇒ If you have n Java classes to test , create n JUnit test cases.
10 of 29

How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

11 of 29

How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

12 of 29

How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .⇒When TestCounter is run as a JUnit Test Case, only those

methods prepended by the @Test tags will be run and reported.○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.

13 of 29

How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

○14 of 29

How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○15 of 29

How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.● The result of running a test is considered:○

Failure if either● an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) occurs; or● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.○

Success if neither assertion failures nor unexpected exceptions
occur.● After running all tests:○ A green bar means that all tests succeed.⇒ Keep challenging yourself if more tests may be added.○ A red bar means that at least one test fails.⇒ Keep fixing the class under test and re-runing all tests, until you
receive a green bar.● Question: What is the easiest way to making test a success?

Answer: Delete the call fail("Not yet implemented").
16 of 29

How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.⇒ Neither assertion failures nor exceptions will occur.⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.∴We will receive a green bar!
Caution: test which passes at the moment is not useful at all!

17 of 29

How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○18 of 29

How to Use JUnit: Adding More Tests (1)
● Recall the complete list of cases for testing Counter:

c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2● Let’s turn the two cases in the 1st row into two JUnit tests:○ Test for left cell succeeds if:● No failures and exceptions occur; and● The new counter value is 1.○ Test for right cell succeeds if the expected precondition violation

occurs (IllegalArgumentException is thrown).● Common JUnit assertion methods (complete list in next slide):○ void assertNull(Object o)○ void assertEquals(expected, actual)○ void assertTrue(boolean condition)○ void fail(String message)
19 of 29

How to Use JUnit: Assertion Methods

20 of 29

How to Use JUnit: Adding More Tests (2.1)
1 @Test

2 public void testIncAfterCreation() {
3 /* Assert that initial value of counter is correct. */
4 assertEquals(Counter.MIN_COUNTER_VALUE, Counter.value);
5 /* Attempt to increment the counter value,
6 * which is expected to succeed.
7 */
8 Counter.increment();
9 /* Assert that the updated counter value is correct. */

10 assertEquals(1, Counter.value);
11 }

● L4: Alternatively, you can write:
assertTrue(Counter.MIN_COUNTER_VALUE == Counter.value);

● L10: Alternatively, you can write:
assertTrue(1 == Counter.value);

21 of 29

How to Use JUnit: Adding More Tests (2.2)

● Don’t lose the big picture!
● The JUnit test in the previous slide automates the following

console tester which requires interaction with the external user:
public class CounterTester1 {
public static void main(String[] args) {
System.out.println("Init val: " + Counter.value);
System.out.println("Attempt to decrement:");
/* Right before calling the decrement mutator,

* Counter.value is 0 and too small to be decremented.

*/
Counter.decrement();

}
}

●
Automation is exactly rationale behind using JUnit!

22 of 29

How to Use JUnit: Adding More Tests (3.1)
1 @Test

2 public void testDecAfterCreation() {
3 assertTrue(Counter.MIN_COUNTER_VALUE == Counter.value);
4 try {
5 Counter.decrement();
6 /* Reaching this line means
7 * IllegalArgumentException not thrown! */
8 fail("Expected Precondition Violation Did Not Occur!");
9 }

10 catch(IllegalArgumentException e) {
11 /* Precondition Violated Occurred as Expected. */
12 } }

○ Lines 4 & 10: We need a try-catch block because of Line 5.● Method decrement from class Counter is expected to throw the
IllegalArgumentException because of a precondition violation .○ Lines 3 & 8 are both assertions:● Lines 3 asserts that Counter.value returns the expected value
(Counter.MIN COUNTER VALUE).● Line 8: an assertion failure∵ expected IllegalArgumentException not thrown23 of 29

How to Use JUnit: Adding More Tests (3.2)

● Again, don’t lose the big picture!
● The JUnit test in the previous slide automates the following

console tester which requires interaction with the external user:
public class CounterTester2 {
public static void main(String[] args) {
Counter.increment(); Counter.increment(); Counter.increment();
System.out.println("Current val: " + Counter.value);
System.out.println("Attempt to increment:");
/* Right before calling the increment mutator,

* Counter.value is 3 and too large to be incremented.

*/
Counter.increment();

}
}

● Again, automation is exactly rationale behind using JUnit!

24 of 29

Exercises

1. Convert the rest of the cells into JUnit tests:
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

2. Run all 8 tests and make sure you receive a green bar.
3. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.○ Re-run all 8 tests and you should receive a red bar. [Why?]○ Undo the error injection, and re-run all 8 tests. [What happens?]

25 of 29

Regression Testing

JUnit
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.●
Red bar reported: Fix the class under test (CUT) until green bar.●
Green bar reported: Add more tests and Fix CUT when necessary.26 of 29

Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml

27 of 29

Index (1)
A Simple Counter (1)
Encode Precondition Violation
as IllegalArgumentException

A Simple Counter (2)
Testing the Counter Class from Console:
Test Case 1
Testing the Counter Class from Console:
Test Case 2
Limitations of Testing from the Console
Why JUnit?
How to Use JUnit: Packages
How to Use JUnit: New JUnit Test Case (1)
How to Use JUnit: New JUnit Test Case (2)
How to Use JUnit: Adding JUnit Library
How to Use JUnit: Generated Test Case

28 of 29

Index (2)
How to Use JUnit: Running Test Case
How to Use JUnit: Generating Test Report
How to Use JUnit: Interpreting Test Report
How to Use JUnit: Revising Test Case
How to Use JUnit: Re-Running Test Case
How to Use JUnit: Adding More Tests (1)
How to Use JUnit: Assertion Methods
How to Use JUnit: Adding More Tests (2.1)
How to Use JUnit: Adding More Tests (2.2)
How to Use JUnit: Adding More Tests (3.1)
How to Use JUnit: Adding More Tests (3.2)
Exercises
Regression Testing
Resources

29 of 29

Classes and Objects
Readings: Chapters 3 – 4 of the Course Notes

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Separation of Concerns: App vs. Model

● So far we have developed:
Supplier: A single utility class.
Client: A class with its main method using the utility methods.

● In Java:○ We may define more than one (non-utility) classes○ Each class may contain more than one methods

● object-oriented programming in Java:

○ Use classes to define templates
○ Use objects to instantiate classes○ At runtime, create objects and call methods on objects, to simulate

interactions between real-life entities.

2 of 147

Object Orientation:
Observe, Model, and Execute

Real World: Entities

Entities:
jim, jonathan, …

Entities:
p1(2, 3), p2(-1, -2), …

…

Compile-Time: Classes
(definitions of templates)

class Person {
 String name;
 double weight;
 double height;
}

class Potint {
 double x;
 double y;
}

…

Run-Time: Objects
(instantiations of templates)

Person
name
weight
height

“Jim”
80

1.80
jim

Person
name
weight
height

“Jonathan”
80

1.80
jonathan

Point
x
y

2
3

p1

Point
x
y

-1
-2

p2

…

Model Execute

○ We observe how real-world entities behave.
○ We model the common attributes and behaviour of a set of

entities in a single class.○ We execute the program by creating instances of classes, which
interact in a way analogous to that of real-world entities.

3 of 147

Object-Oriented Programming (OOP)

● In real life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.

● Entities:○ Possess attributes;○ Exhibit bebaviour ; and○ Interact with each other.
● Goals: Solve problems programmatically by○ Classifying entities of interest

Entities in the same class share common attributes and bebaviour.○ Manipulating data that represent these entities
Each entity is represented by specific values.

4 of 147

OO Thinking: Templates vs. Instances (1.1)

A person is a being, such as a human, that has certain
attributes and behaviour constituting personhood: a person
ages and grows on their heights and weights.

● A template called Person defines the common
○ attributes (e.g., age, weight, height) [≈ nouns]
○ behaviour (e.g., get older, gain weight) [≈ verbs]

5 of 147

OO Thinking: Templates vs. Instances (1.2)

● Persons share these common attributes and behaviour .○ Each person possesses an age, a weight, and a height.○ Each person’s age, weight, and height might be distinct
e.g., jim is 50-years old, 1.8-meters tall and 80-kg heavy
e.g., jonathan is 65-years old, 1.73-meters tall and 90-kg heavy

● Each person, depending on the specific values of their
attributes, might exhibit distinct behaviour:○ When jim gets older, he becomes 51○ When jonathan gets older, he becomes 66.○ jim’s BMI is based on his own height and weight [80

1.82]○ jonathan’s BMI is based on his own height and weight [90
1.732]

6 of 147

OO Thinking: Templates vs. Instances (2.1)

Points on a two-dimensional plane are identified by their signed
distances from the X- and Y-axises. A point may move
arbitrarily towards any direction on the plane. Given two points,
we are often interested in knowing the distance between them.

● A template called Point defines the common
○ attributes (e.g., x, y) [≈ nouns]
○ behaviour (e.g., move up, get distance from) [≈ verbs]

7 of 147

OO Thinking: Templates vs. Instances (2.2)

● Points share these common attributes and behaviour .○ Each point possesses an x-coordinate and a y-coordinate.○ Each point’s location might be distinct
e.g., p1 is located at (3,4)
e.g., p2 is located at (−4,−3)

● Each point, depending on the specific values of their attributes
(i.e., locations), might exhibit distinct behaviour:○ When p1 moves up for 1 unit, it will end up being at (3,5)○ When p2 moves up for 1 unit, it will end up being at (−4,−2)○ Then, p1’s distance from origin: [

√
32 + 52]○ Then, p2’s distance from origin: [

�(−4)2 + (−2)2]

8 of 147

OO Thinking: Templates vs. Instances (3)
● A template defines what’s shared by a set of related entities.○ Common attributes (age in Person, x in Point)○ Common behaviour (get older for Person, move up for Point)● Each template may be instantiated into multiple instances.○ Person instances: jim and jonathan○ Point instances: p1 and p2● Each instance may have specific values for the attributes.○ Each Person instance has an age:

jim is 50-years old, jonathan is 65-years old○ Each Point instance has a location:
p1 is at (3,4), p2 is at (−3,−4)● Therefore, instances of the same template may exhibit distinct

behaviour .○ Each Person instance can get older: jim getting older from 50 to
51; jonathan getting older from 65 to 66.○ Each Point instance can move up: p1 moving up from (3,3)
results in (3,4); p1 moving up from (−3,−4) results in (−3,−3).

9 of 147

OOP: Classes ≈ Templates

In Java, you use a class to define a template that enumerates
attributes that are common to a set of entities of interest.

public class Person {
int age;
String nationality;
double weight;
double height;

}

public class Point {
double x;
double y;

}

10 of 147

OOP:
Define Constructors for Creating Objects (1.1)
● Within class Point, you define constructors , specifying how

instances of the Point template may be created.
public class Point {
. . . /* attributes: x, y */
Point(double newX, double newY) {
x = newX;
y = newY; } }

● In the corresponding tester class, each call to the Point
constructor creates an instance of the Point template.
public class PersonTester {
public static void main(String[] args) {

Point p1 = new Point (2, 4);
println(p1.x + " " + p1.y);
Point p2 = new Point (-4, -3);
println(p2.x + " " + p2.y); } }

11 of 147

OOP:
Define Constructors for Creating Objects (1.2)

Point p1 = new Point(2, 4);

1. RHS (Source) of Assignment: new Point(2, 4) creates
a new Point object in memory.

2.0

4.0

x

y

Point

2. LHS (Target) of Assignment: Point p1 declares a variable
that is meant to store the address of some Point object .

3. Assignment: Executing = stores new object’s address in p1.

2.0

4.0

x

y

Point

p1

12 of 147

The this Reference (1)
● Each class may be instantiated to multiple objects at runtime.
class Point {
double x; double y;
void moveUp(double units) { y += units; }

}

● Each time when we call a method of some class, using the dot
notation, there is a specific target /context object.

1 Point p1 = new Point(2, 3);
2 Point p2 = new Point(4, 6);
3 p1.moveUp(3.5);
4 p2.moveUp(4.7);

○ p1 and p2 are called the call targets or context objects .○ Lines 3 and 4 apply the same definition of the moveUp method.○ But how does Java distinguish the change to p1.y versus the
change to p2.y?

13 of 147

The this Reference (2)
● In the method definition, each attribute has an implicit this

which refers to the context object in a call to that method.
class Point {
double x;
double y;
Point(double newX, double newY) {
this.x = newX;
this.y = newY;

}
void moveUp(double units) {
this.y = this.y + units;

}
}

● Each time when the class definition is used to create a new
Point object , the this reference is substituted by the name of
the new object.

14 of 147

The this Reference (3)
● After we create p1 as an instance of Point
Point p1 = new Point(2, 3);

● When invoking p1.moveUp(3.5), a version of moveUp that is
specific to p1 will be used:
class Point {
double x;
double y;
Point(double newX, double newY) {

p1 .x = newX;

p1 .y = newY;
}
void moveUp(double units) {

p1 .y = p1 .y + units;
}

}
15 of 147

The this Reference (4)
● After we create p2 as an instance of Point
Point p2 = new Point(4, 6);

● When invoking p2.moveUp(4.7), a version of moveUp that is
specific to p2 will be used:
class Point {
double x;
double y;
Point(double newX, double newY) {

p2 .x = newX;

p2 .y = newY;
}
void moveUp(double units) {

p2 .y = p2 .y + units;
}

}
16 of 147

The this Reference (5)
The this reference can be used to disambiguate when the
names of input parameters clash with the names of class
attributes.
class Point {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;

}
void setX(double x) {
this.x = x;

}
void setY(double y) {
this.y = y;

}
}

17 of 147

The this Reference (6.1): Common Error

The following code fragment compiles but is problematic:

class Person {
String name;
int age;
Person(String name, int age) {
name = name;
age = age;

}
void setAge(int age) {
age = age;

}
}

Why? Fix?

18 of 147

The this Reference (6.2): Common Error

Always remember to use this when input parameter names
clash with class attribute names.

class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;

}
void setAge(int age) {
this.age = age;

}
}

19 of 147

OOP:
Define Constructors for Creating Objects (2.1)
● Within class Person, you define constructors , specifying how

instances of the Person template may be created.
public class Person {
. . . /* attributes: age, nationality, weight, height */
Person(int newAge, String newNationality) {
age = newAge;
nationality = newNationality; } }

● In the corresponding tester class, each call to the Person
constructor creates an instance of the Person template.
public class PersonTester {
public static void main(String[] args) {

Person jim = new Person (50, "British");
println(jim.nationlaity + " " + jim.age);
Person jonathan = new Person (60, "Canadian");
println(jonathan.nationlaity + " " + jonathan.age); } }

20 of 147

OOP:
Define Constructors for Creating Objects (2.2)

Person jim = new Person(50, "British");

1. RHS (Source) of Assignment: new Person(50, "British")

creates a new Person object in memory.

50

“British”

age

nationality

Person

0.0

0.0

weight

height

2. LHS (Target) of Assignment: Point jim declares a variable
that is meant to store the address of some Person object .

3. Assignment: Executing = stores new object’s address in jim.

50

“British”

age

nationality

Person

jim

0.0

0.0

weight

height
21 of 147

OOP: Methods (1.1)
● A method is a named block of code, reusable via its name.

{
 …
 /* implementation of method m */
}

m

…
RT

T1T1 p1p1

T2T2 p2p2

TnTn pnpn

● The Signature of a method consists of:○ Return type [RT (which can be void)]○ Name of method [m]○ Zero or more parameter names [p1, p2, . . . , pn]○ The corresponding parameter types [T1, T2, . . . , Tn]● A call to method m has the form: m(a1,a2, . . . ,an)
Types of argument values a1, a2, . . . , an must match the the
corresponding parameter types T1, T2, . . . , Tn.

22 of 147

OOP: Methods (1.2)
● In the body of the method, you may○ Declare and use new local variables

Scope of local variables is only within that method.○ Use or change values of attributes.○ Use values of parameters, if any.
class Person {
String nationality;
void changeNationality(String newNationality) {
nationality = newNationality; } }

● Call a method , with a context object , by passing arguments.
class PersonTester {
public static void main(String[] args) {
Person jim = new Person(50, "British");
Person jonathan = new Person(60, "Canadian");
jim.changeNationality("Korean");
jonathan.changeNationality("Korean"); } }

23 of 147

OOP: Methods (2)
● Each class C defines a list of methods.
○ A method m is a named block of code.

● We reuse the code of method m by calling it on an object obj
of class C.

For each method call obj.m(. . .):○ obj is the context object of type C○ m is a method defined in class C○ We intend to apply the code effect of method m to object obj.
e.g., jim.getOlder() vs. jonathan.getOlder()
e.g., p1.moveUp(3) vs. p2.moveUp(3)

● All objects of class C share the same definition of method m.
● However:
∵ Each object may have distinct attribute values.
∴ Applying the same definition of method m has distinct effects.

24 of 147

OOP: Methods (3)
1. Constructor○ Same name as the class. No return type. Initializes attributes.○ Called with the new keyword.○ e.g., Person jim = new Person(50, "British");

2. Mutator○ Changes (re-assigns) attributes○ void return type○ Cannot be used when a value is expected○ e.g., double h = jim.setHeight(78.5) is illegal!
3. Accessor○ Uses attributes for computations (without changing their values)○ Any return type other than void○ An explicit return statement (typically at the end of the method)

returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI();
e.g., println(p1.getDistanceFromOrigin());

25 of 147

OOP: The Dot Notation (1)
● A binary operator:○ LHS an object○ RHS an attribute or a method● Given a variable of some reference type that is not null:○ We use a dot to retrieve any of its attributes .

Analogous to ’s in English
e.g., jim.nationality means jim’s nationality○ We use a dot to invoke any of its mutator methods , in order to
change values of its attributes.
e.g., jim.changeNationality("CAN") changes the
nationality attribute of jim○ We use a dot to invoke any of its accessor methods , in order to
use the result of some computation on its attribute values.
e.g., jim.getBMI() computes and returns the BMI calculated
based on jim’s weight and height○ Return value of an accessor method must be stored in a variable.
e.g., double jimBMI = jim.getBMI()

26 of 147

OOP: The Dot Notation (2)
● LHS of dot can be more complicated than a variable :
○ It can be a path that brings you to an object

class Person {
String name;
Person spouse;

}

○ Say we have Person jim = new Person("Jim Davies")○ Inquire about jim’s name? [jim.name]○ Inquire about jim’s spouse’s name? [jim.spouse.name]○ But what if jim is single (i.e., jim.spouse == null)?
Calling jim.spouse.name will trigger NullPointerException!!○ Assuming that:
● jim is not single. [jim.spouse != null]● The marriage is mutual. [jim.spouse.spouse != null]

What does jim.spouse.spouse.name mean? [jim.name]
27 of 147

OOP: Method Calls
1 Point p1 = new Point (3, 4);

2 Point p2 = new Point (-6, -8);

3 System.out.println(p1. getDistanceFromOrigin());

4 System.out.println(p2. getDistanceFromOrigin());

5 p1. moveUp(2) ;

6 p2. moveUp(2) ;

7 System.out.println(p1. getDistanceFromOrigin());

8 System.out.println(p2. getDistanceFromOrigin());

● Lines 1 and 2 create two different instances of Point● Lines 3 and 4: invoking the same accessor method on two
different instances returns distinct values● Lines 5 and 6: invoking the same mutator method on two
different instances results in independent changes● Lines 3 and 7: invoking the same accessor method on the
same instance may return distinct values, why? Line 5

28 of 147

OOP: Class Constructors (1)

● The purpose of defining a class is to be able to create
instances out of it.

● To instantiate a class, we use one of its constructors .
● A constructor○ declares input parameters○ uses input parameters to initialize some or all of its attributes

29 of 147

OOP: Class Constructors (2)
public class Person {
int age;
String nationality;
double weight;
double height;
Person(int initAge, String initNat) {
age = initAge;
nationality = initNat;

}
Person (double initW, double initH) {
weight = initW;
height = initH;

}
Person(int initAge, String initNat,

double initW, double initH) {
. . . /* initialize all attributes using the parameters */

}
}

30 of 147

OOP: Class Constructors (3)

public class Point {
double x;
double y;

Point(double initX, double initY) {
x = initX;
y = initY;

}

Point(char axis, double distance) {
if (axis == ’x’) { x = distance; }
else if (axis == ’y’) { y = distance; }
else { System.out.println("Error: invalid axis.") }

}
}

31 of 147

OOP: Class Constructors (4)

● For each class, you may define one or more constructors :○ Names of all constructors must match the class name.○ No return types need to be specified for constructors.○ Each constructor must have a distinct list of input parameter types.○ Each parameter that is used to initialize an attribute must have a
matching type.○ The body of each constructor specifies how some or all
attributes may be initialized .

32 of 147

OOP: Object Creation (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:

System.out.println("(" + p1.x + ", " + p1.y + ")");

(2.0, 4.0)

33 of 147

OOP: Object Creation (2)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PersonTester {
public static void main(String[] args) {
/* initialize age and nationality only */
Person jim = new Person(50, "BRI");
/* initialize age and nationality only */
Person jonathan = new Person(65, "CAN");
/* initialize weight and height only */
Person alan = new Person(75, 1.80);
/* initialize all attributes of a person */
Person mark = new Person(40, "CAN", 69, 1.78);

}
}

34 of 147

OOP: Object Creation (3)

50age

nationality

Person

jim

0.0

0.0

weight

height

“BRI”

Person jim = new Person(50, “BRI”)

65age

nationality

Person

jonathan

0.0

0.0

weight

height

“CAN”

Person jonathan = new Person(65, “CAN”)

0age

nationality

Person

alan

75.0

1.80

weight

height

null

Person alan = new Person(75, 1.80)

40age

nationality

Person

mark

69.0

1.78

weight

height

“CAN”

Person mark = new Person(40, “CAN”, 69, 1.78)

35 of 147

OOP: Object Creation (4)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PointTester {
public static void main(String[] args) {
Point p1 = new Point(3, 4);
Point p2 = new Point(-3 -2);
Point p3 = new Point(’x’, 5);
Point p4 = new Point(’y’, -7);

}
}

36 of 147

OOP: Object Creation (5)

3.0

4.0

x

y

Person

p1

Point p1 = new Point(3, 4)

-3.0

-2.0

x

y

Person

p2

Point p2 = new Point(-3, -2)

5.0

0

x

y

Person

p3

Point p3 = new Point(‘x’, 5)

0

-7.0

x

y

Person

p4

Point p4 = new Point(‘y’, -7)

37 of 147

OOP: Object Creation (6)

● When using the constructor, pass valid argument values:○ The type of each argument value must match the corresponding
parameter type.○ e.g., Person(50, "BRI") matches
Person(int initAge, String initNationality)○ e.g., Point(3, 4) matches
Point(double initX, double initY)

● When creating an instance, uninitialized attributes implicitly get
assigned the default values .○ Set uninitialized attributes properly later using mutator methods

Person jim = new Person(50, "British");
jim.setWeight(85);
jim.setHeight(1.81);

38 of 147

OOP: Mutator Methods

● These methods change values of attributes.
● We call such methods mutators (with void return type).

public class Person {
. . .
void gainWeight(double units) {
weight = weight + units;

}
}

public class Point {
. . .
void moveUp() {
y = y + 1;

}
}

39 of 147

OOP: Accessor Methods
● These methods return the result of computation based on

attribute values.● We call such methods accessors (with non-void return type).
public class Person {
. . .
double getBMI() {
double bmi = height / (weight * weight);
return bmi;

}
}

public class Point {
. . .
double getDistanceFromOrigin() {
double dist = Math.sqrt(x*x + y*y);
return dist;

}
}40 of 147

OOP: Use of Mutator vs. Accessor Methods

● Calls to mutator methods cannot be used as values.○ e.g., System.out.println(jim.setWeight(78.5)); ×○ e.g., double w = jim.setWeight(78.5); ×○ e.g., jim.setWeight(78.5); ✓
● Calls to accessor methods should be used as values.○ e.g., jim.getBMI(); ×○ e.g., System.out.println(jim.getBMI()); ✓○ e.g., double w = jim.getBMI(); ✓

41 of 147

OOP: Method Parameters

● Principle 1: A constructor needs an input parameter for
every attribute that you wish to initialize.
e.g., Person(double w, double h) vs.
Person(String fName, String lName)

● Principle 2: A mutator method needs an input parameter for
every attribute that you wish to modify.
e.g., In Point, void moveToXAxis() vs.
void moveUpBy(double unit)

● Principle 3: An accessor method needs input parameters if
the attributes alone are not sufficient for the intended
computation to complete.
e.g., In Point, double getDistFromOrigin() vs.
double getDistFrom(Point other)

42 of 147

The this Reference (7.1): Exercise

Consider the Person class

class Person {
String name;
Person spouse;
Person(String name) {
this.name = name;

}
}

How do you implement a mutator method marry which marries
the current Person object to an input Person object?

43 of 147

The this Reference (7.2): Exercise

void marry(Person other) {
if(this.spouse != null || other.spouse != null) {
System.out.println("Error: both must be single.");

}
else { this.spouse = other; other.spouse = this; }

}

When we call jim.marry(elsa): this is substituted by the
call target jim, and other is substituted by the argument
elsa.
void marry(Person other) {
. . .
jim.spouse = elsa;
elsa.spouse = jim;

}
}

44 of 147

Java Data Types (1)
A (data) type denotes a set of related runtime values.
1. Primitive Types○ Integer Type

● int [set of 32-bit integers]● long [set of 64-bit integers]○ Floating-Point Number Type
● double [set of 64-bit FP numbers]○ Character Type
● char [set of single characters]○ Boolean Type
● boolean [set of true and false]

2. Reference Type : Complex Type with Attributes and Methods○ String [set of references to character sequences]○ Person [set of references to Person objects]○ Point [set of references to Point objects]○ Scanner [set of references to Scanner objects]
45 of 147

Java Data Types (2)
● A variable that is declared with a type but uninitialized is

implicitly assigned with its default value .○ Primitive Type● int i; [0 is implicitly assigned to i]
● double d; [0.0 is implicitly assigned to d]
● boolean b; [false is implicitly assigned to b]○ Reference Type● String s; [null is implicitly assigned to s]
● Person jim; [null is implicitly assigned to jim]
● Point p1; [null is implicitly assigned to p1]
● Scanner input; [null is implicitly assigned to input]● You can use a primitive variable that is uninitialized .

Make sure the default value is what you want!● Calling a method on a uninitialized reference variable crashes
your program. [NullPointerException]
Always initialize reference variables!

46 of 147

Java Data Types (3.1)
● An attribute may be of type ArrayList , storing references to

other objects.
class Person { Person spouse; }

● Methods may take as parameters references to other objects.
class Person {
void marry(Person other) { . . . } }

● Return values from methods may be references to other
objects.
class Point {
void moveUpBy(int i) { y = y + i; }
Point movedUpBy(int i) {
Point np = new Point(x, y);
np.moveUp(i);
return np;

}
}

47 of 147

Java Data Types (3.2.1)
An attribute may be of type ArrayList<Point> , storing
references to Point objects.

1 class PointCollector {
2 ArrayList<Point> points;
3 PointCollector() { points = new ArrayList<>(); }
4 void addPoint(Point p) {
5 points.add (p); }
6 void addPoint(double x, double y) {
7 points.add (new Point(x, y)); }
8 ArrayList<Point> getPointsInQuadrantI() {

9 ArrayList<Point> q1Points = new ArrayList<>();
10 for(int i = 0; i < points.size(); i ++) {
11 Point p = points.get(i);
12 if(p.x > 0 && p.y > 0) { q1Points.add (p); } }

13 return q1Points ;
14 } }

L8 & L9 may be replaced by:
for(Point p : points) { q1Points.add(p); }

48 of 147

Java Data Types (3.2.2)
1 class PointCollectorTester {
2 public static void main(String[] args) {
3 PointCollector pc = new PointCollector();
4 System.out.println(pc.points.size()); /* 0 */
5 pc.addPoint(3, 4);
6 System.out.println(pc.points.size()); /* 1 */
7 pc.addPoint(-3, 4);
8 System.out.println(pc.points.size()); /* 2 */
9 pc.addPoint(-3, -4);

10 System.out.println(pc.points.size()); /* 3 */
11 pc.addPoint(3, -4);
12 System.out.println(pc.points.size()); /* 4 */
13 ArrayList<Point> ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /* 1 */
15 System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
16 /* (3, 4) */
17 }
18 }

49 of 147

Java Data Types (3.3.1)
An attribute may be of type Point[] , storing references to
Point objects.

1 class PointCollector {
2 Point[] points; int nop; /* number of points */
3 PointCollector() { points = new Point[100]; }
4 void addPoint(double x, double y) {
5 points[nop] = new Point(x, y); nop++; }
6 Point[] getPointsInQuadrantI() {
7 Point[] ps = new Point[nop];
8 int count = 0; /* number of points in Quadrant I */
9 for(int i = 0; i < nop; i ++) {

10 Point p = points[i];
11 if(p.x > 0 && p.y > 0) { ps[count] = p; count ++; } }

12 Point[] q1Points = new Point[count];

13 /* ps contains null if count < nop */
14 for(int i = 0; i < count; i ++) { q1Points[i] = ps[i] }

15 return q1Points ;
16 } }

Required Reading: Point and PointCollector
50 of 147

Java Data Types (3.3.2)
1 class PointCollectorTester {
2 public static void main(String[] args) {
3 PointCollector pc = new PointCollector();
4 System.out.println(pc.nop); /* 0 */
5 pc.addPoint(3, 4);
6 System.out.println(pc.nop); /* 1 */
7 pc.addPoint(-3, 4);
8 System.out.println(pc.nop); /* 2 */
9 pc.addPoint(-3, -4);

10 System.out.println(pc.nop); /* 3 */
11 pc.addPoint(3, -4);
12 System.out.println(pc.nop); /* 4 */
13 Point[] ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /* 1 */
15 System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
16 /* (3, 4) */
17 }
18 }

51 of 147

OOP: Object Alias (1)
1 int i = 3;
2 int j = i; System.out.println(i == j); /* true */
3 int k = 3; System.out.println(k == i && k == j); /* true */

○ Line 2 copies the number stored in i to j.○ After Line 4, i, j, k refer to three separate integer placeholder,
which happen to store the same value 3.

1 Point p1 = new Point(2, 3);
2 Point p2 = p1; System.out.println(p1 == p2); /* true */
3 Point p3 = new Point(2, 3);
4 Systme.out.println(p3 == p1 || p3 == p2); /* false */
5 Systme.out.println(p3.x == p1.x && p3.y == p1.y); /* true */
6 Systme.out.println(p3.x == p2.x && p3.y == p2.y); /* true */

○ Line 2 copies the address stored in p1 to p2.○ Both p1 and p2 refer to the same object in memory!○ p3, whose contents are same as p1 and p2, refer to a different
object in memory.

52 of 147

OO Program Programming: Object Alias (2.1)

Problem: Consider assignments to primitive variables:

1 int i1 = 1;
2 int i2 = 2;
3 int i3 = 3;
4 int[] numbers1 = {i1, i2, i3};
5 int[] numbers2 = new int[numbers1.length];
6 for(int i = 0; i < numbers1.length; i ++) {
7 numbers2[i] = numbers1[i];
8 }
9 numbers1[0] = 4;

10 System.out.println(numbers1[0]);
11 System.out.println(numbers2[0]);

53 of 147

OO Program Programming: Object Alias (2.2)
Problem: Consider assignments to reference variables:
1 Person alan = new Person("Alan");
2 Person mark = new Person("Mark");
3 Person tom = new Person("Tom");
4 Person jim = new Person("Jim");
5 Person[] persons1 = {alan, mark, tom};
6 Person[] persons2 = new Person[persons1.length];
7 for(int i = 0; i < persons1.length; i ++) {
8 persons2[i] = persons1[i]; }
9 persons1[0].setAge(70);

10 System.out.println(jim.age);
11 System.out.println(alan.age);
12 System.out.println(persons2[0].age);
13 persons1[0] = jim;
14 persons1[0].setAge(75);
15 System.out.println(jim.age);
16 System.out.println(alan.age);
17 System.out.println(persons2[0].age);

54 of 147

Call by Value vs. Call by Reference (1)

● Consider the general form of a call to some mutator method
m, with context object co and argument value arg:

co.m (arg)

○ Argument variable arg is not passed directly for the method call.○ Instead, argument variable arg is passed indirectly : a copy of
the value stored in arg is made and passed for the method call.

● What can be the type of variable arg? [Primitive or Reference]○ arg is primitive type (e.g., int, char, boolean, etc.):
Call by Value : Copy of arg’s stored value

(e.g., 2, ‘j’, true) is made and passed.○ arg is reference type (e.g., String, Point, Person, etc.):
Call by Reference : Copy of arg’s stored reference/address

(e.g., Point@5cb0d902) is made and passed.

55 of 147

Call by Value vs. Call by Reference (2.1)
For illustration, let’s assume the following variant of the Point
class:

class Point {
int x;
int y;
Point(int x, int y) {
this.x = x;
this.y = y;

}
void moveVertically(int y){
this.y += y;

}
void moveHorizontally(int x){
this.x += x;

}
}

56 of 147

Call by Value vs. Call by Reference (2.2.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByVal() {
3 Util u = new Util();
4 int i = 10;
5 assertTrue(i == 10);
6 u.reassignInt(i);
7 assertTrue(i == 10);
8 }

● Before the mutator call at L6, primitive variable i stores 10.

● When executing the mutator call at L6, due to call by value , a
copy of variable i is made.
⇒ The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

● ∴ After the mutator call at L6, variable i still stores 10.
57 of 147

Call by Value vs. Call by Reference (2.2.2)

Before reassignInt During reassignInt After reassignInt

10inti

10inti

10intj

10inti

11intj

58 of 147

Call by Value vs. Call by Reference (2.3.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_1() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.reassignRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==3 && p.y==4);
9 }

● Before the mutator call at L6, reference variable p stores the
address of some Point object (whose x is 3 and y is 4).● When executing the mutator call at L6, due to
call by reference , a copy of address stored in p is made.
⇒ The assignment p = np is only effective on this copy, not the
original variable p itself.● ∴ After the mutator call at L6, variable p still stores the original

address (i.e., same as refOfPBefore).
59 of 147

Call by Value vs. Call by Reference (2.3.2)

Before reassignRef During reassignRef After reassignRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

3

4

x

y

Point

p

q
6

8

x

y

Point

60 of 147

Call by Value vs. Call by Reference (2.4.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_2() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.changeViaRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==6 && p.y==8);
9 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by reference , a

copy of address stored in p is made. [Alias: p and q store same address.]

⇒ Calls to q.moveHorizontally and q.moveVertically are
effective on both p and q.● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,

same as refOfPBefore), but its x and y have been modified via q.
61 of 147

Call by Value vs. Call by Reference (2.4.2)

Before changeViaRef During changeViaRef After changeViaRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

6

8

x

y

Point

p

q

62 of 147

Aggregation vs. Composition: Terminology
Container object: an object that contains others.
Containee object: an object that is contained within another.● e.g., Each course has a faculty member as its instructor.○ Container : Course Containee: Faculty.● e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.○ Container : Student, Faculty Containees: Course.

e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
⇒ Containees may be shared by different classes of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
⇒ Containees may exist independently without their containers.● e.g., In a file system, each directory contains a list of files.○ Container : Directory Containees: File.
e.g., Each file has exactly one parent directory.
⇒ A containee may be owned by only one container .
e.g., Deleting a directory also deletes the files it contains.
⇒ Containees may co-exist with their containers.

63 of 147

Aggregation: Independent Containees
Shared by Containers (1.1)

Course Faculty
prof
1

class Course {
String title;
Faculty prof;
Course(String title) {
this.title = title;

}
void setProf(Faculty prof) {
this.prof = prof;

}
Faculty getProf() {
return this.prof;

}
}

class Faculty {
String name;
Faculty(String name) {
this.name = name;

}
void setName(String name) {
this.name = name;

}
String getName() {
return this.name;

}
}

64 of 147

Aggregation: Independent Containees
Shared by Containers (1.2)
@Test
public void testAggregation1() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf(prof);
eecs3311.setProf(prof);
assertTrue(eecs2030.getProf() == eecs3311.getProf());
/* aliasing */
prof.setName("Jeff");
assertTrue(eecs2030.getProf() == eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);
assertTrue(eecs2030.getProf() != eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));
assertTrue(eecs3311.getProf().getName().equals("Jonathan"));

}

65 of 147

Aggregation: Independent Containees
Shared by Containers (2.1)

Student
cs
*

Course Faculty
te

*

class Student {
String id; ArrayList<Course> cs; /* courses */
Student(String id) { this.id = id; cs = new ArrayList<>(); }
void addCourse(Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }

}

class Course { String title; }

class Faculty {
String name; ArrayList<Course> te; /* teaching */
Faculty(String name) { this.name = name; te = new ArrayList<>(); }
void addTeaching(Course c) { te.add(c); }
ArrayList<Course> getTE() { return te; }

}

66 of 147

Aggregation: Independent Containees
Shared by Containers (2.2)
@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030);
p.addTeaching(eecs3311);
s.addCourse(eecs2030);
s.addCourse(eecs3311);

assertTrue(eecs2030.getProf() == s.getCS().get(0).getProf());
assertTrue(s.getCS().get(0).getProf() == s.getCS().get(1).getProf());
assertTrue(eecs3311 == s.getCS().get(1));
assertTrue(s.getCS().get(1) == p.getTE().get(1));

}

67 of 147

OOP: The Dot Notation (3.1)
In real life, the relationships among classes are sophisticated.

Student
cs
*

Course Faculty
te

*

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class Student:○ Writing cs denotes the list of registered courses.○ Writing cs[i] (where i is a valid index) navigates to the class
Course, which changes the context to class Course.

68 of 147

OOP: The Dot Notation (3.2)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Student {
. . . /* attributes */
/* Get the student’s id */
String getID() { return this.id; }
/* Get the title of the ith course */
String getCourseTitle(int i) {
return this.cs.get(i).title;

}
/* Get the instructor’s name of the ith course */
String getInstructorName(int i) {
return this.cs.get(i).prof.name;

}
}

69 of 147

OOP: The Dot Notation (3.3)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Course {
. . . /* attributes */
/* Get the course’s title */
String getTitle() { return this.title; }
/* Get the instructor’s name */
String getInstructorName() {
return this.prof.name;

}
/* Get title of ith teaching course of the instructor */
String getCourseTitleOfInstructor(int i) {
return this.prof.te.get(i).title;

}
}

70 of 147

OOP: The Dot Notation (3.4)

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Faculty {
. . . /* attributes */
/* Get the instructor’s name */
String getName() {
return this.name;

}
/* Get the title of ith teaching course */
String getCourseTitle(int i) {
return this.te.get(i).title;

}
}

71 of 147

Composition: Dependent Containees
Owned by Containers (1.1)

Directory File
files
*

parent
1

Assumption: Files are not shared among directories.

class File {
String name;
File(String name) {
this.name = name;

}
}

class Directory {
String name;
File[] files;
int nof; /* num of files */
Directory(String name) {
this.name = name;
files = new File[100];

}
void addFile(String fileName) {
files[nof] = new File(fileName);
nof ++;

}
}

72 of 147

Composition: Dependent Containees
Owned by Containers (1.2.1)

1 @Test
2 public void testComposition() {
3 Directory d1 = new Directory("D");
4 d1.addFile("f1.txt");
5 d1.addFile("f2.txt");
6 d1.addFile("f3.txt");
7 assertTrue(
8 d1.files[0].name.equals("f1.txt"));
9 }

● L4: a 1st File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.● L5: a 2nd File object is created and owned exclusively by
d1.
No other directories are sharing this File object with d1.● L6: a 3rd File object is created and owned exclusively by
d1.
No other directories are sharing this File object with d1.

73 of 147

Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name
“D”

“f1.txt” “f2.txt” “f3.txt”

74 of 147

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: How do you implement a copy instructor for the
Directory class?

class Directory {
Directory(Directory other) {
/* ?? */

}
}

Hints:
● The implementation should be consistent with the effect of

copying and pasting a directory.
● Separate copies of files are created.

75 of 147

Composition: Dependent Containees
Owned by Containers (1.4.1)

Version 1: Shallow Copy by copying all attributes using =.
class Directory {
Directory(Directory other) {
/* value copying for primitive type */
nof = other.nof;
/* address copying for reference type */
name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [NO]
@Test
void testShallowCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files == d2.files); /* violation of composition */
d2.files[0].changeName("f11.txt");
assertFalse(d1.files[0].name.equals("f1.txt")); }

76 of 147

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f11.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name

d2.filesd2

d2.files[0] d2.files[1] d2.files[2]

d2.name

77 of 147

Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < nof; i ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf); } } }

@Test
void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files != d2.files); /* composition preserved */
d2.files[0].changeName("f11.txt");
assertTrue(d1.files[0].name.equals("f1.txt")); }

78 of 147

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f1.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name
d2.files

d2

d2.files[0] d2.files[1] d2.files[2]

0 1 2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

“D”

File

name

File

name

File

name

“f11.txt” “f2.txt” “f3.txt”

nof

d2.name

79 of 147

Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;
int nof;
File[] getFiles() {
/* Your Task */

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

80 of 147

Aggregation vs. Composition (1)

Terminology:○ Container object: an object that contains others.○ Containee object: an object that is contained within another.

Aggregation :
○ Containees (e.g., Course) may be shared among containers

(e.g., Student, Faculty).○ Containees exist independently without their containers.○ When a container is destroyed, its containees still exist.

Composition :
○ Containers (e.g, Directory, Department) own exclusive

access to their containees (e.g., File, Faculty).○ Containees cannot exist without their containers.○ Destroying a container destroys its containeees cascadingly .

81 of 147

Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:○ Each workstation owns CPU, monitor, keyword. [compositions]○ All workstations share the same network. [aggregations]

82 of 147

OOP: Equality (1)

Point p1 = new Point(2, 3);
Point p2 = new Point(2, 3);
boolean sameLoc = (p1 == p2);
System.out.println("p1 and p2 same location?" + sameLoc);

p1 and p2 same location? false

83 of 147

OOP: Equality (2)
● Recall that○ A primitive variable stores a primitive value

e.g., double d1 = 7.5; double d2 = 7.5;○ A reference variable stores the address to some object (rather
than storing the object itself)
e.g., Point p1 = new Point(2, 3) assigns to p1 the
address of the new Point object
e.g., Point p2 = new Point(2, 3) assigns to p2 the
address of another new Point object● The binary operator == may be applied to compare:

○ Primitive variables: their contents are compared
e.g., d1 == d2 evaluates to true○ Reference variables: the addresses they store are compared
(rather than comparing contents of the objects they refer to)
e.g., p1 == p2 evaluates to false because p1 and p2 are
addresses of different objects, even if their contents are identical .

84 of 147

OOP: Equality (3)
● Implicitly:○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.● There are two useful accessor methods that every class
inherits from the Object class:○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.● Very often when you define new classes, you want to

redefine / override the inherited definitions of equals and
toString.

85 of 147

OOP: Contract of equals
Given that reference variables x, y, z are not null:● ¬ x .equals(null)
● Reflexive :

x .equals(x)
● Symmetric

x .equals(y) ⇐⇒ y .equals(x)
● Transitive

x .equals(y) ∧ y .equals(z)⇒ x .equals(z)
API of equals Inappropriate Def. of equals using hashCode

86 of 147

OOP: Equality (4.1)
● How do we compare contents rather than addresses?● Define the accessor method equals, e.g.,

class Point {
double x; double y;
boolean equals (Object obj) {
if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
Point other = (Point) obj;
return this.x == other.x && this.y == other.y; } }

class PointTester {
String s = "(2, 3)";
Point p1 = new Point(2, 3); Point p2 = new Point(2, 3);
System.out.println(p1. equals (p1)); /* true */
System.out.println(p1.equals(null)); /* false */
System.out.println(p1.equals(s)); /* false */
System.out.println(p1 == p2); /* false */
System.out.println(p1. equals (p2)); /* true */ }

87 of 147

OOP: Equality (4.2)
● When making a method call p.equals(o):○ Variable p is of type Point○ Variable o can be any type● We define p and o as equal if:○ Either p and o refer to the same object;○ Or:

● o is not null.● p and o are of the same type.● The x and y coordinates are the same.● Q: In the equals method of Point, why is there no such a line:
class Point {
boolean equals (Object obj) {
if(this == null) { return false; }

A: If this is null, a NullPointerException would have
occurred and prevent the body of equals from being executed.

88 of 147

OOP: Equality (4.3)
1 class Point {
2 boolean equals (Object obj) {
3 . . .
4 Point other = (Point) obj;
5 return this.x == other.x && this.y == other.y; } }

○ Object obj at L2 declares a parameter obj of type Object.
○ Point p at L4 declares a variable p of type Point.

We call such types declared at compile time as static type.○ The list of applicable methods that we may call on a variable
depends on its static type.

e.g., We may only call the small list of methods defined in Object
class on obj, which does not include x and y (specific to Point).○ If we are SURE that an object’s “actual” type is different from its

static type, then we can cast it.
e.g., Given that this.getClass() == obj.getClass(), we are
sure that obj is also a Point, so we can cast it to Point.○ Such cast allows more attributes/methods to be called upon

(Point) obj at L5.89 of 147

OOP: Equality (5.1)
Exercise: Persons are equal if names and measures are equal.
1 class Person {
2 String firstName; String lastName; double weight; double height;
3 boolean equals (Object obj) {
4 if(this == obj) { return true }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName) } }

Q: At L5, will we get NullPointerException if obj is Null?
A: No ∵ Short-Circuit Effect of ||

obj is null, then obj == null evaluates to true⇒ no need to evaluate the RHS
The left operand obj == null acts as a guard constraint for
the right operand this.getClass() != obj.getClass().

90 of 147

OOP: Equality (5.2)
Exercise: Persons are equal if names and measures are equal.

1 class Person {
2 String firstName; String lastName; double weight; double height;
3 boolean equals (Object obj) {
4 if(this == obj) { return true }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName) } }

Q: At L5, if swapping the order of two operands of disjunction:
this.getClass() != obj.getClass() || obj == null

Will we get NullPointerException if obj is Null?
A: Yes ∵ Evaluation of operands is from left to right.

91 of 147

OOP: Equality (5.3)
Exercise: Persons are equal if names and measures are equal.

1 class Person {
2 String firstName; String lastName; double weight; double height;
3 boolean equals (Object obj) {
4 if(this == obj) { return true }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName) } }

L10 & L11 call equals method defined in the String class.
When defining equals method for your own class, reuse
equals methods defined in other classes wherever possible.

92 of 147

OOP: Equality (6)
Two notions of equality for variables of reference types:

● Reference Equality : use == to compare addresses

● Object Equality : define equals method to compare contents

1 Point p1 = new Point(3, 4);
2 Point p2 = new Point(3, 4);
3 Point p3 = new Point(4, 5);
4 System.out.println(p1 == p1); /* true */
5 System.out.println(p1.equals(p1)); /* true */
6 System.out.println(p1 == p2); /* false */
7 System.out.println(p1.equals(p2)); /* true */
8 System.out.println(p2 == p3); /* false */
9 System.out.println(p2.equals(p3)); /* false */

● Being reference-equal implies being object-equal
● Being object-equal does not imply being reference-equal
93 of 147

Hashing: What is a Map?
● A map (a.k.a. table or dictionary) stores a collection of entries.

key

value
Map

entry

ENTRY
(SEARCH) KEY VALUE

1 D
25 C
3 F
14 Z
6 A
39 C
7 Q

● Each entry is a pair: a value and its (search) key .
● Each search key :
○ Uniquely identifies an object in the map○ Should be used to efficiently retrieve the associated value

● Search keys must be unique (i.e., do not contain duplicates).
94 of 147

Hashing: Arrays are Maps
● Each array entry is a pair: an object and its numerical index.

e.g., say String[] a = {"A", "B", "C"} , how many entries?
3 entries: (0, "A") , (1, "B") , (2, "C")● Search keys are the set of numerical index values.● The set of index values are unique [e.g., 0 .. (a.length − 1)]● Given a valid index value i , we can○ Uniquely determines where the object is [(i + 1)th item]○ Efficiently retrieves that object [a[i] ≈ fast memory access]● Maps in general may have non-numerical key values:○ Student ID [student record]○ Social Security Number [resident record]○ Passport Number [citizen record]○ Residential Address [household record]○ Media Access Control (MAC) Address [PC/Laptop record]○ Web URL [web page]

. . .
95 of 147

Hashing: Naive Implementation of Map

● Problem: Support the construction of this simple map:
ENTRY

(SEARCH) KEY VALUE

1 D
25 C
3 F
14 Z
6 A
39 C
7 Q

Let’s just assume that the maximum map capacity is 100.
● Naive Solution:

Let’s understand the expected runtime structures before seeing
the Java code!

96 of 147

Hashing: Naive Implementation of Map (0)

After executing ArrayedMap m = new ArrayedMap() :

● Attribute m.entries initialized as an array of 100 null slots.
● Attribute m.noe is 0, meaning:○ Current number of entries stored in the map is 0.○ Index for storing the next new entry is 0.

ArrayedMap

m
entries null

0

null

1
m.entries

null

2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

0noe

noe

97 of 147

Hashing: Naive Implementation of Map (1)
After executing m.put(new Entry(1, "D")) :

● Attribute m.entries has 99 null slots.
● Attribute m.noe is 1, meaning:○ Current number of entries stored in the map is 1.○ Index for storing the next new entry is 1.

ArrayedMap

m
entries

0

null

1
m.entries

1

Entry

key

“D”value

null

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0]

null

99

1noe

noe

98 of 147

Hashing: Naive Implementation of Map (2)
After executing m.put(new Entry(25, "C")) :

● Attribute m.entries has 98 null slots.
● Attribute m.noe is 2, meaning:○ Current number of entries stored in the map is 2.○ Index for storing the next new entry is 2.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

1

Entry

key

“D”value

null

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1]

null

99

2noe

noe

99 of 147

Hashing: Naive Implementation of Map (3)
After executing m.put(new Entry(3, "F")) :

● Attribute m.entries has 97 null slots.
● Attribute m.noe is 3, meaning:○ Current number of entries stored in the map is 3.○ Index for storing the next new entry is 3.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

1

Entry

key

“D”value

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2]

null

99

3noe

noe

100 of 147

Hashing: Naive Implementation of Map (4)
After executing m.put(new Entry(14, "Z")) :

● Attribute m.entries has 96 null slots.
● Attribute m.noe is 4, meaning:○ Current number of entries stored in the map is 4.○ Index for storing the next new entry is 4.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

2 3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3]

null

99

4noe

noe

101 of 147

Hashing: Naive Implementation of Map (5)
After executing m.put(new Entry(6, "A")) :

● Attribute m.entries has 95 null slots.
● Attribute m.noe is 5, meaning:○ Current number of entries stored in the map is 5.○ Index for storing the next new entry is 5.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

2 3 4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4]

null

99

5noe

noe

102 of 147

Hashing: Naive Implementation of Map (6)
After executing m.put(new Entry(39, "C")) :

● Attribute m.entries has 94 null slots.
● Attribute m.noe is 6, meaning:○ Current number of entries stored in the map is 6.○ Index for storing the next new entry is 6.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

39

Entry

key

“C”value

2 3 4 5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4] m.entries[5]

null

99

6noe

noe

103 of 147

Hashing: Naive Implementation of Map (7)
After executing m.put(new Entry(7, "Q")) :

● Attribute m.entries has 93 null slots.
● Attribute m.noe is 7, meaning:○ Current number of entries stored in the map is 7.○ Index for storing the next new entry is 7.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

39

Entry

key

“C”value

7

Entry

key

“Q”value

2 3 4 5 6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4] m.entries[5] m.entries[6]

null

99

7noe

noe

104 of 147

Hashing: Naive Implementation of Map (8.1)

public class Entry {
private int key;
private String value;

public Entry(int key, String value) {
this.key = key;
this.value = value;

}
/* Getters and Setters for key and value */

}

105 of 147

Hashing: Naive Implementation of Map (8.2)

public class ArrayedMap {
private final int MAX_CAPCAITY = 100;
private Entry[] entries;
private int noe; /* number of entries */
public ArrayedMap() {
entries = new Entry[MAX_CAPCAITY];
noe = 0;

}
public int size() {
return noe;

}
public void put(int key, String value) {
Entry e = new Entry(key, value);
entries[noe] = e;
noe ++;

}

Required Reading: Point and PointCollector
106 of 147

Hashing: Naive Implementation of Map (8.3)
@Test
public void testArrayedMap() {
ArrayedMap m = new ArrayedMap();
assertTrue(m.size() == 0);
m.put(1, "D");
m.put(25, "C");
m.put(3, "F");
m.put(14, "Z");
m.put(6, "A");
m.put(39, "C");
m.put(7, "Q");
assertTrue(m.size() == 7);
/* inquiries of existing key */
assertTrue(m.get(1).equals("D"));
assertTrue(m.get(7).equals("Q"));
/* inquiry of non-existing key */
assertTrue(m.get(31) == null);

}

107 of 147

Hashing: Naive Implementation of Map (8.4)
public class ArrayedMap {
private final int MAX_CAPCAITY = 100;
public String getValue (int key) {
for(int i = 0; i < noe; i ++) {
Entry e = entries[i];
int k = e.getKey();
if(k == key) { return e.getValue(); }

}
return null;

}

Say entries is: {(1, D), (25, C), (3, F), (14, Z), (6, A), (39, C), (7, Q), null, . . .}○ How efficient is m.get(1)? [1 iteration]○ How efficient is m.get(7)? [7 iterations]○ If m is full, worst case of m.get(k)? [100 iterations]○ If m with 106 entries, worst case of m.get(k)? [106 iterations]⇒ get’s worst-case performance is linear on size of m.entries!
A much faster (and correct) solution is possible!

108 of 147

Hashing: Hash Table (1)

0 …

A[hc(k)]

hc(k) … A.length - 1

A

k
hashing

● Given a (numerical or non-numerical) search key k :○ Apply a function hc so that hc(k) returns an integer.
● We call hc(k) the hash code of key k .

● Value of hc(k) denotes a valid index of some array A.○ Rather than searching through array A, go directly to A[hc(k)] to
get the associated value.● Both computations are fast:○ Converting k to hc(k)○ Indexing into A[hc(k)]

109 of 147

Hashing: Hash Table as a Bucket Array (2)
For illustration, assume A.length is 10 and hc(k) = k%11.

hc(k) = k%11 (SEARCH) KEY VALUE

1 1 D
3 25 C
3 3 F
3 14 Z
6 6 A
6 39 C
7 7 Q

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

● Collision: unequal keys have same hash code (e.g., 25, 3, 14)⇒ Unavoidable as number of entries ↑, but a good hash
function should have sizes of the buckets uniformly distributed.

110 of 147

Hashing: Contract of Hash Function

● Principle of defining a hash function hc:

k1.equals(k2)⇒ hc(k1) == hc(k2)

Equal keys always have the same hash code.
● Equivalently, according to contrapositive:

hc(k1) ≠ hc(k2)⇒ ¬k1.equals(k2)

Different hash codes must be generated from unequal keys.

inconsistent hashCode and equals
111 of 147

Hashing: Defining Hash Function in Java (1)
The Object class (common super class of all classes) has the
method for redefining the hash function for your own class:
public class IntegerKey {
private int k;
public IntegerKey(int k) { this.k = k; }
@Override
public int hashCode() { return k % 11; }
@Override
public boolean equals(Object obj) {
if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
IntegerKey other = (IntegerKey) obj;
return this.k == other.k;

} }

Q: Can we define equals as return this.hashCode ==
other.hashCode()? [No ∵ Collision; see contract of equals]

112 of 147

Hashing: Defining Hash Function in Java (2)

@Test
public void testCustomizedHashFunction() {
IntegerKey ik1 = new IntegerKey(1);
/* 1 % 11 == 1 */
assertTrue(ik1.hashCode() == 1);

IntegerKey ik39_1 = new IntegerKey(39);
/* 39 % 11 == 3 */
assertTrue(ik39_1.hashCode() == 6);

IntegerKey ik39_2 = new IntegerKey(39);
assertTrue(ik39_1.equals(ik39_2));
assertTrue(ik39_1.hashCode() == ik39_2.hashCode());

}

113 of 147

Hashing: Using Hash Table in Java

@Test
public void testHashTable() {
Hashtable<IntegerKey, String> table = new Hashtable<>();
IntegerKey k1 = new IntegerKey(39);
IntegerKey k2 = new IntegerKey(39);
assertTrue(k1.equals(k2));
assertTrue(k1.hashCode() == k2.hashCode());
table.put(k1, "D");
assertTrue(table.get(k2).equals("D"));

}

114 of 147

Hashing: Defining Hash Function in Java (3)

● When you are given instructions as to how the hashCode
method of a class should be defined, override it manually.

● Otherwise, use Eclipse to generate the equals and hashCode
methods for you.○ Right click on the class.○ Select Source.○ Select Generate hashCode() and equals().○ Select the relevant attributes that will be used to compute the hash

value.

115 of 147

Hashing: Defining Hash Function in Java (4.1)
Caveat : Always make sure that the hashCode and equals
are redefined/overridden to work together consistently.
e.g., Consider an alternative version of the IntegerKey class:
public class IntegerKey {
private int k;
public IntegerKey(int k) { this.k = k; }
/* hashCode() inherited from Object NOT overridden. */
@Override
public boolean equals(Object obj) {
if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
IntegerKey other = (IntegerKey) obj;
return this.k == other.k;

} }

Problem? [Hint: Contract of hashCode()]
116 of 147

Hashing: Defining Hash Function in Java (4.2)
1 @Test
2 public void testDefaultHashFunction() {
3 IntegerKey ik39_1 = new IntegerKey(39);
4 IntegerKey ik39_2 = new IntegerKey(39);
5 assertTrue(ik39_1.equals(ik39_2));
6 assertTrue(ik39_1.hashCode() != ik39_2.hashCode()); }
7 @Test
8 public void testHashTable() {
9 Hashtable<IntegerKey, String> table = new Hashtable<>();

10 IntegerKey k1 = new IntegerKey(39);
11 IntegerKey k2 = new IntegerKey(39);
12 assertTrue(k1.equals(k2));
13 assertTrue(k1.hashCode() != k2.hashCode());
14 table.put(k1, "D");
15 assertTrue(table.get(k2) == null); }

L3, 4, 11, 12: Default version of hashCode, inherited from
Object, returns a distinct integer for every new object, despite
its contents. [Fix : Override hashCode of your classes!]

117 of 147

Why Ordering Between Objects? (1)

Each employee has their numerical id and salary.
e.g., (alan, 2, 4500.34), (mark , 3, 3450.67), (tom, 1, 3450.67)

● Problem: To facilitate an annual review on their statuses, we
want to arrange them so that ones with smaller id’s come
before ones with larger id’s.s

e.g., �tom,alan,mark�
● Even better, arrange them so that ones with larger salaries

come first; only compare id’s for employees with equal salaries.
e.g., �alan, tom,mark�

● Solution :○ Define ordering of Employee objects.
[Comparable interface, compareTo method]○ Use the library method Arrays.sort.

118 of 147

Why Ordering Between Objects? (2)
class Employee {
int id; double salary;
Employee(int id) { this.id = id; }
void setSalary(double salary) { this.salary = salary; } }

1 @Test
2 public void testUncomparableEmployees() {
3 Employee alan = new Employee(2);
4 Employee mark = new Employee(3);
5 Employee tom = new Employee(1);
6 Employee[] es = {alan, mark, tom};
7 Arrays.sort(es);
8 Employee[] expected = {tom, alan, mark};
9 assertArrayEquals(expected, es); }

L8 triggers a java.lang.ClassCastException:
Employee cannot be cast to java.lang.Comparable∵ Arrays.sort expects an array whose element type defines
a precise ordering of its instances/objects.

119 of 147

Defining Ordering Between Objects (1.1)

class CEmployee1 implements Comparable <CEmployee1> {
. . . /* attributes, constructor, mutator similar to Employee */
@Override
public int compareTo(CEmployee1 e) { return this.id - e.id; }

}

● Given two CEmployee1 objects ce1 and ce2:○ ce1.compareTo(ce2) > 0 [ce1 “is greater than” ce2]
○ ce1.compareTo(ce2) == 0 [ce1 “is equal to” ce2]
○ ce1.compareTo(ce2) < 0 [ce1 “is smaller than” ce2]● Say ces is an array of CEmployee1 (CEmployee1[] ces),
calling Arrays.sort(ces) re-arranges ces, so that:

ces[0]�����������������������������
CEmployee1 object

≤ ces[1]�����������������������������
CEmployee1 object

≤ . . . ≤ ces[ces.length - 1]��
CEmployee1 object

120 of 147

Defining Ordering Between Objects (1.2)
@Test
public void testComparableEmployees_1() {
/*
* CEmployee1 implements the Comparable interface.
* Method compareTo compares id’s only.
*/
CEmployee1 alan = new CEmployee1(2);
CEmployee1 mark = new CEmployee1(3);
CEmployee1 tom = new CEmployee1(1);
alan.setSalary(4500.34);
mark.setSalary(3450.67);
tom.setSalary(3450.67);
CEmployee1[] es = {alan, mark, tom};
/* When comparing employees,
* their salaries are irrelevant.
*/
Arrays.sort(es);
CEmployee1[] expected = {tom, alan, mark};
assertArrayEquals(expected, es);

}

121 of 147

Defining Ordering Between Objects (2.1)
Let’s now make the comparison more sophisticated:● Employees with higher salaries come before those with lower salaries.● When two employees have same salary, whoever with lower id comes first.

1 class CEmployee2 implements Comparable <CEmployee2> {
2 . . . /* attributes, constructor, mutator similar to Employee */
3 @Override
4 public int compareTo(CEmployee2 other) {
5 int salaryDiff = Double.compare(this.salary, other.salary);
6 int idDiff = this.id - other.id;
7 if(salaryDiff != 0) { return - salaryDiff; }
8 else { return idDiff; } } }

● L5: Double.compare(d1, d2) returns
- (d1 < d2), 0 (d1 == d2), or + (d1 > d2).● L7: Why inverting the sign of salaryDiff?○ this.salary > other .salary ⇒ Double.compare(this.salary ,other .salary) > 0○ But we should consider employee with higher salary as “smaller”.∵We want that employee to come before the other one!

122 of 147

Defining Ordering Between Objects (2.2)

Alternatively, we can use extra if statements to express the logic
more clearly.

1 class CEmployee2 implements Comparable <CEmployee2> {
2 . . . /* attributes, constructor, mutator similar to Employee */
3 @Override
4 public int compareTo(CEmployee2 other) {
5 if(this.salary > other.salary) {
6 return -1;
7 }
8 else if (this.salary < other.salary) {
9 return 1;

10 }
11 else { /* equal salaries */
12 return this.id - other.id;
13 }
14 }

123 of 147

Defining Ordering Between Objects (2.3)

1 @Test
2 public void testComparableEmployees_2() {
3 /*
4 * CEmployee2 implements the Comparable interface.
5 * Method compareTo first compares salaries, then
6 * compares id’s for employees with equal salaries.
7 */
8 CEmployee2 alan = new CEmployee2(2);
9 CEmployee2 mark = new CEmployee2(3);

10 CEmployee2 tom = new CEmployee2(1);
11 alan.setSalary(4500.34);
12 mark.setSalary(3450.67);
13 tom.setSalary(3450.67);
14 CEmployee2[] es = {alan, mark, tom};
15 Arrays.sort(es);
16 CEmployee2[] expected = {alan, tom, mark};
17 assertArrayEquals(expected, es);
18 }

124 of 147

Defining Ordering Between Objects (3)
When you have your class C implement the interface
Comparable<C>, you should design the compareTo method,
such that given objects c1, c2, c3 of type C:
● Asymmetric :

¬(c1.compareTo(c2) < 0 ∧ c2.compareTo(c1) < 0)¬(c1.compareTo(c2) > 0 ∧ c2.compareTo(c1) > 0)
∴We don’t have c1 < c2 and c2 < c1 at the same time!● Transitive :
c1.compareTo(c2) < 0 ∧ c2.compareTo(c3) < 0 ⇒ c1.compareTo(c3) < 0
c1.compareTo(c2) > 0 ∧ c2.compareTo(c3) > 0 ⇒ c1.compareTo(c3) > 0

∴We have c1 < c2 ∧ c2 < c3⇒ c1 < c3
Q. How would you define the compareTo method for the
Player class of a rock-paper-scissor game? [Hint: Transitivity]

125 of 147

Static Variables (1)

class Account {
int id;
String owner;
Account(int id, String owner) {
this.id = id;
this.owner = owner;

}
}

class AccountTester {
Account acc1 = new Account(1, "Jim");
Account acc2 = new Account(2, "Jeremy");
System.out.println(acc1.id != acc2.id);

}

But, managing the unique id’s manually is error-prone !
126 of 147

Static Variables (2)
class Account {

static int globalCounter = 1;
int id; String owner;
Account(String owner) {
this.id = globalCounter ; globalCounter ++;
this.owner = owner; } }

class AccountTester {
Account acc1 = new Account("Jim");
Account acc2 = new Account("Jeremy");
System.out.println(acc1.id != acc2.id); }

● Each instance of a class (e.g., acc1, acc2) has a local copy of
each attribute or instance variable (e.g., id).○ Changing acc1.id does not affect acc2.id.● A static variable (e.g., globalCounter) belongs to the class.○ All instances of the class share a single copy of the static variable.○ Change to globalCounter via c1 is also visible to c2.

127 of 147

Static Variables (3)
class Account {

static int globalCounter = 1;
int id; String owner;
Account(String owner) {
this.id = globalCounter ;

globalCounter ++;
this.owner = owner;

} }

● Static variable globalCounter is not instance-specific like
instance variable (i.e., attribute) id is.● To access a static variable:○ No context object is needed.○ Use of the class name suffices, e.g., Account.globalCounter.● Each time Account’s constructor is called to create a new
instance, the increment effect is visible to all existing objects
of Account.

128 of 147

Static Variables (4.1): Common Error
class Client {
Account[] accounts;
static int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;

} }

class ClientTester {
Client bill = new Client("Bill");
Client steve = new Client("Steve");
Account acc1 = new Account();
Account acc2 = new Account();
bill.addAccount(acc1);
/* correctly added to bill.accounts[0] */

steve.addAccount(acc2);
/* mistakenly added to steve.accounts[1]! */

}
129 of 147

Static Variables (4.2): Common Error
● Attribute numberOfAccounts should not be declared as
static as its value should be specific to the client object.● If it were declared as static, then every time the
addAccount method is called, although on different objects,
the increment effect of numberOfAccounts will be visible to
all Client objects.● Here is the correct version:
class Client {
Account[] accounts;
int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;

}
}

130 of 147

Static Variables (5.1): Common Error

1 public class Bank {
2 public string branchName;
3 public static int nextAccountNumber = 1;
4 public static void useAccountNumber() {
5 System.out.println (branchName + . . .);
6 nextAccountNumber ++;
7 }
8 }

● Non-static method cannot be referenced from a static context
● Line 4 declares that we can call the method
userAccountNumber without instantiating an object of the
class Bank.

● However, in Lined 5, the static method references a non-static
attribute, for which we must instantiate a Bank object.

131 of 147

Static Variables (5.2): Common Error
1 public class Bank {
2 public string branchName;
3 public static int nextAccountNumber = 1;
4 public static void useAccountNumber() {
5 System.out.println (branchName + . . .);
6 nextAccountNumber ++;
7 }
8 }

● To call useAccountNumber(), no instances of Bank are
required:
Bank .useAccountNumber();

● Contradictorily , to access branchName, a context object is
required:
Bank b1 = new Bank(); b1.setBranch("Songdo IBK");
System.out.println(b1 .branchName);

132 of 147

Static Variables (5.3): Common Error

There are two possible ways to fix:
1. Remove all uses of non-static variables (i.e., branchName) in

the static method (i.e., useAccountNumber).
2. Declare branchName as a static variable.○ This does not make sense.∵ branchName should be a value specific to each Bank instance.

133 of 147

OOP: Helper Methods (1)
● After you complete and test your program, feeling confident that

it is correct , you may find that there are lots of repetitions.
● When similar fragments of code appear in your program, we

say that your code “smells”!
● We may eliminate repetitions of your code by:
○ Factoring out recurring code fragments into a new method.
○ This new method is called a helper method :
● You can replace every occurrence of the recurring code fragment by a

call to this helper method, with appropriate argument values.
● That is, we reuse the body implementation, rather than repeating it

over and over again, of this helper method via calls to it.

● This process is called refactoring of your code:
Modify the code structure without compromising correctness.

134 of 147

OOP: Helper (Accessor) Methods (2.1)

class PersonCollector {
Person[] ps;
final int MAX = 100; /* max # of persons to be stored */
int nop; /* number of persons */
PersonCollector() {
ps = new Person[MAX];

}
void addPerson(Person p) {
ps[nop] = p;
nop++;

}
/* Tasks:

* 1. An accessor: boolean personExists(String n)

* 2. A mutator: void changeWeightOf(String n, double w)

* 3. A mutator: void changeHeightOf(String n, double h)

*/
}

135 of 147

OOP: Helper (Accessor) Methods (2.2.1)
class PersonCollector {
/* ps, MAX, nop, PersonCollector(), addPerson */
boolean personExists(String n) {
boolean found = false;
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { found = true; } }

return found;
}
void changeWeightOf(String n, double w) {
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { ps[i].setWeight(w); } }

}
void changeHeightOf(String n, double h) {
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { ps[i].setHeight(h); } }

}
}

136 of 147

OOP: Helper (Accessor) Methods (2.2.2)
class PersonCollector { /* code smells: repetitions! */
/* ps, MAX, nop, PersonCollector(), addPerson */
boolean personExists(String n) {
boolean found = false;
for(int i = 0; i < nop; i ++) {

if(ps[i].name.equals(n)) { found = true; } }
return found;

}
void changeWeightOf(String n , double w) {

for(int i = 0; i < nop; i ++) {

if(ps[i].name.equals(n)) { ps[i] .setWeight(w); } }
}
void changeHeightOf(String n , double h) {

for(int i = 0; i < nop; i ++) {

if(ps[i].name.equals(n)) { ps[i] .setHeight(h); } }
}

}137 of 147

OOP: Helper (Accessor) Methods (2.3)
class PersonCollector { /* Eliminate code smell. */
/* ps, MAX, nop, PersonCollector(), addPerson */
int indexOf (String n) { /* Helper Methods */
int i = -1;
for(int j = 0; j < nop; j ++) {
if(ps[j].name.equals(n)) { i = j; }

}
return i; /* -1 if not found; >= 0 if found. */

}
boolean personExists(String n) { return indexOf (n) >= 0; }
void changeWeightOf(String n, double w) {
int i = indexOf (n); if(i >= 0) { ps[i].setWeight(w); }

}
void changeHeightOf(String n, double h) {
int i = indexOf (n); if(i >= 0) { ps[i].setHeight(h); }

}
}

138 of 147

OOP: Helper (Accessor) Methods (3.1)

Problems:
● A Point class with x and y coordinate values.
● Accessor double getDistanceFromOrigin().
p.getDistanceFromOrigin() returns the distance
between p and (0, 0).

● Accessor double getDistancesTo(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, and between p and p2.

● Accessor double getTriDistances(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, between p and p2, and between p1 and p2.

139 of 147

OOP: Helper (Accessor) Methods (3.2)
class Point {
double x; double y;
double getDistanceFromOrigin() {
return Math.sqrt(Math.pow(x - 0, 2) + Math.pow(y - 0, 2)); }

double getDistancesTo(Point p1, Point p2) {
return
Math.sqrt(Math.pow(x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(x - p2.x, 2), Math.pow(y - p2.y, 2)); }

double getTriDistances(Point p1, Point p2) {
return
Math.sqrt(Math.pow(x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(x - p2.x, 2) + Math.pow(y - p2.y, 2))
+
Math.sqrt(Math.pow(p1.x - p2.x, 2)

+
Math.pow(p1.y - p2.y, 2));

} }
140 of 147

OOP: Helper (Accessor) Methods (3.3)

● The code pattern
Math.sqrt(Math.pow(. . . - . . ., 2) + Math.pow(. . . - . . ., 2))

is written down explicitly every time we need to use it.
● Create a helper method out of it, with the right parameter and

return types:

double getDistanceFrom(double otherX, double otherY) {
return
Math.sqrt(Math.pow(ohterX - this.x, 2)
+
Math.pow(otherY - this.y, 2));

}

141 of 147

OOP: Helper (Accessor) Methods (3.4)
class Point {
double x; double y;
double getDistanceFrom(double otherX, double otherY) {
return Math.sqrt(Math.pow(ohterX - this.x, 2) +

Math.pow(otherY - this.y, 2));
}
double getDistanceFromOrigin() {
return this.getDistanceFrom(0, 0);

}
double getDistancesTo(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y);
}
double getTriDistances(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y) +
p1.getDistanceFrom(p2.x, p2.y)

} }

142 of 147

OOP: Helper (Mutator) Methods (4.1)

class Student {
String name;
double balance;
Student(String n, double b) {
name = n;
balance = b;

}

/* Tasks:

* 1. A mutator void receiveScholarship(double val)

* 2. A mutator void payLibraryOverdue(double val)

* 3. A mutator void payCafeCoupons(double val)

* 4. A mutator void transfer(Student other, double val)

*/
}

143 of 147

OOP: Helper (Mutator) Methods (4.2.1)

class Student {
/* name, balance, Student(String n, double b) */
void receiveScholarship(double val) {
balance = balance + val;

}
void payLibraryOverdue(double val) {
balance = balance - val;

}
void payCafeCoupons(double val) {
balance = balance - val;

}
void transfer(Student other, double val) {
balance = balance - val;
other.balance = other.balance + val;

}
}

144 of 147

OOP: Helper (Mutator) Methods (4.2.2)

class Student { /* code smells: repetitions! */
/* name, balance, Student(String n, double b) */
void receiveScholarship(double val) {

balance = balance + val;
}
void payLibraryOverdue(double val) {

balance = balance − val;
}
void payCafeCoupons(double val) {

balance = balance − val;
}
void transfer(Student other, double val) {

balance = balance − val;
balance = other.balance + val;

}
}

145 of 147

OOP: Helper (Mutator) Methods (4.3)

class Student { /* Eliminate code smell. */
/* name, balance, Student(String n, double b) */
void deposit (double val) { /* Helper Method */
balance = balance + val;

}
void withdraw (double val) { /* Helper Method */
balance = balance - val;

}
void receiveScholarship(double val) { this. deposit (val); }

void payLibraryOverdue(double val) { this. withdraw (val); }
void payCafeCoupons(double val) { this. withdraw (val) }
void transfer(Student other, double val) {
this. withdraw (val);
other. deposit (val);

}
}

146 of 147

Index (1)
Separation of Concerns: App vs. Model
Object Orientation:
Observe, Model, and Execute
Object-Oriented Programming (OOP)
OO Thinking: Templates vs. Instances (1.1)
OO Thinking: Templates vs. Instances (1.2)
OO Thinking: Templates vs. Instances (2.1)
OO Thinking: Templates vs. Instances (2.2)
OO Thinking: Templates vs. Instances (3)
OOP: Classes ≈ Templates
OOP:
Define Constructors for Creating Objects (1.1)
OOP:
Define Constructors for Creating Objects (1.2)
The this Reference (1)
147 of 147

Index (2)
The this Reference (2)
The this Reference (3)
The this Reference (4)
The this Reference (5)
The this Reference (6.1): Common Error
The this Reference (6.2): Common Error
OOP:
Define Constructors for Creating Objects (2.1)
OOP:
Define Constructors for Creating Objects (2.2)
OOP: Methods (1.1)
OOP: Methods (1.2)
OOP: Methods (2)
OOP: Methods (3)
148 of 147

Index (3)
OOP: The Dot Notation (1)
OOP: The Dot Notation (2)
OOP: Method Calls
OOP: Class Constructors (1)
OOP: Class Constructors (2)
OOP: Class Constructors (3)
OOP: Class Constructors (4)
OOP: Object Creation (1)
OOP: Object Creation (2)
OOP: Object Creation (3)
OOP: Object Creation (4)
OOP: Object Creation (5)
OOP: Object Creation (6)
OOP: Mutator Methods
149 of 147

Index (4)
OOP: Accessor Methods
OOP: Use of Mutator vs. Accessor Methods
OOP: Method Parameters
The this Reference (7.1): Exercise
The this Reference (7.2): Exercise
Java Data Types (1)
Java Data Types (2)
Java Data Types (3.1)
Java Data Types (3.2.1)
Java Data Types (3.2.2)
Java Data Types (3.3.1)
Java Data Types (3.3.2)
OOP: Object Alias (1)
OOP: Object Alias (2.1)
150 of 147

Index (5)
OOP: Object Alias (2.2)
Call by Value vs. Call by Reference (1)
Call by Value vs. Call by Reference (2.1)
Call by Value vs. Call by Reference (2.2.1)
Call by Value vs. Call by Reference (2.2.2)
Call by Value vs. Call by Reference (2.3.1)
Call by Value vs. Call by Reference (2.3.2)
Call by Value vs. Call by Reference (2.4.1)
Call by Value vs. Call by Reference (2.4.2)
Aggregation vs. Composition: Terminology
Aggregation: Independent Containees
Shared by Containers (1.1)
Aggregation: Independent Containees
Shared by Containers (1.2)
151 of 147

Index (6)
Aggregation: Independent Containees
Shared by Containers (2.1)
Aggregation: Independent Containees
Shared by Containers (2.2)
OOP: The Dot Notation (3.1)
OOP: The Dot Notation (3.2)
OOP: The Dot Notation (3.3)
OOP: The Dot Notation (3.4)
Composition: Dependent Containees
Owned by Containers (1.1)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
152 of 147

Index (7)
Composition: Dependent Containees
Owned by Containers (1.3)
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)
Composition: Dependent Containees
Owned by Containers (1.5.1)
Composition: Dependent Containees
Owned by Containers (1.5.2)
Composition: Dependent Containees
Owned by Containers (1.6)
Aggregation vs. Composition (1)
Aggregation vs. Composition (2)
OOP: Equality (1)
153 of 147

Index (8)
OOP: Equality (2)
OOP: Equality (3)
OOP: Contract of equals
OOP: Equality (4.1)
OOP: Equality (4.2)
OOP: Equality (4.3)
OOP: Equality (5.1)
OOP: Equality (5.2)
OOP: Equality (5.3)
OOP: Equality (6)
Hashing: What is a Map?
Hashing: Arrays are Maps
Hashing: Naive Implementation of Map
Hashing: Naive Implementation of Map (0)
154 of 147

Index (9)
Hashing: Naive Implementation of Map (1)
Hashing: Naive Implementation of Map (2)
Hashing: Naive Implementation of Map (3)
Hashing: Naive Implementation of Map (4)
Hashing: Naive Implementation of Map (5)
Hashing: Naive Implementation of Map (6)
Hashing: Naive Implementation of Map (7)
Hashing: Naive Implementation of Map (8.1)
Hashing: Naive Implementation of Map (8.2)
Hashing: Naive Implementation of Map (8.3)
Hashing: Naive Implementation of Map (8.4)
Hashing: Hash Table (1)
Hashing: Hash Table as a Bucket Array (2)
Hashing: Contract of Hash Function
155 of 147

Index (10)
Hashing: Defining Hash Function in Java (1)
Hashing: Defining Hash Function in Java (2)
Hashing: Using Hash Table in Java
Hashing: Defining Hash Function in Java (3)
Hashing: Defining Hash Function in Java (4.1)
Hashing: Defining Hash Function in Java (4.2)
Why Ordering Between Objects? (1)
Why Ordering Between Objects? (2)
Defining Ordering Between Objects (1.1)
Defining Ordering Between Objects (1.2)
Defining Ordering Between Objects (2.1)
Defining Ordering Between Objects (2.2)
Defining Ordering Between Objects (2.3)
Defining Ordering Between Objects (3)
156 of 147

Index (11)
Static Variables (1)
Static Variables (2)
Static Variables (3)
Static Variables (4.1): Common Error
Static Variables (4.2): Common Error
Static Variables (5.1): Common Error
Static Variables (5.2): Common Error
Static Variables (5.3): Common Error
OOP: Helper Methods (1)
OOP: Helper (Accessor) Methods (2.1)
OOP: Helper (Accessor) Methods (2.2.1)
OOP: Helper (Accessor) Methods (2.2.2)
OOP: Helper (Accessor) Methods (2.3)
OOP: Helper (Accessor) Methods (3.1)
157 of 147

Index (12)
OOP: Helper (Accessor) Methods (3.2)

OOP: Helper (Accessor) Methods (3.3)

OOP: Helper (Accessor) Methods (3.4)

OOP: Helper (Mutator) Methods (4.1)

OOP: Helper (Mutator) Methods (4.2.1)

OOP: Helper (Mutator) Methods (4.2.2)

OOP: Helper (Mutator) Methods (4.3)

158 of 147

Asymptotic Analysis of Algorithms

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Algorithm and Data Structure
● A data structure is:○ A systematic way to store and organize data in order to facilitate

access and modifications○ Never suitable for all purposes: it is important to know its strengths
and limitations● A well-specified computational problem precisely describes

the desired input/output relationship.○ Input: A sequence of n numbers �a1, a2, . . . , an�○ Output: A permutation (reordering) �a′1, a′2, . . . , a′n� of the input
sequence such that a′1 ≤ a′2 ≤. . . ≤ a′n○ An instance of the problem: �3, 1, 2, 5, 4�● An algorithm is:○ A solution to a well-specified computational problem○ A sequence of computational steps that takes value(s) as input
and produces value(s) as output● Steps in an algorithm manipulate well-chosen data structure(s).

2 of 35

Measuring “Goodness” of an Algorithm

1. Correctness :○ Does the algorithm produce the expected output?○ Use JUnit to ensure this.
2. Efficiency:○ Time Complexity : processor time required to complete○ Space Complexity : memory space required to store data

Correctness is always the priority.
How about efficiency? Is time or space more of a concern?

3 of 35

Measuring Efficiency of an Algorithm

● Time is more of a concern than is storage.
● Solutions that are meant to be run on a computer should run as

fast as possible.
● Particularly, we are interested in how running time depends on

two input factors:
1. size

e.g., sorting an array of 10 elements vs. 1m elements
2. structure

e.g., sorting an already-sorted array vs. a hardly-sorted array
● How do you determine the running time of an algorithm?

1. Measure time via experiments
2. Characterize time as a mathematical function of the input size

4 of 35

Measure Running Time via Experiments

● Once the algorithm is implemented in Java:○ Execute the program on test inputs of various sizes and structures.○ For each test, record the elapsed time of the execution.
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;

○ Visualize the result of each test.
● To make sound statistical claims about the algorithm’s running

time, the set of input tests must be “reasonably” complete.

5 of 35

Example Experiment

● Computational Problem:○ Input: A character c and an integer n○ Output: A string consisting of n repetitions of character c
e.g., Given input ‘

*

’ and 15, output

.
● Algorithm 1 using String Concatenations:

public static String repeat1(char c, int n) {

String answer = "";

for (int i = 0; i < n; i ++) { answer += c; }

return answer; }

● Algorithm 2 using StringBuilder append’s:
public static String repeat2(char c, int n) {

StringBuilder sb = new StringBuilder();

for (int i = 0; i < n; i ++) { sb.append(c); }

return sb.toString(); }

6 of 35

Example Experiment: Detailed Statistics

n repeat1 (in ms) repeat2 (in ms)
50,000 2,884 1

100,000 7,437 1
200,000 39,158 2
400,000 170,173 3
800,000 690,836 7

1,600,000 2,847,968 13
3,200,000 12,809,631 28
6,400,000 59,594,275 58

12,800,000 265,696,421 (≈ 3 days) 135

● As input size is doubled, rates of increase for both algorithms
are linear :
○ Running time of repeat1 increases by ≈ 5 times.○ Running time of repeat2 increases by ≈ 2 times.

7 of 35

Example Experiment: Visualization

n

repeat1

repeat2

104 105 106 107

108

107

106

105

104

103

102

101

100

R
u
n
n
in

g
T

im
e

(m
s
)

109

8 of 35

Experimental Analysis: Challenges

1. An algorithm must be fully implemented (i.e., translated into
valid Java syntax) in order study its runtime behaviour
experimentally .○ What if our purpose is to choose among alternative data structures

or algorithms to implement?○ Can there be a higher-level analysis to determine that one
algorithm or data structure is superior than others?

2. Comparison of multiple algorithms is only meaningful when
experiments are conducted under the same environment of:○ Hardware: CPU, running processes○ Software: OS, JVM version

3. Experiments can be done only on a limited set of test inputs.○ What if “important” inputs were not included in the experiments?

9 of 35

Moving Beyond Experimental Analysis

● A better approach to analyzing the efficiency (e.g., running
times) of algorithms should be one that:
○ Allows us to calculate the relative efficiency (rather than absolute

elapsed time) of algorithms in a ways that is independent of the
hardware and software environment.○ Can be applied using a high-level description of the algorithm
(without fully implementing it).○ Considers all possible inputs.

● We will learn a better approach that contains 3 ingredients:
1. Counting primitive operations
2. Approximating running time as a function of input size
3. Focusing on the worst-case input (requiring the most running time)

10 of 35

Counting Primitive Operations
● A primitive operation corresponds to a low-level instruction with

a constant execution time .○ Assignment [e.g., x = 5;]○ Indexing into an array [e.g., a[i]]○ Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]○ Accessing a field of an object [e.g., acc.balance]○ Returning from a method [e.g., return result;]○ Why is a method call is in general not a primitive operation?● The number of primitive operations required by an algorithm
should be proportional to its actual running time on a specific
environment: RT = ⌃N

i=1 t(i) [N = # of PO’s]○ Say c is the absolute time of executing a primitive operation on a
specific computer platform.

○ RT = ⌃N
i=1 t(i) = c ×N ≈ N

⇒ approximate # of primitive operations that its steps contain.
11 of 35

Example: Counting Primitive Operations
1 findMax (int[] a, int n) {

2 currentMax = a[0];
3 for (int i = 1; i < n;) {

4 if (a[i] > currentMax) {

5 currentMax = a[i]; }

6 i ++ }

7 return currentMax; }

of times i < n in Line 3 is executed? [n]
of times the loop body (Line 4 to Line 6) is executed? [n − 1]● Line 2: 2 [1 indexing + 1 assignment]● Line 3: n + 1 [1 assignment + n comparisons]● Line 4: (n − 1) ⋅ 2 [1 indexing + 1 comparison]● Line 5: (n − 1) ⋅ 2 [1 indexing + 1 assignment]● Line 6: (n − 1) ⋅ 2 [1 addition + 1 assignment]● Line 7: 1 [1 return]● Total # of Primitive Operations: 7n - 2

12 of 35

Example: Approx. # of Primitive Operations
● Given # of primitive operations counted precisely as 7n1 − 2,

we view it as
7 ⋅ n − 2 ⋅ n0

● We say○ n is the highest power○ 7 and 2 are the multiplicative constants○ 2 is the lower term● When approximating a function (considering that input size may
be very large):○ Only the highest power matters.○

multiplicative constants and lower terms can be dropped.⇒ 7n − 2 is approximately n
Exercise: Consider 7n + 2n ⋅ log n + 3n2:○

highest power? [n2]○
multiplicative constants? [7, 2, 3]○
lower terms? [7n + 2n ⋅ log n]

13 of 35

Approximating Running Time
as a Function of Input Size

Given the high-level description of an algorithm, we associate it
with a function f , such that f (n) returns the number of
primitive operations that are performed on an input of size n.○ f (n) = 5 [constant]○ f (n) = log2n [logarithmic]○ f (n) = 4 ⋅ n [linear]○ f (n) = n2 [quadratic]○ f (n) = n3 [cubic]○ f (n) = 2n [exponential]

14 of 35

Focusing on the Worst-Case Input

R
u

n
n

in
g

T
im

e

B C D E F G

best-case time

A

}

Input Instance

1 ms

2 ms

3 ms

4 ms

5 ms worst-case time

average-case time?

● Average-case analysis calculates the expected running times
based on the probability distribution of input values.● worst-case analysis or best-case analysis?

15 of 35

What is Asymptotic Analysis?

Asymptotic analysis
● Is a method of describing behaviour in the limit :○ How the running time of the algorithm under analysis changes as

the input size changes without bound○ e.g., contrast RT1(n) = n with RT2(n) = n2

● Allows us to compare the relative performance of alternative
algorithms:○ For large enough inputs, the multiplicative constants and

lower-order terms of an exact running time can be disregarded.○ e.g., RT1(n) = 3n2 + 7n + 18 and RT1(n) = 100n2 + 3n − 100 are
considered equally efficient, asymptotically .○ e.g., RT1(n) = n3 + 7n + 18 is considered less efficient than
RT1(n) = 100n2 + 100n + 2000, asymptotically .

16 of 35

Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the running
time of an algorithm:
● Asymptotic upper bound [O]
● Asymptotic lower bound [⌦]
● Asymptotic tight bound [⇥]

17 of 35

Asymptotic Upper Bound: Definition
● Let f (n) and g(n) be functions mapping positive integers (input

size) to positive real numbers (running time).○ f (n) characterizes the running time of some algorithm.○ O(g(n)) denotes a collection of functions.

● O(g(n)) consists of all functions that can be upper bounded
by g(n), starting at some point, using some constant factor.

● f (n) ∈ O(g(n)) if there are:○ A real constant c > 0○ An integer constant n0 ≥ 1
such that:

f(n) ≤ c ⋅ g(n) for n ≥ n0

● For each member function f (n) in O(g(n)) , we say that:○ f (n) ∈ O(g(n)) [f(n) is a member of “big-Oh of g(n)”]○ f (n) is O(g(n)) [f(n) is “big-Oh of g(n)”]○ f (n) is order of g(n)
18 of 35

Asymptotic Upper Bound: Visualization

Input Size

R
u

n
n

in
g

 T
im

e

cg(n)

f(n)

n0

From n0, f (n) is upper bounded by c ⋅ g(n), so f (n) is O(g(n)) .

19 of 35

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

8n + 5 ≤ c ⋅ n
Can we choose c = 9? What should the corresponding n0 be?

n 8n + 5 9n
1 13 9
2 21 18
3 29 27
4 37 36
5 45 45
6 53 54

. . .

Therefore, we prove it by choosing c = 9 and n0 = 5.
We may also prove it by choosing c = 13 and n0 = 1. Why?

20 of 35

Asymptotic Upper Bound: Example (2)

Prove: The function f (n) = 5n4 + 3n3 + 2n2 + 4n + 1 is O(n4).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

5n4 + 3n3 + 2n2 + 4n + 1 ≤ c ⋅ n4

f (1) = 5 + 3 + 2 + 4 + 1 = 15
Choose c = 15 and n0 = 1!

21 of 35

Asymptotic Upper Bound: Proposition (1)

If f (n) is a polynomial of degree d , i.e.,

f (n) = a0 ⋅ n0 + a1 ⋅ n1 + ⋅ ⋅ ⋅ + ad ⋅ nd

and a0,a1, . . . ,ad are integers (i.e., negative, zero, or positive),
then f (n) is O(nd).
Proof:
1. We know that for n ≥ 1: n0 ≤ n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nd

2. By choosing c = �a0� + �a1� + ⋅ ⋅ ⋅ + �ad �:
a0 ⋅ n0 + a1 ⋅ n1 + ⋅ ⋅ ⋅ + ad ⋅ nd ≤ �a0� ⋅ nd + �a1� ⋅ nd + ⋅ ⋅ ⋅ + �ad � ⋅ nd

3. By choosing n0 = 1:

a0 ⋅ 10 + a1 ⋅ 11 + ⋅ ⋅ ⋅ + ad ⋅ 1d ≤ �a0� ⋅ 1d + �a1� ⋅ 1d + ⋅ ⋅ ⋅ + �ad � ⋅ 1d

That is, we prove by choosing

c = �a0� + �a1� + ⋅ ⋅ ⋅ + �ad �
n0 = 1

22 of 35

Asymptotic Upper Bound: Proposition (2)

O(n0) ⊂ O(n1) ⊂ O(n2) ⊂ . . .
If a function f (n) is upper bounded by another function g(n) of
degree d , d ≥ 0, then f (n) is also upper bounded by all other
functions of a strictly higher degree (i.e., d + 1, d + 2, etc.).

23 of 35

Asymptotic Upper Bound: More Examples

● 5n2 + 3n ⋅ logn + 2n + 5 is O(n2) [c = 15, n0 = 1]
● 20n3 + 10n ⋅ logn + 5 is O(n3) [c = 35, n0 = 1]
● 3 ⋅ logn + 2 is O(logn) [c = 5, n0 = 2]○ Why can’t n0 be 1?○ Choosing n0 = 1 means⇒ f (1) is upper-bounded by c ⋅ log 1 :

● We have f (1) = 3 ⋅ log1 + 2, which is 2.
● We have c ⋅ log 1 , which is 0.

⇒ f (1) is not upper-bounded by c ⋅ log 1 [Contradiction!]
● 2n+2 is O(2n) [c = 4, n0 = 1]
● 2n + 100 ⋅ logn is O(n) [c = 102, n0 = 1]

24 of 35

Using Asymptotic Upper Bound Accurately

● Use the big-Oh notation to characterize a function (of an
algorithm’s running time) as closely as possible.
For example, say f (n) = 4n3 + 3n2 + 5:○ Recall: O(n3) ⊂ O(n4) ⊂ O(n5) ⊂ . . .○ It is the most accurate to say that f (n) is O(n3).○ It is also true, but not very useful, to say that f (n) is O(n4) and that

f (n) is O(n5).
● Do not include constant factors and lower-order terms in the

big-Oh notation.
For example, say f (n) = 2n2 is O(n2), do not say f (n) is
O(4n2 + 6n + 9).

25 of 35

Classes of Functions

upper bound class cost
O(1) constant cheapest

O(log(n)) logarithmic
O(n) linear

O(n ⋅ log(n)) “n-log-n”
O(n2) quadratic
O(n3) cubic

O(nk), k ≥ 1 polynomial
O(an), a > 1 exponential most expensive

26 of 35

Rates of Growth: Comparison

f
(n
)

107106

n

105104103102

Linear

Exponential

Constant

Logarithmic

N-Log-N

Quadratic

Cubic

101510141013101210111010109108101

100

104

108

1012

1016

1020

1028

1032

1036

1040

1044

100

1024

27 of 35

Upper Bound of Algorithm: Example (1)

1 maxOf (int x, int y) {

2 int max = x;
3 if (y > x) {

4 max = y;
5 }

6 return max;
7 }

● # of primitive operations: 4
2 assignments + 1 comparison + 1 return = 4

● Therefore, the running time is O(1) .
● That is, this is a constant-time algorithm.

28 of 35

Upper Bound of Algorithm: Example (2)

1 findMax (int[] a, int n) {

2 currentMax = a[0];
3 for (int i = 1; i < n;) {

4 if (a[i] > currentMax) {

5 currentMax = a[i]; }

6 i ++ }

7 return currentMax; }

● From last lecture, we calculated that the # of primitive
operations is 7n − 2.

● Therefore, the running time is O(n) .
● That is, this is a linear-time algorithm.

29 of 35

Upper Bound of Algorithm: Example (3)

1 containsDuplicate (int[] a, int n) {

2 for (int i = 0; i < n;) {

3 for (int j = 0; j < n;) {

4 if (i != j && a[i] == a[j]) {

5 return true; }

6 j ++; }

7 i ++; }

8 return false; }

● Worst case is when we reach Line 8.
● # of primitive operations ≈ c1 + n ⋅ n ⋅ c2, where c1 and c2 are

some constants.
● Therefore, the running time is O(n2) .
● That is, this is a quadratic algorithm.
30 of 35

Upper Bound of Algorithm: Example (4)

1 sumMaxAndCrossProducts (int[] a, int n) {

2 int max = a[0];
3 for(int i = 1; i < n;) {

4 if (a[i] > max) { max = a[i]; }

5 }

6 int sum = max;
7 for (int j = 0; j < n; j ++) {

8 for (int k = 0; k < n; k ++) {

9 sum += a[j]
*

a[k]; } }

10 return sum; }

● # of primitive operations ≈ (c1 ⋅ n + c2) + (c3 ⋅ n ⋅ n + c4), where
c1, c2, c3, and c4 are some constants.

● Therefore, the running time is O(n + n2) = O(n2) .
● That is, this is a quadratic algorithm.
31 of 35

Upper Bound of Algorithm: Example (5)

1 triangularSum (int[] a, int n) {

2 int sum = 0;

3 for (int i = 0; i < n; i ++) {

4 for (int j = i ; j < n; j ++) {

5 sum += a[j]; } }

6 return sum; }

● # of primitive operations ≈ n + (n − 1) + ⋅ ⋅ ⋅ + 2 + 1 = n⋅(n+1)
2

● Therefore, the running time is O(n2+n
2) = O(n2) .

● That is, this is a quadratic algorithm.

32 of 35

Index (1)
Algorithm and Data Structure
Measuring “Goodness” of an Algorithm
Measuring Efficiency of an Algorithm
Measure Running Time via Experiments
Example Experiment
Example Experiment: Detailed Statistics
Example Experiment: Visualization
Experimental Analysis: Challenges
Moving Beyond Experimental Analysis
Counting Primitive Operations
Example: Counting Primitive Operations
Example: Approx. # of Primitive Operations
Approximating Running Time
as a Function of Input Size

33 of 35

Index (2)
Focusing on the Worst-Case Input
What is Asymptotic Analysis?
Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)
Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately
Classes of Functions
Rates of Growth: Comparison
Upper Bound of Algorithm: Example (1)

34 of 35

Index (3)
Upper Bound of Algorithm: Example (2)

Upper Bound of Algorithm: Example (3)

Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)

35 of 35

ADTs, Arrays, and Linked-Lists

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Abstract Data Types (ADTs)

● Given a problem, you are required to filter out irrelevant details.● The result is an abstract data type (ADT) , whose interface

consists of a list of (unimplemented) operations.

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier ’s Obligations:○ Implement all operations○ Choose the “right” data structure (DS)● Client ’s Benefits:○ Correct output○ Efficient performance● The internal details of an implemented ADT should be hidden.
2 of 27

Standard ADTs

● Standard ADTs are reusable components that have been
adopted in solving many real-world problems.
e.g., Stacks, Queues, Lists, Tables, Trees, Graphs

● You will be required to:○ Implement standard ADTs○ Design algorithms that make use of standard ADTs
● For each standard ADT, you are required to know:
○ The list of supported operations (i.e., interface)
○ Time (and sometimes space) complexity of each operation

● In this lecture, we learn about two basic data structures:○ arrays○ linked lists

3 of 27

Basic Data Structure: Arrays

● An array is a sequence of indexed elements.● Size of an array is fixed at the time of its construction.● Supported operations on an array:○ Accessing: e.g., int max = a[0];
Time Complexity: O(1) [constant operation]○ Updating: e.g., a[i] = a[i + 1];
Time Complexity: O(1) [constant operation]○ Inserting/Removing:
insertAt(String[] a, int n, String e, int i)

String[] result = new String[n + 1];
for(int j = 0; j < i; j ++){ result[i] = a[i]; }
result[i] = e;
for(int j = i + 1; j < n; j ++){ result[j] = a[j - 1]; }
return result;

Time Complexity: O(n) [linear operation]
4 of 27

Basic Data Structure: Singly-Linked Lists

● We know that arrays perform:○ well in indexing○ badly in inserting and deleting● We now introduce an alternative data structure to arrays.● A linked list is a series of connected nodes that collectively
form a linear sequence.● Each node in a singly-linked list has:○ A reference to an element of the sequence○ A reference to the next node in the list

Contrast this relative positioning with the absolute indexing of arrays.

MSP

element next

● The last element in a singly-linked list is different from others.
How so? Its reference to the next node is simply null.

5 of 27

Singly-Linked List: How to Keep Track?

● Due to its “chained” structure, we can use a singly-linked list to
dynamically store as many elements as we desire.○ By creating a new node and setting the relevant references.○ e.g., inserting an element to the beginning/middle/end of a list○ e.g., deleting an element from the list requires a similar procedure● Contrary to the case of arrays , we simply cannot keep track of
all nodes in a lined list directly by indexing the next references.● Instead, we only store a reference to the head (i.e., first node),
and find other parts of the list indirectly .

LAX MSP BOSATL

head tail

● Exercise: Given the head reference of a singly-linked list:○ Count the number of nodes currently in the list [Running Time?]○ Find the reference to its tail (i.e., last element) [Running Time?]
6 of 27

Singly-Linked List: Java Implementation

public class Node {
private String element;
private Node next;
public Node(String e, Node n) { element = e; next = n; }
public String getElement() { return element; }
public void setElement(String e) { element = e; }
public Node getNext() { return next; }
public void setNext(Node n) { next = n; }

}

public class SinglyLinkedList {
private Node head = null;
public void addFirst(String e) { . . . }
public void removeLast() { . . . }
public void addAt(int i, String e) { . . . }

}

7 of 27

Singly-Linked List: A Running ExampleApproach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

Approach 1

Node tom = new Node("Tom", null);
Node mark = new Node("Mark", tom);
Node alan = new Node("Alan", mark);

Approach 2

Node alan = new Node("Alan", null);
Node mark = new Node("Mark", null);
Node tom = new Node("Tom", null);
alan.setNext(mark);
mark.setNext(tom);

8 of 27

Singly-Linked List: Counting # of Nodes (1)

● Assume we are in the context of class SinglyLinkedList.

1 int getSize() {
2 int size = 0;
3 Node current = head;
4 while (current != null) {
5 /* exit when current == null */
6 current = current.getNext();
7 size ++;
8 }
9 return size;

10 }

● When does the while loop (Line 4) terminate? current is null
● Only the last node has a null next reference.
● RT of getSize O(n) [linear operation]

● Contrast: RT of a.length is O(1) [constant]
9 of 27

Singly-Linked List: Counting # of Nodes (2)

Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

1 int getSize() {
2 int size = 0;
3 Node current = head;
4 while (current != null) { /* exit when current == null */
5 current = current.getNext();
6 size ++;
7 }
8 return size;
9 }

current current != null Beginning of Iteration size

Alan true 1 1
Mark true 2 2
Tom true 3 3

null false – –
10 of 27

Singly-Linked List: Finding the Tail (1)

● Assume we are in the context of class SinglyLinkedList.
1 Node getTail() {
2 Node current = head;
3 Node tail = null;
4 while (current != null) {
5 /* exit when current == null */
6 tail = current;
7 current = current.getNext();
8 }
9 return tail;

10 }

● When does the while loop (Line 4) terminate? current is null
● Only the last node has a null next reference.
● RT of getTail is O(n) [linear operation]

● Contrast: RT of a[a.length - 1] is O(1) [constant]
11 of 27

Singly-Linked List: Finding the Tail (2)

Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

1 Node getTail() {
2 Node current = head;
3 Node tail = null;
4 while (current != null) { /* exit when current == null */
5 tail = current;
6 current = current.getNext();
7 }
8 return tail;
9 }

current current != null Beginning of Iteration tail

Alan true 1 Alan
Mark true 2 Mark
Tom true 3 Tom

null false – –
12 of 27

Singly-Linked List: Can We Do Better?

● It is frequently needed to
○ access the tail of list [e.g., a new customer joins service queue]
○ query about its size [e.g., is the service queue full?]

● How can we improve the running time of these two operations?
● We may trade space for time.
● In addition to head , we also declare:
○ A variable tail that points to the end of the list
○ A variable size that keeps tracks of the number of nodes in list
○ Running time of these operations are both O(1) !

● Nonetheless, we cannot declare variables to store references to
nodes in-between the head and tail. Why?○ At the time of declarations, we simply do not know how many

nodes there will be at runtime.
13 of 27

Singly-Linked List: Inserting to the Front (1)

ATL BOSMSP

head

BOS

newest

MSP ATL

head

LAX

LAX MSP ATL BOS

headnewest

14 of 27

Singly-Linked List: Inserting to the Front (2)

● Assume we are in the context of class SinglyLinkedList.
1 void addFirst (String e) {
2 head = new Node(e, head);
3 if (size == 0) {
4 tail = head;
5 }
6 size ++;
7 }

● Remember that RT of accessing head or tail is O(1)
● RT of addFirst is O(1) [constant operation]

● Contrast: RT of inserting into an array is O(n) [linear]

15 of 27

Your Homework

● Complete the Java implementations and running time analysis

for removeFirst(), addLast(E e).
● Question: The removeLast() method may not be completed

in the same way as is addLast(String e). Why?

16 of 27

Singly-Linked List: Accessing the Middle (1)

● Assume we are in the context of class SinglyLinkedList.

1 Node getNodeAt (int i) {
2 if (i < 0 || i >= size) {
3 throw IllegalArgumentException("Invalid Index");
4 }
5 else {
6 int index = 0;
7 Node current = head;
8 while (index < i) { /* exit when index == i */
9 index ++;

10 /* current is set to node at index i
11 * last iteration: index incremented from i - 1 to i
12 */
13 current = current.getNext();
14 }
15 return current;
16 }
17 }

17 of 27

Singly-Linked List: Accessing the Middle (2)

Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

1 Node getNodeAt (int i) {
2 if (i < 0 || i >= size) { /* print error */ }
3 else {
4 int index = 0;
5 Node current = head;
6 while (index < i) { /* exit when index == i */
7 index ++;
8 current = current.getNext();
9 }

10 return current;
11 }
12 }

Let’s now consider list.getNodeAt(2) :

current index index < 2 Beginning of Iteration
Alan 0 true 1
Mark 1 true 2
Tom 2 false –

18 of 27

Singly-Linked List: Accessing the Middle (3)

● What is the worst case of the index i for getNodeAt(i)?
● Worst case: list.getNodeAt(list.size - 1)

● RT of getNodeAt is O(n) [linear operation]

● Contrast: RT of accessing an array element is O(1) [constant]

19 of 27

Singly-Linked List: Inserting to the Middle (1)

● Assume we are in the context of class SinglyLinkedList.

1 void addAt (int i, String e) {
2 if (i < 0 || i >= size) {
3 throw IllegalArgumentException("Invalid Index.");
4 }
5 else {
6 if (i == 0) {
7 addFirst(e);
8 }
9 else {

10 Node nodeBefore = getNodeAt(i - 1);
11 newNode = new Node(e, nodeBefore.getNext());
12 nodeBefore.setNext(newNode);
13 size ++;
14 }
15 }
16 }

20 of 27

Singly-Linked List: Inserting to the Middle (2)

● A call to addAt(i, e) may end up executing:
○ Line 3 (throw exception) [O(1)]

○ Line 7 (addFirst) [O(1)]

○ Lines 10 (getNodeAt) [O(n)]

○ Lines 11 – 13 (setting references) [O(1)]
● What is the worst case of the index i for addAt(i, e)?
● Worst case: list.addAt(list.getSize() - 1, e)

● RT of addAt is O(n) [linear operation]

● Contrast: RT of inserting into an array is O(n) [linear]
● On the other hand, for arrays, when given the index to an

element, the RT of inserting an element is always O(n) !

21 of 27

Singly-Linked List: Removing from the End

● Assume we are in the context of class SinglyLinkedList.

1 void removeLast () {
2 if (size == 0) {
3 System.err.println("Empty List.");
4 }
5 else if (size == 1) {
6 removeFirst();
7 }
8 else {
9 Node secondLastNode = getNodeAt(size - 2);

10 secondLastNode.setNext(null);
11 tail = secondLastNode;
12 size --;
13 }
14 }

Running time? O(n)
22 of 27

Singly-Linked List: Exercises

Consider the following two linked-list operations, where a
reference node is given as an input parameter:
● void insertAfter(Node n, String e)

○ Steps?
● Create a new node nn.● Set nn’s next to n’s next.● Set n’s next to nn.○ Running time? [O(1)]

● void insertBefore(Node n, String e)

○ Steps?
● Iterate from the head, until current.next == n.● Create a new node nn.● Set nn’s next to current’s next (which is n).● Set current’s next to nn.○ Running time? [O(n)]

23 of 27

Your Homework

● Complete the Java implementation and running time analysis

for removeAt(int i).

24 of 27

Arrays vs. Singly-Linked Lists

hhhhhhhhhhhhhhhhhOPERATION

DATA STRUCTURE
ARRAY SINGLY-LINKED LIST

get size O(1)get first/last element
get element at index i O(1) O(n)remove last element

add/remove first element, add last element
O(n) O(1)

add/remove i
th element given reference to (i − 1)th element

not given O(n)

25 of 27

Index (1)

Abstract Data Types (ADTs)

Standard ADTs

Basic Data Structure: Arrays

Basic Data Structure: Singly-Linked Lists

Singly-Linked List: How to Keep Track?

Singly-Linked List: Java Implementation

Singly-Linked List: A Running Example

Singly-Linked List: Counting # of Nodes (1)

Singly-Linked List: Counting # of Nodes (2)

Singly-Linked List: Finding the Tail (1)

Singly-Linked List: Finding the Tail (2)

Singly-Linked List: Can We Do Better?

Singly-Linked List: Inserting to the Front (1)

Singly-Linked List: Inserting to the Front (2)
26 of 27

Index (2)

Your Homework

Singly-Linked List: Accessing the Middle (1)

Singly-Linked List: Accessing the Middle (2)

Singly-Linked List: Accessing the Middle (3)

Singly-Linked List: Inserting to the Middle (1)

Singly-Linked List: Inserting to the Middle (2)

Singly-Linked List: Removing from the End

Singly-Linked List: Exercises

Your Homework

Arrays vs. Singly-Linked Lists

27 of 27

Stacks and Queues

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

What is a Stack?

● A stack is a collection of objects.
● Objects in a stack are inserted and removed according to the

last-in, first-out (LIFO) principle.○ Cannot access arbitrary elements of a stack○ Can only access or remove the most-recently inserted element

2 of 22

The Stack ADT

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Accessors○ top○ size○ isEmpty

● Mutators○ push○ pop

3 of 22

Stack: Illustration

OPERATION RETURN VALUE STACK CONTENTS
– – �

isEmpty true �
push(5) – 5

push(3) – 3
5

push(1) – 1
3
5

size 3 1
3
5

top 1 1
3
5

pop 1 3
5

pop 3 5
pop 5 �

4 of 22

Implementing Stack ADT: Array (1)

public class ArrayedStack {

private static final int MAX_CAPACITY = 1000;

private String[] data;
private int t; /* top index */
public ArrayedStack() {

data = new String[MAX_CAPACITY];
t = -1; }

public int size() { return (t + 1); }

public boolean isEmpty() { return (t == -1); }

public String top() {

if (isEmpty()) { /* Error: Empty Stack. */ }

else { return data[t]; } }

public void push(String e) {

if (size() == MAX_CAPACITY) { /* Error: Stack Full. */ }

else { t ++; data[t] = e; } }

public String pop() {

String result;
if (isEmpty()) { /* Error: Empty Stack */ }

else { result = data[t]; data[t] = null; t --; }

return result; }

}

5 of 22

Implementing Stack ADT: Array (2)

@Test
public void testArrayedStack() {

ArrayedStack s = new ArrayedStack();
assertTrue(s.size() == 0 && s.isEmpty());
try { String top = s.top();

fail("Empty stack should have caused an exception."); }

catch(IllegalArgumentException e) { }

s.push("Alan");
s.push("Mark");
s.push("Tom");
assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s.top());
String oldTop = s.pop();
assertEquals("Tom", oldTop);
String newTop = s.top();
assertEquals("Mark", newTop);
oldTop = s.pop();
assertEquals("Mark", oldTop);
newTop = s.top();
assertEquals("Alan", newTop);

}

6 of 22

Implementing Stack ADT: Array (3)

Running Times of Array -Based Stack Operations?

ArrayedStack Method Running Time

size O(1)
isEmpty O(1)

top O(1)
push O(1)
pop O(1)

Q: What if the preset capacity turns out to be insufficient?
A: O(n) time to grow the array size and copy existing contents!

7 of 22

Implementing Stack ADT:

Singly-Linked List (1)

public class LinkedStack {

private SinglyLinkedList list; /* assumed: head, tail, size */
. . .

}

Question:

Stack Method

Singly-Linked List Method

Strategy 1 Strategy 2
size list.size

isEmpty list.isEmpty
top list.first list.last

push list.addFirst list.addLast
pop list.removeFirst list.removeLast

Which implementation strategy should be chosen? Either?
8 of 22

Implementing Stack ADT:

Singly-Linked List (2)

● If the front of list is treated as the top of stack , then:
○ All stack operations remain O(1) .○ No resizing is necessary!

● If the back of list is treated as the top of stack , then:○ Still no resizing is necessary!○ The pop operation (via removeLast) takes O(n) !

9 of 22

Application (1): Reversing an Array

public static void reverse(String[] a) {

ArrayedStack buffer = new ArrayedStack();
for (int i = 0; i < a.length; i ++) {

buffer.push(a[i]);
}

for (int i = 0; i < a.length; i ++) {

a[i] = buffer.pop();
}

}

@Test
public void testReverseViaStack() {

String[] names = {"Alan", "Mark", "Tom"};

String[] reverseOfNames = {"Tom", "Mark", "Alan"};

StackUtilities.reverse(names);
assertArrayEquals(reverseOfNames, names);

}

10 of 22

Application (2): Matching Delimiters

●
Problem

Opening delimiters: (, [, {
Closing delimiters:),], }
e.g., Correct: “()(())([()])”
e.g., Incorrect:○ “([])” [mismatched opening and closing]○ “{{]” [more openings than closings]○ “{}]” [more closings than openings]● Can we simply say s.equals(reverseOf (s))⇒ isMatched(s)?○ e.g., “[()]” is matched, and its reverse are equal.○ NO! e.g., “([])[()]” matched, but different from its reverse.●
Sketch of Solution○ When a new opening delimiter is found, push it to the stack .○ When a new closing delimiter is found:

● If it matches the top of the stack , then pop off the stack.● Otherwise, an error is found!○ Finishing reading the input, an empty stack means a success!
11 of 22

Application (2): Matching Delimiters in Java

public static boolean isMatched(String expression) {

final String open = "([{";

final String close = ")]}";

ArrayedStack openings = new ArrayedStack();

for (int i = 0; i < expression.length(); i ++) {

String c = Character.toString(expression.charAt(i));

if(open.indexOf(c) != -1) { openings.push(c); }

else if (close.indexOf(c) != -1) {

if(openings.isEmpty()) { return false; /* e.g., {}) */ }

else {

if (open.indexOf(openings.top()) == close.indexOf(c)) {

openings.pop(); }

else { return false; /* e.g., (] */ }

}

}

}

return openings.isEmpty(); /* e.g., {{ */
}

12 of 22

What is a Queue?

● A queue is a collection of objects.
● Objects in a queue are inserted and removed according to the

first-in, first-out (FIFO) principle.○ Each new element joins at the back of the queue.○ Cannot access arbitrary elements of a queue○ Can only access or remove the front of queue:
least-recently (or longest) inserted element

Tickets

Call C
enter

Call Queue

13 of 22

The Queue ADT

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Accessors○ first [compare: top of stack]○ size○ isEmpty

● Mutators○ enqueue [compare: push of stack]○ dequeue [compare: pop of stack]

14 of 22

Queue: Illustration

Operation Return Value Queue Contents
– – �

isEmpty true �
enqueue(5) – (5)
enqueue(3) – (5, 3)
enqueue(1) – (5, 3, 1)

size 3 (5, 3, 1)
dequeue 5 (3, 1)
dequeue 3 1
dequeue 1 �

15 of 22

Implementing Queue ADT: Array (1)

public class ArrayedQueue {

private static final int MAX_CAPACITY = 1000;

private String[] data;
private int r; /* rear index */
public ArrayedQueue() { data = new String[MAX_CAPACITY]; r = -1;}

public int size() { return (r + 1); }

public boolean isEmpty() { return (r == -1); }

public String first() {

if (isEmpty()) { /* Error: Empty Queue */ }

else { return data[0]; } }

public void enqueue(String e) {

if (size() == MAX_CAPACITY) { /* Error: Queue Full. */ }

else { r ++; data[r] = e; } }

public String dequeue() {

String result;
if (isEmpty()) { /* Error: Empty Queue. */ }

else {

result = data[0];
for (int i = 0; i < r; i ++) { data[i] = data[i + 1]; }

r --; }

return result; }

}

16 of 22

Implementing Queue ADT: Array (2)

@Test
public void testArrayedQueue() {

ArrayedQueue q = new ArrayedQueue();
assertTrue(q.size() == 0 && q.isEmpty());
try { String first = q.first();

fail("Empty queue should have caused an exception."); }

catch(IllegalArgumentException e) { }

q.enqueue("Alan");
q.enqueue("Mark");
q.enqueue("Tom");
assertTrue(q.size() == 3 && !q.isEmpty());
assertEquals("Alan", q.first());
String oldFirst = q.dequeue();
assertEquals("Alan", oldFirst);
String newFirst = q.first();
assertEquals("Mark", newFirst);
oldFirst = q.dequeue();
assertEquals("Mark", oldFirst);
newFirst = q.first();
assertEquals("Tom", newFirst);

}

17 of 22

Implementing Queue ADT: Array (3)

Running Times of Array -Based Queue Operations?

ArrayQueue Method Running Time

size O(1)
isEmpty O(1)

first O(1)
enqueue O(1)
dequeue O(n)

Q: What if the preset capacity turns out to be insufficient?
A: O(n) time to grow the array size and copy existing contents!

18 of 22

Implementing Queue ADT:

Singly-Linked List (1)

public class LinkedQueue {

private SinglyLinkedList list; /* assumed: head, tail, size */
. . .

}

Question:

Queue Method

Singly-Linked List Method

Strategy 1 Strategy 2
size list.size

isEmpty list.isEmpty
first list.first list.last

enqueue list.addLast list.addFirst
dequeue list.removeFirst list.removeLast

Which implementation strategy should be chosen? Either?
19 of 22

Implementing Queue ADT:

Singly-Linked List (2)

● If the front of list is treated as the first of queue, then:
○ All queue operations remain O(1) .○ No resizing is necessary!

● If the back of list is treated as the first of queue, then:○ Still no resizing is necessary!○ The dequeue operation (via removeLast) takes O(n) !

20 of 22

Index (1)

What is a Stack?

The Stack ADT

Stack: Illustration

Implementing Stack ADT: Array (1)

Implementing Stack ADT: Array (2)

Implementing Stack ADT: Array (3)

Implementing Stack ADT:

Singly-Linked List (1)

Implementing Stack ADT:

Singly-Linked List (2)

Application (1): Reversing an Array

Application (2): Matching Delimiters

Application (2): Matching Delimiters in Java

What is a Queue?

21 of 22

Index (2)

The Queue ADT

Queue: Illustration

Implementing Queue ADT: Array (1)

Implementing Queue ADT: Array (2)

Implementing Queue ADT: Array (3)

Implementing Queue ADT:

Singly-Linked List (1)

Implementing Queue ADT:

Singly-Linked List (2)

22 of 22

Recursion

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:○ Base Cases: Small problem instances immediately solvable.○ Recursive Cases:● Large problem instances not immediately solvable.● Solve by reusing solution(s) to strictly smaller problem instances.

● Similar idea learnt in high school: [mathematical induction]● Recursion can be easily expressed programmatically in Java:○ In the body of a method m, there might be a call or calls to m itself .○ Each such self-call is said to be a recursive call .○ Inside the execution of m(i), a recursive call m(j) must be that j < i.
m (i) {
. . .
m (j);/* recursive call with strictly smaller value */
. . .

}

2 of 40

Recursion: Factorial (1)
● Recall the formal definition of calculating the n factorial:

n! = �������
1 if n = 0
n ⋅ (n − 1) ⋅ (n − 2) ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1 if n ≥ 1

● How do you define the same problem recursively?

n! = �������
1 if n = 0
n ⋅ (n − 1)! if n ≥ 1

● To solve n!, we combine n and the solution to (n - 1)!.
int factorial (int n) {
int result;
if(n == 0) { /* base case */ result = 1; }
else { /* recursive case */

result = n * factorial (n - 1);
}
return result;

}

3 of 40

Recursion: Factorial (2)

return 4 ∗ 6 = 24

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(5)

factorial(4)

return 1

return 1 ∗ 1 = 1

return 2 ∗ 1 = 2

return 3 ∗ 2 = 6

return 5 ∗ 24 = 120

4 of 40

Recursion: Factorial (3)

○ When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.○ When running factorial(4), a recursive call factorial(3) is made.
Call to factorial(4) suspended until factorial(3) returns a value.
. . .○ factorial(0) returns 1 back to suspended call factorial(1).○ factorial(1) receives 1 from factorial(0), multiplies 1 to it, and
returns 1 back to the suspended call factorial(2).○ factorial(2) receives 1 from factorial(1), multiplies 2 to it, and
returns 2 back to the suspended call factorial(3).○ factorial(3) receives 2 from factorial(1), multiplies 3 to it, and
returns 6 back to the suspended call factorial(4).○ factorial(4) receives 6 from factorial(3), multiplies 4 to it, and
returns 24 back to the suspended call factorial(5).○ factorial(5) receives 24 from factorial(4), multiplies 5 to it, and
returns 120 as the result.

5 of 40

Recursion: Factorial (4)

● When the execution of a method (e.g., factorial(5)) leads to a
nested method call (e.g., factorial(4)):○ The execution of the current method (i.e., factorial(5)) is

suspended , and a structure known as an activation record or
activation frame is created to store information about the

progress of that method (e.g., values of parameters and local
variables).○ The nested methods (e.g., factorial(4)) may call other nested
methods (factorial(3)).○ When all nested methods complete, the activation frame of the
latest suspended method is re-activated, then continue its
execution.

● What kind of data structure does this activation-suspension
process correspond to? [LIFO Stack]

6 of 40

Tracing Recursion using a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.
⇒ The stack contains activation records of all active methods.○ Top of stack denotes the current point of execution .○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

7 of 40

Recursion: Fibonacci (1)

Recall the formal definition of calculating the nth number in a
Fibonacci series (denoted as Fn), which is already itself
recursive:

Fn =
�����������

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

int fib (int n) {
int result;
if(n == 1) { /* base case */ result = 1; }
else if(n == 2) { /* base case */ result = 1; }
else { /* recursive case */

result = fib (n - 1) + fib (n - 2);
}
return result;

}

8 of 40

Recursion: Fibonacci (2)fib(5)

= {fib(5) = fib(4) + fib(3); push(fib(5)); suspended: �fib(5)�; active: fib(4)}
fib(4) + fib(3)

= {fib(4) = fib(3) + fib(2); suspended: �fib(4), fib(5)�; active: fib(3)}
(fib(3) + fib(2)) + fib(3)

= {fib(3) = fib(2) + fib(1); suspended: �fib(3), fib(4), fib(5)�; active: fib(2)}
((fib(2) + fib(1)) + fib(2)) + fib(3)

= {fib(2) returns 1; suspended: �fib(3), fib(4), fib(5)�; active: fib(1)}
((1 + fib(1)) + fib(2)) + fib(3)

= {fib(1) returns 1; suspended: �fib(3), fib(4), fib(5)�; active: fib(3)}((1 + 1) + fib(2)) + fib(3)= {fib(3) returns 1 + 1; pop(); suspended: �fib(4), fib(5)�; active: fib(2)}
(2 + fib(2)) + fib(3)

= {fib(2) returns 1; suspended: �fib(4), fib(5)�; active: fib(4)}(2 + 1) + fib(3)= {fib(4) returns 2 + 1; pop(); suspended: �fib(5)�; active: fib(3)}
3 + fib(3)

= {fib(3) = fib(2) + fib(1); suspended: �fib(3),fib(5)�; active: fib(2)}
3 + (fib(2) + fib(1))

= {fib(2) returns 1; suspended: �fib(3), fib(5)�; active: fib(1)}
3 + (1 + fib(1))

= {fib(1) returns 1; suspended: �fib(3), fib(5)�; active: fib(3)}
3 + (1 + 1)= {fib(3) returns 1 + 1; pop() ; suspended: �fib(5)�; active: fib(5)}
3 + 2= {fib(5) returns 3 + 2; suspended: ��}
59 of 40

Java Library: String
public class StringTester {
public static void main(String[] args) {
String s = "abcd";
System.out.println(s.isEmpty()); /* false */
/* Characters in index range [0, 0) */
String t0 = s.substring(0, 0);
System.out.println(t0); /* "" */
/* Characters in index range [0, 4) */
String t1 = s.substring(0, 4);
System.out.println(t1); /* "abcd" */
/* Characters in index range [1, 3) */
String t2 = s.substring(1, 3);
System.out.println(t2); /* "bc" */
String t3 = s.substring(0, 2) + s.substring(2, 4);
System.out.println(s.equals(t3)); /* true */
for(int i = 0; i < s.length(); i ++) {
System.out.print(s.charAt(i));

}
System.out.println();

}
}

10 of 40

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards
and backwards. Write a method that takes a string and
determines whether or not it is a palindrome.
System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string �→ Return true immediately.
Base Case 2: String of length 1 �→ Return true immediately.
Recursive Case: String of length ≥ 2 �→○ 1st and last characters match, and○ the rest (i.e., middle) of the string is a palindrome .

11 of 40

Recursion: Palindrome (2)

boolean isPalindrome (String word) {
if(word.length() == 0 || word.length() == 1) {
/* base case */
return true;

}
else {
/* recursive case */
char firstChar = word.charAt(0);
char lastChar = word.charAt(word.length() - 1);
String middle = word.substring(1, word.length() - 1);
return

firstChar == lastChar
/* See the API of java.lang.String.substring. */

&& isPalindrome (middle);
}

}

12 of 40

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.
System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf("ab")); "ba"
System.out.println(reverseOf("abc")); "cba"
System.out.println(reverseof("abcd")); "dcba"

Base Case 1: Empty string �→ Return empty string.
Base Case 2: String of length 1 �→ Return that string.
Recursive Case: String of length ≥ 2 �→

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 1) and 2).

13 of 40

Recursion: Reverse of a String (2)

String reverseOf (String s) {
if(s.isEmpty()) { /* base case 1 */
return "";

}
else if(s.length() == 1) { /* base case 2 */
return s;

}
else { /* recursive case */
String tail = s.substring(1, s.length());
String reverseOfTail = reverseOf (tail);
char head = s.charAt(0);
return reverseOfTail + head;

}
}

14 of 40

Recursion: Number of Occurrences (1)
Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of c in s.
System.out.println(occurrencesOf("", ’a’)); /* 0 */
System.out.println(occurrencesOf("a", ’a’)); /* 1 */
System.out.println(occurrencesOf("b", ’a’)); /* 0 */
System.out.println(occurrencesOf("baaba", ’a’)); /* 3 */
System.out.println(occurrencesOf("baaba", ’b’)); /* 2 */
System.out.println(occurrencesOf("baaba", ’c’)); /* 0 */

Base Case: Empty string �→ Return 0.
Recursive Case: String of length ≥ 1 �→

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)
If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

15 of 40

Recursion: Number of Occurrences (2)

int occurrencesOf (String s, char c) {
if(s.isEmpty()) {
/* Base Case */
return 0;

}
else {
/* Recursive Case */
char head = s.charAt(0);
String tail = s.substring(1, s.length());
if(head == c) {

return 1 + occurrencesOf (tail, c);
}
else {

return 0 + occurrencesOf (tail, c);
}

}
}

16 of 40

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /* true */
System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */
System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array �→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a number not positive) from an empty array.
Recursive Case: Non-Empty array �→○ 1st element positive, and○ the rest of the array is all positive .
Exercise: Write a method boolean somePostive(int[]
a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]∵ No witness (i.e., a positive number) from an empty array

17 of 40

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.● Naively , explicitly create a new, smaller array:

void m(int[] a) {
int[] subArray = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { subArray[0] = a[i - 1]; }
m(subArray) }

● For efficiency , we pass the same array by reference and
specify the range of indices to be considered:
void m(int[] a, int from, int to) {
if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]● m(a, 2, a.length - 1) [2nd r.c. on array of size a.length − 2]
. . .● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]

18 of 40

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);

}

boolean allPositiveHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return a[from] > 0;

}
else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);
}

}

19 of 40

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.
System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array �→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array �→○ 1st and 2nd elements are sorted in a non-descending order, and○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending positive .
20 of 40

Recursion: Is an Array Sorted? (2)

boolean isSorted(int[] a) {

return isSortedHelper (a, 0, a.length - 1);

}

boolean isSortedHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return true;

}
else {
return a[from] <= a[from + 1]

&& isSortedHelper (a, from + 1, to);
}

}

21 of 40

Recursion: Sorting an Array (1)

Problem: Sort an array into a non-descending order, using the
selection-sort strategy.
Base Case: Arrays of size 0 or 1 �→ Completed immediately.
Recursive Case: Non-Empty array a �→

Run an iteration from indices i = 0 to a.length − 1.
In each iteration:
● In index range [i ,a.length − 1], recursively compute the minimum

element e .
● Swap a[i] and e if e < a[i].

22 of 40

Recursion: Sorting an Array (2)
public static int getMinIndex (int[] a, int from, int to) {

if(from == to) { return from; }
else {
int minIndexOfTail = getMinIndex(a, from + 1, to);
if(a[from] < a[minIndexOfTail]) { return from; }
else { return minIndexOfTail; }

}
}
public static void selectionSort(int[] a) {
if(a.length == 0 || a.length == 1) { /* sorted, do nothing */ }
else {
for(int i = 0; i < a.length; i ++) {

int minIndex = getMinIndex (a, i, a.length - 1);

/* swap a[i] and a[minIndex] */
int temp = a[i];
a[i] = a[minIndex];
a[minIndex] = temp;

}
}

}

23 of 40

Recursion: Binary Search (1)
● Searching Problem

Input: A number a and a sorted list of n numbers�a1, a2, . . . , an� such that a′1 ≤ a′2 ≤. . . ≤ a′n
Output: Whether or not a exists in the input list

● An Efficient Recursive Solution
Base Case: Empty list �→ False.
Recursive Case: List of size ≥ 1 �→○ Compare the middle element against a.

● All elements to the left of middle are ≤ a● All elements to the right of middle are ≥ a○ If the middle element is equal to a �→ True.○ If the middle element is not equal to a:
● If a < middle, recursively find a on the left half.● If a > middle, recursively find a on the right half.

24 of 40

Recursion: Binary Search (2)
boolean binarySearch(int[] sorted, int key) {

return binarySearchHelper (sorted, 0, sorted.length - 1, key);
}

boolean binarySearchHelper (int[] sorted, int from, int to, int key) {

if (from > to) { /* base case 1: empty range */
return false; }

else if(from == to) { /* base case 2: range of one element */
return sorted[from] == key; }

else {
int middle = (from + to) / 2;
int middleValue = sorted[middle];
if(key < middleValue) {

return binarySearchHelper (sorted, from, middle - 1, key);
}
else if (key > middleValue) {

return binarySearchHelper (sorted, middle + 1, to, key);
}
else { return true; }

}
}

25 of 40

Tower of Hanoi: Specification
The Tower of Hanoi

Tower of Hanoi puzzle is attributed to the French
mathematician Edouard Lucas, who came up with it in 1883.
His formulation involved three pegs and eight distinctly-sized
disks stacked on one of the pegs from the biggest on the
bottom to the smallest on the top, like so:

● Given: A tower of 8 disks, initially
stacked in decreasing size on
one of 3 pegs

● Rules:○ Move only one disk at a time○ Never move a larger disk onto a
smaller one

● Problem: Transfer the entire
tower to one of the other pegs.

26 of 40

Tower of Hanoi: Strategy

● Generalize the problem by considering n disks.
● Introduce appropriate notation:○ Tn denotes the minimum number of moves required to to transfer n

disks from one to another under the rules.
● General patterns are easier to perceive when the extreme or

base cases are well understood.○ Look at small cases first:
● T1 = 1● T2 = 3● How about T3? Does it help us perceive the general case of n?

27 of 40

Tower of Hanoi: A General Solution Pattern
A possible (yet to be proved as optimal) solution requires 3 steps:
1. Transfer the n - 1 smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the n - 1 disks back onto the largest disk.
How many moves are required from the above 3 steps?

(2 × Tn−1) + 1

However, we have only proved that the # moves required by this
solution are sufficient :

Tn ≤ (2 × Tn−1) + 1

But are the above steps all necessary? Can you justify?

Tn ≥ (2 × Tn−1) + 1
28 of 40

Tower of Hanoi: Recurrence Relation for Tn

We end up with the following recurrence relation that allows us to
compute Tn for any n we like:

T0 = 0
Tn = (2 × Tn−1) + 1 for n > 0

However, the above relation only gives us indirect information:
To calculate Tn, first calculate Tn−1, which requires the
calculation of Tn−2, and so on.

Instead, we need a closed-form solution to the above recurrence
relation, which allows us to directly calculate the value of Tn.

29 of 40

Tower of Hanoi:
A Hypothesized Closed Form Solution to Tn

T0 = 0
T1 = 2 × T0 + 1 = 1
T2 = 2 × T1 + 1 = 3
T3 = 2 × T2 + 1 = 7
T4 = 2 × T3 + 1 = 15
T5 = 2 × T4 + 1 = 31
T6 = 2 × T5 + 1 = 63
. . .

Guess:
Tn = 2n − 1 for n ≥ 0

Prove by mathematical induction.

30 of 40

Tower of Hanoi:
Prove by Mathematical Induction
Basis:

T0 = 20 − 1 = 0
Induction:

Assume that
Tn−1 = 2n−1 − 1

then
Tn= {Recurrence relation for Tn}(2 × Tn−1) + 1= {Inductive assumption}(2 × (2n−1 − 1)) + 1= {Arithmetic}
2n − 1

31 of 40

Revisiting the Tower of Hanoi

Given: A tower of 8 disks, initially stacked in decreasing size on
one of 3 pegs.
This shall require

T8 = 28 − 1 = 255

moves to complete.

32 of 40

Tower of Hanoi in Java (1)
void towerOfHanoi(String[] disks) {

tohHelper (disks, 0, disks.length - 1, 1, 3);

}
void tohHelper(String[] disks, int from, int to, int p1, int p2) {
if(from > to) { }
else if(from == to) {
print("move " + disks[to] + " from " + p1 + " to " + p2);

}
else {
int intermediate = 6 - p1 - p2;
tohHelper (disks, from, to - 1, p1, intermediate);
print("move " + disks[to] + " from " + p1 + " to " + p2);
tohHelper (disks, from, to - 1, intermediate, p2);

}
}

● tohHelper(disks, from, to, p1, p2) moves disks{disks[from],disks[from + 1],. . . ,disks[to]} from peg p1 to peg p2.● Peg id’s are 1, 2, and 3⇒ The intermediate one is 6 − p1 − p2.
33 of 40

Tower of Hanoi in Java (2)

Say ds (disks) is {A,B,C}, where A < B < C.

tohH(ds, 0, 2���{A,B,C}
, p1, p3) =

���

tohH(ds, 0, 1���{A,B}
, p1, p2) =

�������������������������������

tohH(ds, 0, 0���{A}
, p1, p3) = � Move A: p1 to p3

Move B: p1 to p2

tohH(ds, 0, 0���{A}
, p3, p2) = � Move A: p3 to p2

Move C: p1 to p3

tohH(ds, 0, 1���{A,B}
, p2, p3) =

�������������������������������

tohH(ds, 0, 0���{A}
, p2, p1) = � Move A: p2 to p1

Move B: p2 to p3

tohH(ds, 0, 0���{A}
, p1, p3) = � Move A: p1 to p3

34 of 40

Tower of Hanoi in Java (3)

towerOfHanio({A, B, C})

tohHelper({A, B, C}, 0, 2, p1, p3)

tohHelper({A, B, C}, 0, 1, p1, p2) tohHelper({A, B, C}, 0, 1, p2, p3)move C from p1 to p3

tohHelper({A, B, C}, 0, 0, p1, p3) move B from p1 to p2 tohHelper({A, B, C}, 0, 0, p3, p2)

move A from p1 to p3 move A from p3 to p2

tohHelper({A, B, C}, 0, 0, p2, p1) move B from p2 to p3 tohHelper({A, B, C}, 0, 0, p1, p3)

move A from p2 to p1 move A from p1 to p3

35 of 40

Recursive Methods: Correctness Proofs
1 boolean allPositive(int[] a) { return allPosH (a, 0, a.length - 1); }

2 boolean allPosH (int[] a, int from, int to) {
3 if (from > to) { return true; }
4 else if(from == to) { return a[from] > 0; }

5 else { return a[from] > 0 && allPosH (a, from + 1, to); } }

● Via mathematical induction, prove that allPosH is correct:
Base Cases● In an empty array, there is no non-positive number ∴ result is true. [L3]● In an array of size 1, the only one elements determines the result. [L4]
Inductive Cases● Inductive Hypothesis: allPosH(a, from + 1, to) returns true if

a[from + 1], a[from + 2], . . . , a[to] are all positive; false otherwise.● allPosH(a, from, to) should return true if: 1) a[from] is positive;
and 2) a[from + 1], a[from + 2], . . . , a[to] are all positive.

● By I.H. , result is a[from] > 0 ∧ allPosH(a, from + 1, to) . [L5]● allPositive(a) is correct by invoking
allPosH(a, 0, a.length - 1) , examining the entire array. [L1]

36 of 40

Beyond this lecture . . .
● Notes on Recursion:
http://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2017/F/EECS2030/slides/EECS2030_F17_
Notes_Recursion.pdf

● API for String:
https://docs.oracle.com/javase/8/docs/api/
java/lang/String.html

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2
● The best approach to learning about recursion is via a

functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

37 of 40

Index (1)
Recursion: Principle
Recursion: Factorial (1)
Recursion: Factorial (2)
Recursion: Factorial (3)
Recursion: Factorial (4)
Tracing Recursion using a Stack
Recursion: Fibonacci (1)
Recursion: Fibonacci (2)
Java Library: String
Recursion: Palindrome (1)
Recursion: Palindrome (2)
Recursion: Reverse of a String (1)
Recursion: Reverse of a String (2)
Recursion: Number of Occurrences (1)

38 of 40

Index (2)
Recursion: Number of Occurrences (2)
Recursion: All Positive (1)
Making Recursive Calls on an Array
Recursion: All Positive (2)
Recursion: Is an Array Sorted? (1)
Recursion: Is an Array Sorted? (2)
Recursion: Sorting an Array (1)
Recursion: Sorting an Array (2)
Recursion: Binary Search (1)
Recursion: Binary Search (2)
Tower of Hanoi: Specification
Tower of Hanoi: Strategy
Tower of Hanoi: A General Solution Pattern
Tower of Hanoi: Recurrence Relation for Tn

39 of 40

Index (3)
Tower of Hanoi:
A Hypothesized Closed Form Solution to Tn

Tower of Hanoi:
Prove by Mathematical Induction

Revisiting the Tower of Hanoi

Tower of Hanoi in Java (1)

Tower of Hanoi in Java (2)

Tower of Hanoi in Java (3)

Recursive Methods: Correctness Proofs

Beyond this lecture . . .

40 of 40

Binary Trees

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

General Trees

● A linear data structure is a sequence, where stored objects can
be related via the “before” and “after ” relationships.
e.g., arrays, singly-linked lists, and doubly-linked lists

● A tree is a non-linear collection of nodes.○ Each node stores some data object.○ Nodes stored in a tree is organized in a non-linear manner.○ In a tree , the relationships between stored objects are
hierarchical : some objects are “above” others, and some are

“below” others.
● The main terminology for the tree data structure comes from

that of family trees: parents, siblings, children, ancestors,
descendants.

2 of 37

General Trees: Terminology (1)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ root of tree : top element of the tree
e.g., root of the above family tree: David○ parent of node v : node immediately above and connected to v
e.g., parent of Vanessa: Elsa○ children of node v : nodes immediately below and connected to v
e.g., children of Elsa: Shirley, Vanessa, and Peter
e.g., children of Ernesto: �

3 of 37

General Trees: Terminology (2)

David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ ancestors of node v : v + v ’s parent + v ’s grand parent + . . .
e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David
e.g., ancestors of David: David○ descendants of node v : v + v ’s children + v ’s grand children + . . .
e.g., descendants of Vanessa: Vanessa
e.g., descendants of David: the entire family tree

4 of 37

General Trees: Terminology (3)
David

Ernesto Chris

Elsa

Shirley Vanessa Peter

Anna

○ siblings of node v : nodes whose parents are the same as v ’s
e.g., siblings of Vanessa: Shirley and Peter○ subtree rooted at v : a tree formed by all descendant of v

○ external nodes (leaves) : nodes that have no children
e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa,
Peter○ internal nodes : nodes that has at least one children
e.g., non-leaves of the above tree: David, Chris, Elsa

5 of 37

Exercise: Identifying Subtrees
How many subtrees are there?

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

15 subtrees [i.e., subtrees rooted at each node]

SIZE OF SUBTREE ROOTS OF SUBTREES

1 H, I, J, K, L, M, N, O
3 D, E, F, G
7 B, C

15 A
6 of 37

General Tree: Important Characteristics

There is a single unique path along the edges from the root to
any particular node.

4

Important Characteristics Important Characteristics – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT (cont.)

legal tree organization

illegal tree organization (nontrees)

4

Important Characteristics Important Characteristics – there is a single unique path along the
of Treesof Trees edges from the root to any particular node

Tree ADT (cont.)

legal tree organization

illegal tree organization (nontrees)
7 of 37

General Trees: Ordered Trees

A tree is ordered if there is a meaningful linear order among
the children of each node.

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

...§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

8 of 37

General Trees: Unordered Trees

A tree is unordered if the order among the children of each
node does not matter.

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

9 of 37

Binary Trees

● A binary tree is an ordered tree which satisfies the following
properties:
1. Each node has at most two children.
2. Each child node is labeled as either a left child or a right child .
3. A left child precedes a right child in the order of children of a node.

10 of 37

Binary Trees: Terminology (1)
For an internal node n :
● Subtree rooted at its left child is called left subtree .

n has no left child⇒ n ’s left subtree is empty
● Subtree rooted at its right child is called right subtree .

n has no right child⇒ n ’s right subtree is empty

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

A ’s left subtree is rooted at B and right subtree rooted at C .
H ’s left subtree and right subtree are both empty.

11 of 37

Binary Trees: Recursive Definition

A binary tree is either:
● An empty tree; or
● A nonempty tree with a root node r that
○ has a left binary subtree rooted at its left child
○ has a right binary subtree rooted at its right child

⇒ To solve problems recursively on a binary tree rooted at r :
● Do something with root r .
● Recur on r ’s left subtree. [strictly smaller problem]
● Recur on r ’s right subtree. [strictly smaller problem]
Similar to how we recur on subarrays (by passing the from and
to indices), we recur on subtrees by passing their roots (i.e.,
the current root’s left child and right child).

12 of 37

Binary Trees: Application (1)
A decision tree is a binary tree used to to express the
decision-making process:● Each internal node has two children (yes and no).● Each external node represents a decision.

Do you attend classes regularly?

yes no

Do try out all code examples?

Do you ask for help whenever getting stuck?

You may pass if
there is a miracle!

You may pass with
30% confidence!

no

no

You may pass with
another 30% confidence!

You may pass with
another 30% confidence!

yes

yes

13 of 37

Binary Trees: Application (2)
An arithmetic expression can be represented using a binary tree:
● Each internal node denotes an operator (unary or binary).● Each external node denotes an operand (i.e., a number).

e.g., Use a binary tree to represent the arithmetic expression
(((3 + 1) * 3) / ((9 - 5) + 2)) - ((3 * (7 - 4)) + 6)

∗

+

−

+ 3

9 5

+

2− 3 −

6

3 1 7 4

/

∗

● To print, or to evaluate, the expression that is represented by a
binary tree, certain traversal over the entire tree is required.

14 of 37

Tree Traversal Algorithms: Definition

● A traversal of a tree T is a systematic way of visiting all the
nodes of T .

● The visit of each node may be associated with an action: e.g.,○ print the node element○ determine if the node element satisfies certain property○ accumulate the node element value to some global counter

15 of 37

Tree Traversal Algorithms: Common Types● Inorder: Visit left subtree, then parent, then right subtree.
inorder (r): if(r != null) {/*subtree with root r is not empty*/

inorder (r’s left child)
visit and act on the subtree rooted at r
inorder (r’s right child) }

● Preorder: Visit parent, then left subtree, then right subtree.
preorder (r): if(r != null) {/*subtree with root r is not empty*/

visit and act on the subtree rooted at r
preorder (r’s left child)

preorder (r’s right child) }

● Postorder: Visit left subtree, then right subtree, then parent.
postorder (r): if(r != null) {/*subtree with root r is not empty*/

postorder (r’s left child)

postorder (r’s right child)

visit and act on the subtree rooted at r }

16 of 37

Tree Traversal: Inorder
A

B C

D E F G

H I J

inorder traversal from the root A:
H���

inorder(H)
D I���

inorder(I)��
inorder(D)

B J���
inorder(J)

E

��
inorderE��

inorderB

A F���
inorder(F)

C G���
inorder(G)���

inorder(C)

��
inorder(A)

17 of 37

Tree Traversal: Preorder
A

B C

D E F G

H I J

preorder traversal from the root A:
A B D H���

preorder(H)
I���

preorder(I)��
preorder(D)

E J���
preorder(J)���

preorder(E)���
preorder(B)

C F���
preoder(F)

G���
preoreder(G)��

preorder(C)

��
preorder(A)

18 of 37

Tree Traversal: Postorder
A

B C

D E F G

H I J

postorder traversal from the root A:
H���

postorder(H)
I���

postorder(I)
D

��
postorder(D)

J���
postorder(J)

E

��
postorder(E)

B

��
postorder(B)

F���
postorder(F)

G���
postorder(G)

C

���
postorder(C)

A

��
postorder(A)

19 of 37

Tree Traversal: Exercises

∗

+

−

+ 3

9 5

+

2− 3 −

6

3 1 7 4

/

∗

●
inorder traversal from the root:
3+1*3/9-5+2-3*7-4+6●
preorder traversal from the root:
-/*+313+-952+*3-746●
postorder traversal from the root:
31+3*95-2+/374-*6+-

20 of 37

Binary Tree in Java: Linked Node

public class BTNode {
private String element;
private BTNode left;
private BTNode right;

BTNode(String element) {
this.element = element;

}

public String getElement() { return element; }
public BTNode getLeft() { return left; }
public BTNode getRight() { return right; }

public void setElement(String element) { this.element = element; }
public void setLeft(BTNode left) { this.left = left; }
public void setRight(BTNode right) { this.right = right; }

}

21 of 37

Binary Tree in Java: Root Note

public class BinaryTree {
private BTNode root;

public BinaryTree() {
/* Initialize an empty binary tree with root being null. */
}

public void setRoot(BTNode root) {
this.root = root;

}

. . .
}

22 of 37

Binary Tree in Java: Adding Nodes (1)

public class BinaryTree {
private BTNode root;
public void addToLeft(BTNode n, String element) {
if(n.getLeft() != null) {
throw new IllegalArgumentException("Left is already there");

}
n.setLeft(new BTNode(element));

}
public void addToRight(BTNode n, String element) {
if(n.getRight() != null) {
throw new IllegalArgumentException("Right is already there");

}
n.setRight(new BTNode(element));

}
}

● The way we implement the add methods is not recursive.
● These two add methods assume that the caller calls them by

passing references of the parent nodes.
23 of 37

Binary Tree in Java: Adding Nodes (2)
Exercise: Write Java code to construct the following binary tree:

D

B F

A C E G

root

left

left left

right

right right

BinaryTree bt = new BinaryTree(); /* empty binary tree */
BTNode root = new BTNode("D"); /* node disconnected from BT */
bt.setRoot(root); /* node connected to BT */
bt.addToLeft(root, "B");
bt.addToRight(root, "F");
bt.addToLeft(root.getLeft(), "A");
bt.addToRight(root.getLeft(), "C");
bt.addToLeft(root.getRight(), "E");
bt.addToRight(root.getRight(), "G");

24 of 37

Binary Tree in Java: Counting Size (1)
Size of a tree rooted at r is 1 (counting r itself) plus the size of

r ’s left subtree and plus the size of r ’s right subtree.

public class BinaryTree {
private BTNode root;

public int size() { return sizeHelper (root); }

private int sizeHelper (BTNode root) {

if(root == null) {
return 0;

}
else {
return

1

+ sizeHelper (root.getLeft())

+ sizeHelper (root.getRight());
}

}
}

25 of 37

Binary Tree in Java: Counting Size (2)

@Test
public void testBTSize() {
BinaryTree bt = new BinaryTree();
assertEquals(0, bt.size());

BTNode root = new BTNode("D");
bt.setRoot(root);
assertEquals(1, bt.size());

bt.addToLeft(root, "B");
bt.addToRight(root, "F");
bt.addToLeft(root.getLeft(), "A");
bt.addToRight(root.getLeft(), "C");
bt.addToLeft(root.getRight(), "E");
bt.addToRight(root.getRight(), "G");
assertEquals(7, bt.size());

}

26 of 37

Binary Tree in Java: Membership (1)
An element e exists in a tree rooted at r if either r contains e,
or r ’s left subtree contains e, or r ’s right subtree contains e.

public class BinaryTree {
private BTNode root;

public boolean has(String e) { return hasHelper (root, e); }

private boolean hasHelper (BTNode root, String e) {

if(root == null) {
return false;

}
else {
return

root.getElement().equals(e)

|| hasHelper (root.getLeft(), e)

|| hasHelper (root.getRight(), e);

}
}

}

27 of 37

Binary Tree in Java: Membership (2)
@Test
public void testBTMembership() {
BinaryTree bt = new BinaryTree();
assertFalse(bt.has("D"));
BTNode root = new BTNode("D");
bt.setRoot(root);
assertTrue(bt.has("D"));
assertFalse(bt.has("A"));
bt.addToLeft(root, "B");
bt.addToRight(root, "F");
bt.addToLeft(root.getLeft(), "A");
bt.addToRight(root.getLeft(), "C");
bt.addToLeft(root.getRight(), "E");
bt.addToRight(root.getRight(), "G");
assertTrue(bt.has("A")); assertTrue(bt.has("B"));
assertTrue(bt.has("C")); assertTrue(bt.has("D"));
assertTrue(bt.has("E")); assertTrue(bt.has("F"));
assertTrue(bt.has("G"));
assertFalse(bt.has("H"));
assertFalse(bt.has("I"));

}

28 of 37

Binary Tree in Java: Inorder Traversal (1)

public class BinaryTree {
private BTNode root;

public ArrayList<String> inroder() {
ArrayList<String> list = new ArrayList<>();

inorderHelper (root, list);

return list;
}

private void inorderHelper (BTNode root, ArrayList<String> list) {

if(root != null) {

inorderHelper (root.getLeft(), list);

list.add(root.getElement());

inorderHelper (root.getRight(), list);

}
}

}

29 of 37

Binary Tree in Java: Inorder Traversal (2)
@Test
public void testBT_inorder() {
BinaryTree bt = new BinaryTree();
BTNode root = new BTNode("D");
bt.setRoot(root);
bt.addToLeft(root, "B");
bt.addToRight(root, "F");
bt.addToLeft(root.getLeft(), "A");
bt.addToRight(root.getLeft(), "C");
bt.addToLeft(root.getRight(), "E");
bt.addToRight(root.getRight(), "G");

ArrayList<String> list = bt.inroder() ;

assertEquals(list.get(0), "A");
assertEquals(list.get(1), "B");
assertEquals(list.get(2), "C");
assertEquals(list.get(3), "D");
assertEquals(list.get(4), "E");
assertEquals(list.get(5), "F");
assertEquals(list.get(6), "G");

}

30 of 37

Binary Tree in Java: Preorder Traversal (1)

public class BinaryTree {
private BTNode root;

public ArrayList<String> preorder() {
ArrayList<String> list = new ArrayList<>();

preorderHelper (root, list);

return list;
}

private void preorderHelper (BTNode root, ArrayList<String> list) {

if(root != null) {
list.add(root.getElement());

preorderHelper (root.getLeft(), list);

preorderHelper (root.getRight(), list);

}
}

}

31 of 37

Binary Tree in Java: Preorder Traversal (2)
@Test
public void testBT_inorder() {
BinaryTree bt = new BinaryTree();
BTNode root = new BTNode("D");
bt.setRoot(root);
bt.addToLeft(root, "B");
bt.addToRight(root, "F");
bt.addToLeft(root.getLeft(), "A");
bt.addToRight(root.getLeft(), "C");
bt.addToLeft(root.getRight(), "E");
bt.addToRight(root.getRight(), "G");

ArrayList<String> list = bt.preorder() ;

assertEquals(list.get(0), "D");
assertEquals(list.get(1), "B");
assertEquals(list.get(2), "A");
assertEquals(list.get(3), "C");
assertEquals(list.get(4), "F");
assertEquals(list.get(5), "E");
assertEquals(list.get(6), "G");

}

32 of 37

Binary Tree in Java: Postorder Traversal (1)

public class BinaryTree {
private BTNode root;

public ArrayList<String> preorder() {
ArrayList<String> list = new ArrayList<>();

postorderHelper (root, list);

return list;
}

private void postorderHelper (BTNode root, ArrayList<String> list) {

if(root != null) {
list.add(root.getElement());

postorderHelper (root.getLeft(), list);

postorderHelper (root.getRight(), list);

}
}

}

33 of 37

Binary Tree in Java: Postorder Traversal (2)
@Test
public void testBT_inorder() {
BinaryTree bt = new BinaryTree();
BTNode root = new BTNode("D");
bt.setRoot(root);
bt.addToLeft(root, "B");
bt.addToRight(root, "F");
bt.addToLeft(root.getLeft(), "A");
bt.addToRight(root.getLeft(), "C");
bt.addToLeft(root.getRight(), "E");
bt.addToRight(root.getRight(), "G");

ArrayList<String> list = bt.postorder() ;

assertEquals(list.get(0), "A");
assertEquals(list.get(1), "C");
assertEquals(list.get(2), "B");
assertEquals(list.get(3), "E");
assertEquals(list.get(4), "G");
assertEquals(list.get(5), "F");
assertEquals(list.get(6), "D");

}

34 of 37

Index (1)
General Trees
General Trees: Terminology (1)
General Trees: Terminology (2)
General Trees: Terminology (3)
Exercise: Identifying Subtrees
General Tree: Important Characteristics
General Trees: Ordered Trees
General Trees: Unordered Trees
Binary Trees
Binary Trees: Terminology (1)
Binary Trees: Recursive Definition
Binary Trees: Application (1)
Binary Trees: Application (2)
Tree Traversal Algorithms: Definition

35 of 37

Index (2)
Tree Traversal Algorithms: Common Types
Tree Traversal: Inorder
Tree Traversal: Preorder
Tree Traversal: Postorder
Tree Traversal: Exercises
Binary Tree in Java: Linked Node
Binary Tree in Java: Root Node
Binary Tree in Java: Adding Nodes (1)
Binary Tree in Java: Adding Nodes (2)
Binary Tree in Java: Counting Size (1)
Binary Tree in Java: Counting Size (2)
Binary Tree in Java: Membership (1)
Binary Tree in Java: Membership (2)
Binary Tree in Java: Inorder Traversal (1)

36 of 37

Index (3)
Binary Tree in Java: Inorder Traversal (2)

Binary Tree in Java: Preorder Traversal (1)

Binary Tree in Java: Preorder Traversal (2)

Binary Tree in Java: Postorder Traversal (1)

Binary Tree in Java: Postorder Traversal (2)

37 of 37

Inheritance

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

2 of 97

No Inheritance: ResidentStudent Class
class ResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double premiumRate; /* there’s a mutator method for this */

ResidentStudent (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * premiumRate ;
}

}3 of 97

No Inheritance: NonResidentStudent Class
class NonResidentStudent {
String name;
Course[] registeredCourses;
int numberOfCourses;

double discountRate; /* there’s a mutator method for this */

NonResidentStudent (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}

return tuition * discountRate ;
}

}4 of 97

No Inheritance: Testing Student Classes
class Course {
String title;
double fee;
Course(String title, double fee) {
this.title = title; this.fee = fee; } }

class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

5 of 97

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.

6 of 97

No Inheritance: Maintainability of Code (1)

What if the way for registering a course changes?
e.g.,
void register(Course c) {
if (numberOfCourses >= MAX_ALLOWANCE) {
throw new IllegalArgumentException("Maximum allowance reached.");

}
else {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
}

We need to change the register method in both student
classes!

7 of 97

No Inheritance: Maintainability of Code (2)

What if the way for calculating the base tuition changes?
e.g.,
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
/* . . . can be premiumRate or discountRate */
return tuition * inflationRate * . . .;

}

We need to change the getTuition method in both student
classes.

8 of 97

No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?

class StudentManagementSystem {
ResidentStudent[] rss;
NonResidentStudent[] nrss;
int nors; /* number of resident students */
int nonrs; /* number of non-resident students */
void addRS (ResidentStudent rs){ rss[nors]=rs; nors++; }
void addNRS (NonResidentStudent nrs){ nrss[nonrs]=nrs; nonrs++; }
void registerAll (Course c) {
for(int i = 0; i < nors; i ++) { rss[i].register(c); }
for(int i = 0; i < nonrs; i ++) { nrss[i].register(c); }

} }

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately !

9 of 97

Inheritance Architecture

ResidentStudent NonResidentStudent

Student

extends
extends

10 of 97

Inheritance: The Student Parent/Super Class
class Student {
String name;
Course[] registeredCourses;
int numberOfCourses;
Student (String name) {
this.name = name;
registeredCourses = new Course[10];

}
void register(Course c) {
registeredCourses[numberOfCourses] = c;
numberOfCourses ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < numberOfCourses; i ++) {
tuition += registeredCourses[i].fee;

}
return tuition; /* base amount only */

}
}

11 of 97

Inheritance:
The ResidentStudent Child/Sub Class

1 class ResidentStudent extends Student {

2 double premiumRate; /* there’s a mutator method for this */

3 ResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * premiumRate ;
8 }
9 }

● L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.● There is no need to repeat the register method● Use of super in L4 is as if calling Student(name)● Use of super in L8 returns what getTuition() in Student returns.● Use super to refer to attributes/methods defined in the super class:
super.name , super.register(c) .

12 of 97

Inheritance:
The NonResidentStudent Child/Sub Class

1 class NonResidentStudent extends Student {

2 double discountRate; /* there’s a mutator method for this */

3 NonResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * discountRate ;
8 }
9 }

● L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.● There is no need to repeat the register method● Use of super in L4 is as if calling Student(name)● Use of super in L8 returns what getTuition() in Student returns.● Use super to refer to attributes/methods defined in the super class:
super.name , super.register(c) .

13 of 97

Inheritance Architecture Revisited

ResidentStudent NonResidentStudent

Student

extends
extends

● The class that defines the common attributes and methods is
called the parent or super class.

● Each “extended” class is called a child or sub class.
14 of 97

Visualizing Parent/Child Objects (1)

● A child class inherits all attributes from its parent class.
⇒ A child instance has at least as many attributes as an
instance of its parent class.
Consider the following instantiations:
Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

● How will these initial objects look like?

15 of 97

Visualizing Parent/Child Objects (2)

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

null

0

null

1

… null

8

null

9

0

Student

name

numberOfCourses

registeredCourses

“Stella”
s

null

0

null

1

… null

8

null

9

0

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

null

0

null

1

… null

8

null

9

discountRate

premiumRate

16 of 97

Using Inheritance for Code Reuse

Inheritance in Java allows you to:○ Define common attributes and methods in a separate class.
e.g., the Student class○ Define an “extended” version of the class which:
● inherits definitions of all attributes and methods

e.g., name, registeredCourses, numberOfCourses
e.g., register
e.g., base amount calculation in getTuition

This means code reuse and elimination of code duplicates!
● defines new attributes and methods if necessary

e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent● redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

17 of 97

Inheritance Architecture Revisited

NonResidentStudent

Student

ResidentStudent

String name
Course[] registeredCourses
int numberOfCourses

Student(String name)
void register(Course c)
double getTuition()

/* new attributes, new methods */
ResidentStudent(String name)
double premiumRate
void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* new attributes, new methods */
NonResidentStudent(String name)
double discountRate
void setDiscountRate(double r)
/* redefined/overridden methods */
double getTuition()

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

name rcs noc reg getT pr setPR dr setDR

s. ✓ ×
rs. ✓ ✓ ×
nrs. ✓ × ✓

18 of 97

Testing the Two Student Sub-Classes
class StudentTester {
static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

● The software can be used in exactly the same way as before
(because we did not modify method signatures).● But now the internal structure of code has been made
maintainable using inheritance .

19 of 97

Multi-Level Inheritance Architecture

DomesticResidentStudent DomesticNonResidentStudent ForeignResidentStudent ForeignNonResidentStudent

DomesticStudent ForeignStudent

Student

20 of 97

Root of the Java Class Hierarchy
● Implicitly:○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.● There are two useful accessor methods that every class
inherits from the Object class:○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.● Very often when you define new classes, you want to

redefine / override the inherited definitions of equals and
toString.

21 of 97

Behaviour of the Inherited equals Method (1)
Problem: Define equals method for the Rectangle class
class Rectangle{
double width; double length;
double getArea() { return width * length; } }

and the RectangleCollector class
class RectangleCollector{
Rectangle[] rectangles;
final int MAX = 100;
int nor; /* number of rectangles */
RectangleCollector() { rectangles = new Rectangle[MAX]; }
addRectangle(Rectangle c) { rectangles[nor] = c; nor++; }

}

Two rectangles are equal if their areas are equal .
Two rectangle collectors are equal if rectangles they contain
are equal .

22 of 97

Behaviour of the Inherited equals Method (2)
1 class RectangleCollectorTester {
2 Rectangle r1 = new Rectangle(3, 6);
3 Rectangle r2 = new Rectangle(2, 9);
4 System.out.println(r1 == r2); /* false */
5 System.out.println(r1.equals(r2)); /* false */
6 RectangleCollector rc1 = new RectangleCollector();
7 rc1.addRectangle(r1);
8 RectangleCollector rc2 = new RectangleCollector();
9 rc2.addRectangle(r2);

10 System.out.println(rc1 == rc2); /* false */
11 System.out.println(rc1.equals(rc2)); /* false */
12 }

● Lines 5 and 11 return false because we have not explicitly
redefined/overridden the equals method inherited from the
Object class (which compares addressed by default).

● We need to redefine / override the inherited equals method
in both Rectangle and RectangleCollector.

23 of 97

Behaviour of the Inherited equals Method (3)

Two rectangles are equal if their areas are equal:
class Rectangle{
double width;
double length;
getArea() { . . . }
boolean equals(Object obj) {
if(this == obj) {
return true;

}
if(obj == null || this.getClass() != obj.getClass()) {
return false;

}
Rectangle other = (Rectangle) obj;
return getArea() == other.getArea();

}
}

24 of 97

Behaviour of the Inherited equals Method (4)
Rectangle collectors are equal if rectangles collected are equal:

1 class RectangleCollector{
2 /* rectangles, RectangleCollector(), nor, addRectangle */
3 boolean equals (Object obj) {
4 if(this == obj) {
5 return true;
6 }
7 if(obj == null || this.getClass() != obj.getClass()) {
8 return false;
9 }

10 RectangleCollector other = (RectangleCollector) obj;
11 boolean soFarEqual = this.nor == other.nor;
12 for(int i = 0; soFarEqual && i < this.nor; i ++) {
13 soFarEqual =
14 this.rectangles[i]. equals (other.rectangles[i]);
15 }
16 return soFarEqual;
17 }
18 }

25 of 97

Behaviour of the Inherited equals Method (5)

Now that we have redefined / overridden the equals method,
inherited from the Object class, in both Rectangle and
RectangleCollector, the test results shall be different!

class RectangleCollectorTester {
Rectangle r1 = new Rectangle(3, 6);
Rectangle r2 = new Rectangle(2, 9);
System.out.println(r1 == r2); /* false */
System.out.println(r1.equals(r2)); /* true */
RectangleCollector rc1 = new RectangleCollector();
rc1.addRectangle(r1);
RectangleCollector rc2 = new RectangleCollector();
rc2.addRectangle(r2);
System.out.println(rc1 == rc2); /* false */
System.out.println(rc1.equals(rc2)); /* true */

}

26 of 97

Behaviour of Inherited toString Method (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

● Implicitly, the toString method is called inside the println
method.

● By default, the address stored in p1 gets printed.
● We need to redefine / override the toString method,

inherited from the Object class, in the Point class.

27 of 97

Behaviour of Inherited toString Method (2)

class Point {
double x;
double y;
public String toString() {
return "(" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the toString method:
Point p1 = new Point(2, 4);
System.out.println(p1);

(2, 4)

28 of 97

Behaviour of Inherited toString Method (3)

Exercise: Override the toString method for the Rectangle
and RectangleCollector classes.
Exercise: Override the equals and toString methods for
the ResidentStudent and NonResidentStudent classes.

29 of 97

Use of the protected Modifier

● private attributes are not inherited to subclasses.
● package-level attributes (i.e., with no modifier) and

project-level attributes (i.e., public) are inherited.
● What if we want attributes to be:○ visible to sub-classes outside the current package, but still○ invisible to other non-sub-classes outside the current package?

Use protected!

30 of 97

Visibility of Attr./Meth.: Across All Methods
Same Package and Sub-Classes (protected)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

protected i, m

BubbleChair

RockingChair

extends extends

31 of 97

Visibility of Attributes/Methods

XXXXXXXXmodifier
scope CLASS PACKAGE SUBCLASS SUBCLASS PROJECT

(same pkg) (different pkg)

public

protected

no modifier

private

For the rest of this lecture, for simplicity, we assume that:
All relevant descendant classes are in the same package .
⇒ Attributes with no modifiers (package-level visibility) suffice.

32 of 97

Inheritance Architecture Revisited

NonResidentStudent

Student

ResidentStudent

String name
Course[] registeredCourses
int numberOfCourses

Student(String name)
void register(Course c)
double getTuition()

/* new attributes, new methods */
ResidentStudent(String name)
double premiumRate
void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* new attributes, new methods */
NonResidentStudent(String name)
double discountRate
void setDiscountRate(double r)
/* redefined/overridden methods */
double getTuition()

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

name rcs noc reg getT pr setPR dr setDR

s. ✓ ×
rs. ✓ ✓ ×
nrs. ✓ × ✓

33 of 97

Multi-Level Inheritance Hierarchy:
Smart Phones

IPhone6s IPhone6sPlus Samsung HTC

IOS Android

SmartPhone

GalaxyS6EdgePlus GalaxyS6Edge HTCOneA9 HTCOneM9

dial /* basic function */
surfWeb /* basic function */

surfWeb /* redefined using safari */
facetime /* new method */

surfWeb /* redefined using firefox */
skype /* new method */

threeDTouch /* new method */

sideSync /* new method */

34 of 97

Polymorphism: Intuition (1)

1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● Which one of L4 and L5 is valid? Which one is invalid?
● Hints:○ L1: What kind of address can s store? [Student]

∴ The context object s is expected to be used as:
● s.register(eecs2030) and s.getTuition()○ L2: What kind of address can rs store? [ResidentStudent]
∴ The context object rs is expected to be used as:
● rs.register(eecs2030) and rs.getTuition()● rs.setPremiumRate(1.50) [increase premium rate]

35 of 97

Polymorphism: Intuition (2)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */● rs = s (L5) should be invalid :

“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate● Since rs is declared of type ResidentStudent, a subsequent
call rs.setPremiumRate(1.50) can be expected.● rs is now pointing to a Student object.● Then, what would happen to rs.setPremiumRate(1.50)?

CRASH ∵ rs.premiumRate is undefined !!
36 of 97

Polymorphism: Intuition (3)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● s = rs (L4) should be valid :
“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate● Since s is declared of type Student, a subsequent call
s.setPremiumRate(1.50) is never expected.● s is now pointing to a ResidentStudent object.● Then, what would happen to s.getTuition()?

OK ∵ s.premiumRate is just never used !!
37 of 97

Dynamic Binding: Intuition (1)
1 Course eecs2030 = new Course("EECS2030", 100.0);
2 Student s;
3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println(s .getTuition());/* output: 125.0 */
8 s = nrs; System.out.println(s .getTuition());/* output: 75.0 */

After s = rs (L7), s points to a ResidentStudent object.⇒ Calling s .getTuition() applies the premiumRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

38 of 97

Dynamic Binding: Intuition (2)
1 Course eecs2030 = new Course("EECS2030", 100.0);
2 Student s;
3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println(s .getTuition()); /* output: 125.0 */
8 s = nrs; System.out.println(s .getTuition()); /* output: 75.0 */

After s = nrs (L8), s points to a NonResidentStudent object.⇒ Calling s .getTuition() applies the discountRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

39 of 97

Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.○ Every class can be used as a type: the set of runtime objects.● Use of inheritance creates a hierarchy of classes:○ (Implicit) Root of the hierarchy is Object.○ Each extends declaration corresponds to an upward arrow.○ The extends relationship is transitive: when A extends B and B

extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.● Ancestor vs. Descendant classes:○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, extends.● A inherits all code (attributes and methods) from its ancestor classes.∴ A’s instances have a wider range of expected usages (i.e.,

attributes and methods) than instances of its ancestor classes.○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends A.● Code defined in A is inherited to all its descendant classes.

40 of 97

Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:○ A descendant class inherits all code from its ancestor classes.○ A descendant class may also:● Declare new attributes● Define new methods● Redefine / Override inherited methods● Consequently:○ When being used as context objects ,
instances of a class’ descendant classes have a wider range of

expected usages (i.e., attributes and methods).○ When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.○ e.g., When expecting a Student object, we may substitute it with
either a ResidentStudent or a NonResidentStudent object.○ Justification: A descendant class contains at least as many
methods as defined in its ancestor classes (but not vice versa!).

41 of 97

Reference Variable: Static Type
● A reference variable’s static type is what we declare it to be.
○ Student jim declares jim’s ST as Student.
○ SmartPhone myPhone declares myPhone’s ST as SmartPhone.
○ The static type of a reference variable never changes .

● For a reference variable v , its static type C defines the
expected usages of v as a context object .

● A method call v.m(. . .) is compilable if m is defined in C .○ e.g., After declaring Student jim , we
● may call register and getTuition on jim● may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim○ e.g., After declaring SmartPhone myPhone , we

● may call dial and surfWeb on myPhone● may not call facetime (specific to an IOS phone) or skype (specific
to an Android phone) on myPhone

42 of 97

Substitutions via Assignments
● By declaring C1 v1, reference variable v1 will store the

address of an object “of class C1” at runtime.● By declaring C2 v2, reference variable v2 will store the
address of an object “of class C2” at runtime.● Assignment v1 = v2 copies address stored in v2 into v1.
○ v1 will instead point to wherever v2 is pointing to. [object alias]

……

…C1 v1

……

…C2 v2

● In such assignment v1 = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type C2.

● Substitutions are subject to rules!
43 of 97

Rules of Substitution
1. When expecting an object of static type A, it is safe to

substitute it with an object whose static type is any of the
descendant class of A (including A).
○ ∵ Each descendant class of A is guaranteed to contain code for

all (non-private) attributes and methods that are defined in A.○ ∴ All attributes and methods defined in A are guaranteed to be
available in the new substitute.○ e.g., When expecting an IOS phone, you can substitute it with
either an IPhone6s or IPhone6sPlus.

2. When expecting an object of static type A, it is unsafe to
substitute it with an object whose static type is any of the
ancestor classes of A’s parent (excluding A).○ ∵ Class A may have defined new methods that do not exist in any

of its parent’s ancestor classes .○ e.g., When expecting IOS phone, unsafe to substitute it with a
SmartPhone ∵ facetime not supported in Android phone.

44 of 97

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.○ There are two ways to re-assigning a reference variable.

45 of 97

Visualizing Static Type vs. Dynamic Type

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”Student s

premiumRate

...

● Each segmented box denotes a runtime object.● Arrow denotes a variable (e.g., s) storing the object’s address.
Usually, when the context is clear, we leave the variable’s static

type implicit (Student).
● Title of box indicates type of runtime object, which denotes the

dynamic type of the variable (ResidentStudent).
46 of 97

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.○ e.g., Student jim = new ResidentStudent(. . .)
changes the dynamic type of jim to ResidentStudent.

○ e.g., Student jim = new NonResidentStudent(. . .)
changes the dynamic type of jim to NonResidentStudent.

○ e.g., ResidentStudent jim = new Student(. . .) is illegal
because Studnet is not a descendant class of the static type of
jim (i.e., ResidentStudent).

47 of 97

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v = other):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.○ e.g., Say we declare
Student jim = new Student(. . .);
ResidentStudent rs = new ResidentStudnet(. . .);
NonResidentStudnet nrs = new NonResidentStudent(. . .);

● rs = jim ×
● nrs = jim ×
● jim = rs ✓

changes the dynamic type of jim to the dynamic type of rs
● jim = nrs ✓

changes the dynamic type of jim to the dynamic type of nrs
48 of 97

Polymorphism and Dynamic Binding (1)

● Polymorphism : An object variable may have “multiple possible
shapes” (i.e., allowable dynamic types).○ Consequently, there are multiple possible versions of each method

that may be called.
● e.g., A Student variable may have the dynamic type of Student ,

ResidentStudent , or NonResidentStudent ,● This means that there are three possible versions of the
getTuition() that may be called.

● Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
Student jim = new ResidentStudent(. . .);
jim.getTuition(); /* version in ResidentStudent */
jim = new NonResidentStudent(. . .);
jim.getTuition(); /* version in NonResidentStudent */

49 of 97

Polymorphism and Dynamic Binding (2.1)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester1 {
public static void main(String[] args) {
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
jim = rs; /* legal */
rs = jim; /* illegal */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
jim = nrs; /* legal */
nrs = jim; /* illegal */

}
}

50 of 97

Polymorphism and Dynamic Binding (2.2)
class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
rs.setPremiumRate(1.5);

jim = rs ;

System.out.println(jim.getTuition()); /* 750.0 */
NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
nrs.setDiscountRate(0.5);

jim = nrs ;

System.out.println(jim.getTuition()); /* 250.0 */
}

}

51 of 97

Polymorphism and Dynamic Binding (3.1)

IPhone6s IPhone6sPlus Samsung HTC

IOS Android

SmartPhone

GalaxyS6EdgePlus GalaxyS6Edge HTCOneA9 HTCOneM9

dial /* basic function */
surfWeb /* basic function */

surfWeb /* redefined using safari */
facetime /* new method */

surfWeb /* redefined using firefox */
skype /* new method */

threeDTouch /* new method */

sideSync /* new method */

52 of 97

Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTest1 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone6sPlus();
Samsung ss = new GalaxyS6Edge();
myPhone = ip; /* legal */
myPhone = ss; /* legal */

IOS presentForHeeyeon;
presentForHeeyeon = ip; /* legal */
presentForHeeyeon = ss; /* illegal */

}
}

53 of 97

Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone6sPlus();
myPhone = ip;
myPhone. surfWeb (); /* version of surfWeb in IPhone6sPlus */

Samsung ss = new GalaxyS6Edge();
myPhone = ss;
myPhone. surfWeb (); /* version of surfWeb in GalaxyS6Edge */

}
}

54 of 97

Reference Type Casting: Motivation (1)
1 Student jim = new ResidentStudent("J. Davis");
2 ResidentStudent rs = jim;
3 rs.setPremiumRate(1.5);

● L1 is legal : ResidentStudent is a descendant class of the
static type of jim (i.e., Student).● L2 is illegal : jim’s ST (i.e., Student) is not a descendant
class of rs’s ST (i.e., ResidentStudent).● Java compiler is unable to infer that jim’s dynamic type in L2
is ResidentStudent!● Force the Java compiler to believe so via a cast in L2:
ResidentStudent rs = (ResidentStudent) jim;

⇒ Now it compiles ∵ jim’s temporary ST (ResidentStudent)
is a descendant of rs’ ST (ResidentStudent).● dynamic binding : After the cast , L3 will execute the correct

version of setPremiumRate.
55 of 97

Reference Type Casting: Motivation (2)
1 SmartPhone aPhone = new IPhone6sPlus();
2 IOS forHeeyeon = aPhone;
3 forHeeyeon.facetime();

● L1 is legal : IPhone6sPlus is a descendant class of the
static type of aPhone (i.e., SmartPhone).● L2 is illegal : aPhone’s ST (i.e., SmartPhone) is not a
descendant class of forHeeyeon’s ST (i.e., IOS).● Java compiler is unable to infer that aPhone’s dynamic type in
L2 is IPhone6sPlus!● Force Java compiler to believe so via a cast in L2:
IOS forHeeyeon = (IPhone6sPlus) aPhone;

⇒ Now it compiles ∵ aPhone’s temporary ST (IPhone6sPlus)
is a descendant of forHeeyeon’ ST (IOS).● dynamic binding : After the cast , L3 will execute the correct

version of facetime.
56 of 97

Type Cast: Named or Anonymous
Named Cast: Use intermediate variable to store the cast result.
SmartPhone aPhone = new IPhone6sPlus();
IOS forHeeyeon = (IPhone6sPlus) aPhone;
forHeeyeon.facetime();

Anonymous Cast: Use the cast result directly.
SmartPhone aPhone = new IPhone6sPlus();
((IPhone6sPlus) aPhone).facetime();

Common Mistake:

1 SmartPhone aPhone = new IPhone6sPlus();
2 (IPhone6sPlus) aPhone.facetime();

L2 ≡ (IPhone6sPlus) (aPhone.facetime()) : Call, then cast.
⇒ This does not compile ∵ facetime() is not declared in the
static type of aPhone (SmartPhone).

57 of 97

Notes on Type Cast (1)
○ Given variable v of static type STv , it is compilable to cast v to

C , as long as C is an ancestor or descendant of STv .○ Without cast, we can only call methods defined in STv on v .○ Casting v to C temporarily changes the ST of v from STv to C .
⇒ All methods that are defined in C can be called.

Android myPhone = new GalaxyS6EdgePlus();
/* can call methods declared in Android on myPhone
* dial, surfweb, skype ✓ sideSync × */
SmartPhone sp = (SmartPhone) myPhone;
/* Compiles OK ∵ SmartPhone is an ancestor class of Android
* expectations on sp narrowed to methods in SmartPhone
* sp.dial, sp.surfweb ✓ sp.skype, sp.sideSync × */
GalaxyS6EdgePlus ga = (GalaxyS6EdgePlus) myPhone;
/* Compiles OK ∵ GalaxyS6EdgePlus is a descendant class of Android
* expectations on ga widened to methods in GalaxyS6EdgePlus
* ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

58 of 97

Reference Type Casting: Danger (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 ResidentStudent rs = (ResidentStudent) jim;
3 rs.setPremiumRate(1.5);

● L1 is legal : NonResidentStudent is a descendant of the
static type of jim (Student).● L2 is legal (where the cast type is ResidentStudent):○ cast type is descendant of jim’s ST (Student).○ cast type is descendant of rs’s ST (ResidentStudent).● L3 is legal ∵ setPremiumRate is in rs’ ST

ResidentStudent.● Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.● Executing L2 will result in a ClassCastException .∵ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.

59 of 97

Reference Type Casting: Danger (2)
1 SmartPhone aPhone = new GalaxyS6EdgePlus();
2 IPhone6sPlus forHeeyeon = (IPhone6sPlus) aPhone;
3 forHeeyeon.threeDTouch();

● L1 is legal : GalaxyS6EdgePlus is a descendant of the static
type of aPhone (SmartPhone).● L2 is legal (where the cast type is Iphone6sPlus):○ cast type is descendant of aPhone’s ST (SmartPhone).○ cast type is descendant of forHeeyeon’s ST (IPhone6sPlus).● L3 is legal ∵ threeDTouch is in forHeeyeon’ ST

IPhone6sPlus.● Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually NonResidentStudent.● Executing L2 will result in a ClassCastException .∵ Methods facetime, threeDTouch (expected from an
IPhone6sPlus) is undefined on the GalaxyS6EdgePlus object
being cast.60 of 97

Notes on Type Cast (2.1)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 GalaxyS6EdgePlus ga = (GalaxyS6EdgePlus) myPhone;
4 /* Compiles OK ∵ GalaxyS6EdgePlus is a descendant class of SmartPhone
5 * can now call methods declared in GalaxyS6EdgePlus on ga

6 * ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS6EdgePlus (e.g., sideSync).

61 of 97

Notes on Type Cast (2.2)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 IPhone6sPlus ip = (IPhone6sPlus) myPhone;
4 /* Compiles OK ∵ IPhone6sPlus is a descendant class of SmartPhone
5 * can now call methods declared in IPhone6sPlus on ip

6 * ip.dial, ip.surfweb, ip.facetime, ip.threeDTouch ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhone6sPlus (e.g., threeDTouch).

62 of 97

Notes on Type Cast (2.3)

A cast (C) v is compilable and runtime-error-free if C is
located along the ancestor path of DTv .

e.g., Given SmartPhone myPhone = new Samsung();
○ Cast myPhone to a class along the path between SmartPhone

and Samsung.○ Casting myPhone to a class with more expectations than
Samsung (e.g., GalaxyS6EdgePlus) will cause
ClassCastException.○ Casting myPhone to a class irrelevant to Samsung (e.g.,
IPhone6sPlus) will cause ClassCastException.

63 of 97

Compilable Cast vs. Exception-Free Cast
class A { }
class B extends A { }
class C extends B { }
class D extends A { }

1 B b = new C();
2 D d = (D) b;

● After L1:○ ST of b is B○ DT of b is C● Does L2 compile? [NO]∵ cast type D is neither an ancestor nor a descendant of b’s ST B● Would D d = (D) ((A) b) fix L2? [YES]∵ cast type D is an ancestor of b’s cast, temporary ST A● ClassCastException when executing this fixed L2? [YES]∵ cast type D is not an ancestor of b’s DT C
64 of 97

Reference Type Casting: Runtime Check (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 if (jim instanceof ResidentStudent) {

3 ResidentStudent rs = (ResidentStudent) jim;
4 rs.setPremiumRate(1.5);
5 }

● L1 is legal : NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

● L2 checks if jim’s dynamic type is ResidentStudent.

FALSE ∵ jim’s dynamic type is NonResidentStudent!
● L3 is legal : jim’s cast type (i.e., ResidentStudent) is a

descendant class of rs’s static type (i.e.,
ResidentStudent).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

65 of 97

Reference Type Casting: Runtime Check (2)

1 SmartPhone aPhone = new GalaxyS6EdgePlus();
2 if (aPhone instanceof IPhone6sPlus) {

3 IOS forHeeyeon = (IPhone6sPlus) aPhone;
4 forHeeyeon.facetime();
5 }

● L1 is legal : GalaxyS6EdgePlus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

● L2 checks if aPhone’s dynamic type is IPhone6sPlus.

FALSE ∵ aPhone’s dynamic type is GalaxyS6EdgePlus!
● L3 is legal : aPhone’s cast type (i.e., IPhone6sPlus) is a

descendant class of forHeeyeon’s static type (i.e., IOS).
● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

66 of 97

Notes on the instanceof Operator (1)

Given a reference variable v and a class C, you write
v instanceof C

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C.

SmartPhone myPhone = new GalaxyS6Edge();
println(myPhone instanceof Android);
/* true ∵ GalaxyS6Edge is a descendant of Android */}
println(myPhone instanceof Samsung);
/* true ∵ GalaxyS6Edge is a descendant of Samsung */}
println(myPhone instanceof GalaxyS6Edge);
/* true ∵ GalaxyS6Edge is a descendant of GalaxyS6Edge */}
println(myPhone instanceof IOS);
/* false ∵ GalaxyS6Edge is not a descendant of IOS */}
println(myPhone instanceof IPhone6sPlus);
/* false ∵ GalaxyS6Edge is not a descendant of IPhone6sPlus */}

67 of 97

Notes on the instanceof Operator (2)
Given a reference variable v and a class C,
v instanceof C checks if the dynamic type of v, at the

moment of being checked, is a descendant class of C.
1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 if(myPhone instanceof Samsung) {
4 Samsung samsung = (Samsung) myPhone;
5 }
6 if(myPhone instanceof GalaxyS6EdgePlus) {
7 GalaxyS6EdgePlus galaxy = (GalaxyS6EdgePlus) myPhone;
8 }
9 if(myphone instanceof HTC) {

10 HTC htc = (HTC) myPhone;
11 }

● L3 evaluates to true. [safe to cast]● L6 and L9 evaluate to false. [unsafe to cast]
This prevents L7 and L10, causing ClassCastException if
executed, from being executed.

68 of 97

Static Type and Polymorphism (1.1)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 SmartPhone sp = new IPhone6sPlus(); ✓
2 sp.dial(); ✓
3 sp.facetime(); ×
4 sp.threeDTouch(); ×

Static type of sp is SmartPhone
⇒ can only call methods defined in SmartPhone on sp

69 of 97

Static Type and Polymorphism (1.2)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 IOS ip = new IPhone6sPlus(); ✓
2 ip.dial(); ✓
3 ip.facetime(); ✓
4 ip.threeDTouch(); ×

Static type of ip is IOS
⇒ can only call methods defined in IOS on ip

70 of 97

Static Type and Polymorphism (1.3)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 IPhone6sPlus ip6sp = new IPhone6sPlus(); ✓
2 ip6sp.dial(); ✓
3 ip6sp.facetime(); ✓
4 ip6sp.threeDTouch(); ✓

Static type of ip6sp is IPhone6sPlus
⇒ can call all methods defined in IPhone6sPlus on ip6sp

71 of 97

Static Type and Polymorphism (1.4)
class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone6sPlus extends IOS {
void threeDTouch() { . . . }

}

1 SmartPhone sp = new IPhone6sPlus(); ✓
2 ((IPhone6sPlus) sp).dial(); ✓
3 ((IPhone6sPlus) sp).facetime(); ✓
4 ((IPhone6sPlus) sp).threeDTouch(); ✓

L4 is equivalent to the following two lines:
IPhone6sPlus ip6sp = (IPhone6sPlus) sp;
ip6sp.threeDTouch();

72 of 97

Static Type and Polymorphism (2)
Given a reference variable declaration
C v;

○ Static type of reference variable v is class C○ A method call v.m is valid if m is a method defined in class C.○ Despite the dynamic type of v , you are only allowed to call
methods that are defined in the static type C on v .○ If you are certain that v ’s dynamic type can be expected more than
its static type, then you may use an insanceof check and a cast.
Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent("Jim");
s.register(eecs2030);
if(s instanceof ResidentStudent) {

((ResidentStudent) s).setPremiumRate(1.75);

System.out.println(((ResidentStudent) s).getTuition());
}

73 of 97

Polymorphism: Method Call Arguments (1)
1 class StudentManagementSystem {
2 Student [] ss; /* ss[i] has static type Student */ int c;
3 void addRS(ResidentStudent rs) { ss[c] = rs; c ++; }
4 void addNRS(NonResidentStudent nrs) { ss[c] = nrs; c++; }
5 void addStudent(Student s) { ss[c] = s; c++; } }

● L3: ss[c] = rs is valid. ∵ RHS’s ST ResidentStudent is a
descendant class of LHS’s ST Student.● Say we have a StudentManagementSystem object sms:○ Method call sms.addRS(o) attempts the following assignment,

which replaces parameter rs by a copy of argument o:
rs = o;

○ Whether this argument passing is valid depends on o’s static type.● In the signature of a method m, if the type of a parameter is
class C, then we may call method m by passing objects whose
static types are C’s descendants.

74 of 97

Polymorphism: Method Call Arguments (2.1)

In the StudentManagementSystemTester:
Student s1 = new Student();
Student s2 = new ResidentStudent();
Student s3 = new NonResidentStudent();
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(s1); ×
sms.addRS(s2); ×
sms.addRS(s3); ×
sms.addRS(rs); ✓
sms.addRS(nrs); ×
sms.addStudent(s1); ✓
sms.addStudent(s2); ✓
sms.addStudent(s3); ✓
sms.addStudent(rs); ✓
sms.addStudent(nrs); ✓

75 of 97

Polymorphism: Method Call Arguments (2.2)
In the StudentManagementSystemTester:

1 Student s = new Student("Stella");
2 /* s’ ST: Student; s’ DT: Student */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×
○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .● Valid call ∵ s’ temporary ST (ResidentStudent) is now a
descendant class of addRS’s parameter rs’ ST (ResidentStudent).○ But, there will be a ClassCastException at runtime!∵ s’ DT (Student) is not a descendant of ResidentStudent.○ We should have written:

if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

76 of 97

Polymorphism: Method Call Arguments (2.3)
In the StudentManagementSystemTester:

1 Student s = new NonResidentStudent("Nancy");
2 /* s’ ST: Student; s’ DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×
○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .● Valid call ∵ s’ temporary ST (ResidentStudent) is now a
descendant class of addRS’s parameter rs’ ST (ResidentStudent).○ But, there will be a ClassCastException at runtime!∵ s’ DT (NonResidentStudent) not descendant of ResidentStudent.○ We should have written:

if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

77 of 97

Polymorphism: Method Call Arguments (2.4)
In the StudentManagementSystemTester:

1 Student s = new ResidentStudent("Rachael");
2 /* s’ ST: Student; s’ DT: ResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×
○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .● Valid call ∵ s’ temporary ST (ResidentStudent) is now a
descendant class of addRS’s parameter rs’ ST (ResidentStudent).○ And, there will be no ClassCastException at runtime!∵ s’ DT (ResidentStudent) is descendant of ResidentStudent.○ We should have written:

if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to true, meaning it is
safe to cast.

78 of 97

Polymorphism: Method Call Arguments (2.5)

In the StudentManagementSystemTester:
1 NonResidentStudent nrs = new NonResidentStudent();
2 /* ST: NonResidentStudent; DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(nrs); ×

Will L4 with a cast compile?
sms.addRS((ResidentStudent) nrs)

NO ∵ (ResidentStudent) is not a descendant of nrs’s ST

(NonResidentStudent).

79 of 97

Polymorphism: Return Values (1)

1 class StudentManagementSystem {
2 Student[] ss; int c;
3 void addStudent(Student s) { ss[c] = s; c++; }
4 Student getStudent(int i) {
5 Student s = null;
6 if(i < 0 || i >= c) {
7 throw new IllegalArgumentException("Invalid index.");
8 }
9 else {

10 s = ss[i];
11 }
12 return s;
13 } }

L4: Student is static type of getStudent’s return value.
L10: ss[i]’s ST (Student) is descendant of s’ ST (Student).
Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of Student.

80 of 97

Polymorphism: Return Values (2)
1 Course eecs2030 = new Course("EECS2030", 500);
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.5); rs.register(eecs2030);
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 nrs.setDiscountRate(0.5); nrs.register(eecs2030);
6 StudentManagementSystem sms = new StudentManagementSystem();
7 sms.addStudent(rs); sms.addStudent(nrs);
8 Student s = sms.getStudent(0)��

static return type: Student

; /* dynamic type of s? */

9 print(s instanceof Student && s instanceof ResidentStudent);/*true*/
10 print(s instanceof NonResidentStudent); /* false */

11 print(s.getTuition());/*Version in ResidentStudent called:750*/
12 ResidentStudent rs2 = sms.getStudent(0); ×
13 s = sms.getStudent(1)��

static return type: Student

; /* dynamic type of s? */

14 print(s instanceof Student && s instanceof NonResidentStudent);/*true*/
15 print(s instanceof ResidentStudent); /* false */

16 print(s.getTuition());/*Version in NonResidentStudent called:250*/
17 NonResidentStudent nrs2 = sms.getStudent(1); ×

81 of 97

Polymorphism: Return Values (3)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student

● Dynamic type of each item is a descendant of Student :
ResidentStudent , NonResidentStudent

StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

82 of 97

Why Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent(Student s) {
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i < numberOfStudents; i ++) {
students[i].register(c)

}
}

}

83 of 97

Polymorphism and Dynamic Binding:
A Collection of Various Kinds of Students

class StudentManagementSystemTester {
static void main(String[] args) {
ResidentStudent jim = new ResidentStudent("J. Davis");
NonResidentStudent jeremy =
new NonResidentStudent("J. Davis");

StudentManagementSystem sms =
new StudentManagementSystem();

sms.addStudent(jim); /* polymorphism */

sms.addStudent(jeremy); /* polymorphism */
Course eecs2030 = new Course("EECS2030", 500.0);
sms.registerAll(eecs2030);
for(int i = 0; i < sms.numberOfStudents; i ++) {
/* Dynamic Binding:
* Right version of getTuition will be called */

System.out.println(sms.students[i]. getTuition());
}

}
}

84 of 97

Static Type vs. Dynamic Type:
When to consider which?

● Whether or not Java code compiles depends only on the
static types of relevant variables.
∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Java code being executed at runtime (e.g.,
which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

85 of 97

Summary: Type Checking Rules
CODE CONDITION TO BE TYPE CORRECT

x = y Is y’s ST a descendant of x’s ST ?

x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?

z = x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?
Is ST of m’s return value a descendant of z’s ST ?

(C) y Is C an ancestor or a descendant of y’s ST ?

x = (C) y
Is C an ancestor or a descendant of y’s ST ?
Is C a descendant of x’s ST ?

x.m((C) y)
Is C an ancestor or a descendant of y’s ST ?
Is method m defined in x’s ST ?
Is C a descendant of m’s parameter’s ST ?

Even if (C) y compiles OK, there will be a runtime
ClassCastException if C is not an ancestor of y’s DT !

86 of 97

Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.
○ Every class inherits the default version of equals○ Say a reference variable v has dynamic type D:
● Case 1 D overrides equals⇒ v.equals(. . .) invokes the overridden version in D● Case 2 D does not override equals

Case 2.1 At least one ancestor classes of D override equals⇒ v.equals(. . .) invokes the overridden version in the closest

ancestor class

Case 2.2 No ancestor classes of D override equals⇒ v.equals(. . .) invokes default version inherited from Object.○ Same principle applies to the toString method, and all
overridden methods in general.

87 of 97

Overriding and Dynamic Binding (2.1)

Object

A

B

C

boolean equals (Object obj) {
 return this == obj;
} class A {

/*equals not overridden*/
}
class B extends A {
/*equals not overridden*/

}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [Object]

88 of 97

Overriding and Dynamic Binding (2.2)

Object

A

B

C

boolean equals (Object obj) {
 return this == obj;
}

boolean equals (Object obj) {
 /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
/*equals not overridden*/

}
class C extends B {
boolean equals(Object obj) {
/* overridden version */

}
}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [C]

89 of 97

Overriding and Dynamic Binding (2.3)

Object

A

B

C

boolean equals (Object obj) {
 return this == obj;
}

boolean equals (Object obj) {
 /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
boolean equals(Object obj) {
/* overridden version */

}
}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [B]

90 of 97

Index (1)
Why Inheritance: A Motivating Example
No Inheritance: ResidentStudent Class
No Inheritance: NonResidentClass
No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes
No Inheritance: Maintainability of Code (1)
No Inheritance: Maintainability of Code (2)
No Inheritance:
A Collection of Various Kinds of Students
Inheritance Architecture
Inheritance: The Student Parent/Super Class
Inheritance:
The ResidentStudent Child/Sub Class

91 of 97

Index (2)
Inheritance:
The NonResidentStudent Child/Sub Class
Inheritance Architecture Revisited
Visualizing Parent/Child Objects (1)
Visualizing Parent/Child Objects (2)
Using Inheritance for Code Reuse
Inheritance Architecture Revisited
Testing the Two Student Sub-Classes
Multi-Level Inheritance Architecture
Root of the Java Class Hierarchy
Behaviour of the Inherited equals Method (1)
Behaviour of the Inherited equals Method (2)
Behaviour of the Inherited equals Method (3)
Behaviour of the Inherited equals Method (4)

92 of 97

Index (3)
Behaviour of the Inherited equals Method (5)
Behaviour of Inherited toString Method (1)
Behaviour of Inherited toString Method (2)
Behaviour of Inherited toString Method (3)
Use of the protected Modifier
Visibility of Attr./Meth.: Across All Methods
Within the Resident Package and Sub-Classes (protected)
Visibility of Attr./Meth.
Inheritance Architecture Revisited
Multi-Level Inheritance Hierarchy:
Smart Phones
Polymorphism: Intuition (1)
Polymorphism: Intuition (2)
Polymorphism: Intuition (3)
Dynamic Binding: Intuition (1)

93 of 97

Index (4)
Dynamic Binding: Intuition (2)
Inheritance Forms a Type Hierarchy
Inheritance Accumulates Code for Reuse
Reference Variable: Static Type
Substitutions via Assignments
Rules of Substitution
Reference Variable: Dynamic Type
Visualizing Static Type vs. Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)
Polymorphism and Dynamic Binding (1)
Polymorphism and Dynamic Binding (2.1)

94 of 97

Index (5)
Polymorphism and Dynamic Binding (2.2)
Polymorphism and Dynamic Binding (3.1)
Polymorphism and Dynamic Binding (3.2)
Polymorphism and Dynamic Binding (3.3)
Reference Type Casting: Motivation (1)
Reference Type Casting: Motivation (2)
Type Cast: Named or Anonymous
Notes on Type Cast (1)
Reference Type Casting: Danger (1)
Reference Type Casting: Danger (2)
Notes on Type Cast (2.1)
Notes on Type Cast (2.2)
Notes on Type Cast (2.3)
Compilable Cast vs. Exception-Free Cast

95 of 97

Index (6)
Reference Type Casting: Runtime Check (1)
Reference Type Casting: Runtime Check (2)
Notes on the instanceof Operator (1)
Notes on the instanceof Operator (2)
Static Type and Polymorphism (1.1)
Static Type and Polymorphism (1.2)
Static Type and Polymorphism (1.3)
Static Type and Polymorphism (1.4)
Static Type and Polymorphism (2)
Polymorphism: Method Call Arguments (1)
Polymorphism: Method Call Arguments (2.1)
Polymorphism: Method Call Arguments (2.2)
Polymorphism: Method Call Arguments (2.3)
Polymorphism: Method Call Arguments (2.4)

96 of 97

Index (7)
Polymorphism: Method Call Arguments (2.5)
Polymorphism: Return Values (1)
Polymorphism: Return Values (2)
Polymorphism: Return Values (3)
Why Inheritance:
A Collection of Various Kinds of Students
Polymorphism and Dynamic Binding:
A Collection of Various Kinds of Students
Static Type vs. Dynamic Type:
When to consider which?
Summary: Type Checking Rules
Overriding and Dynamic Binding (1)
Overriding and Dynamic Binding (2.1)
Overriding and Dynamic Binding (2.2)
Overriding and Dynamic Binding (2.3)

97 of 97

Abstract Classes and Interfaces

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Abstract Class (1)
Problem: A polygon may be either a triangle or a rectangle.
Given a polygon, we may either○ Grow its shape by incrementing the size of each of its sides;○ Compute and return its perimeter; or○ Compute and return its area.● For a rectangle with length and width, its area is length ×width.● For a triangle with sides a, b, and c, its area, according to
Heron’s formula, is �

s(s − a)(s − b)(s − c)
where

s = a + b + c
2● How would you solve this problem in Java, while minimizing

code duplicates?
2 of 20

Abstract Class (2)
public abstract class Polygon {
double[] sides;
Polygon(double[] sides) { this.sides = sides; }
void grow() {
for(int i = 0; i < sides.length; i ++) {
sides[i] ++;

}
}
double getPerimeter() {
double perimeter = 0;
for(int i = 0; i < sides.length; i ++) { perimeter += sides[i];}
return perimeter;

}
abstract double getArea();

}

● Method getArea not implemented and shown signature only.

● ∴ Polygon cannot be used as a dynamic type
● Writing new Polygon(. . .) is forbidden!
3 of 20

Abstract Class (3)

public class Rectangle extends Polygon {
Rectangle(double length, double width) {
super(new double[4]);
sides[0] = length; sides[1] = width;
sides[2] = length; sides[3] = width;

}
double getArea() { return sides[0] * sides[1]; }

}

● Method getPerimeter is inherited from the super-class
Polygon.

● Method getArea is implemented in the sub-class Rectangle.
● ∴ Rectangle can be used as a dynamic type
● Writing Polygon p = new Rectangle(3, 4) allowed!

4 of 20

Abstract Class (4)
public class Triangle extends Polygon {
Triangle(double side1, double side2, double side3) {
super(new double[3]);
sides[0] = side1; sides[1] = side2; sides[2] = side3;

}
double getArea() {
/* Heron’s formula */
double s = getPerimeter() * 0.5;
double area = Math.sqrt(

s * (s - sides[0]) * (s - sides[1]) * (s - sides[2]));
return area;

}
}

● Method getPerimeter is inherited from Polygon.
● Method getArea is implemented in the sub-class Triangle.
● ∴ Triangle can be used as a dynamic type
● Writing Polygon p = new Triangle(3, 4, 5) allowed!
5 of 20

Abstract Class (5)
1 public class PolygonCollector {
2 Polygon[] polygons;
3 int numberOfPolygons;
4 PolygonCollector() { polygons = new Polygon[10]; }
5 void addPolygon(Polygon p) {
6 polygons[numberOfPolygons] = p; numberOfPolygons ++;
7 }
8 void growAll() {
9 for(int i = 0; i < numberOfPolygons; i ++) {

10 polygons[i].grow();
11 }
12 }
13 }

● Polymorphism: Line 5 may accept as argument any object
whose static type is Polygon or any of its sub-classes.

● Dynamic Binding: Line 10 calls the version of grow inherited
to the dynamic type of polygons[i].

6 of 20

Abstract Class (6)
1 public class PolygonConstructor {
2 Polygon getPolygon(double[] sides) {
3 Polygon p = null;
4 if(sides.length == 3) {
5 p = new Triangle(sides[0], sides[1], sides[2]);
6 }
7 else if(sides.length == 4) {
8 p = new Rectangle(sides[0], sides[1]);
9 }

10 return p;
11 }
12 void grow(Polygon p) { p.grow(); }
13 }

● Polymorphism:○ Line 2 may accept as return value any object whose static type is
Polygon or any of its sub-classes.○ Line 5 returns an object whose dynamic type is Triangle; Line
8 returns an object whose dynamic type is Rectangle.

7 of 20

Abstract Class (7.1)
1 public class PolygonTester {
2 public static void main(String[] args) {
3 Polygon p;
4 p = new Rectangle(3, 4); /* polymorphism */
5 System.out.println(p.getPerimeter()); /* 14.0 */
6 System.out.println(p.getArea()); /* 12.0 */
7 p = new Triangle(3, 4, 5); /* polymorphism */
8 System.out.println(p.getPerimeter()); /* 12.0 */
9 System.out.println(p.getArea()); /* 6.0 */

10
11 PolygonCollector col = new PolygonCollector();
12 col.addPolygon(new Rectangle(3, 4)); /* polymorphism */
13 col.addPolygon(new Triangle(3, 4, 5)); /* polymorphism */

14 System.out.println(col.polygons[0]. getPerimeter ()); /* 14.0 */

15 System.out.println(col.polygons[1]. getPerimeter ()); /* 12.0 */
16 col.growAll();

17 System.out.println(col.polygons[0]. getPerimeter ()); /* 18.0 */

18 System.out.println(col.polygons[1]. getPerimeter ()); /* 15.0 */

8 of 20

Abstract Class (7.2)
1 PolygonConstructor con = new PolygonConstructor();
2 double[] recSides = {3, 4, 3, 4}; p = con. getPolygon (recSides);
3 System.out.println(p instanceof Polygon); ✓
4 System.out.println(p instanceof Rectangle); ✓
5 System.out.println(p instanceof Triangle); ×
6 System.out.println(p.getPerimeter()); /* 14.0 */
7 System.out.println(p.getArea()); /* 12.0 */
8 con.grow(p);
9 System.out.println(p.getPerimeter()); /* 18.0 */

10 System.out.println(p.getArea()); /* 20.0 */
11 double[] triSides = {3, 4, 5}; p = con. getPolygon (triSides);
12 System.out.println(p instanceof Polygon); ✓
13 System.out.println(p instanceof Rectangle); ×
14 System.out.println(p instanceof Triangle); ✓
15 System.out.println(p.getPerimeter()); /* 12.0 */
16 System.out.println(p.getArea()); /* 6.0 */
17 con.grow(p);
18 System.out.println(p.getPerimeter()); /* 15.0 */
19 System.out.println(p.getArea()); /* 9.921 */
20 } }

9 of 20

Abstract Class (8)
● An abstract class :○ Typically has at least one method with no implementation body○ May define common implementations inherited to sub-classes.● Recommended to use an abstract class as the static type of:○ A variable

e.g., Polygon p○ A method parameter
e.g., void grow(Polygon p)○ A method return value
e.g., Polygon getPolygon(double[] sides)● It is forbidden to use an abstract class as a dynamic type

e.g., Polygon p = new Polygon(. . .) is not allowed!● Instead, create objects whose dynamic types are descendant
classes of the abstract class ⇒ Exploit dynamic binding !
e.g., Polygon p = con.getPolygon(recSides)
This is is as if we did Polygon p = new Rectangle(. . .)

10 of 20

Interface (1.1)
● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● As far as users of a Point object p is concerned, being able to
call p.getX() and getY() is what matters.● How p.getX() and p.getY() are internally computed,
depending on the dynamic type of p, do not matter to users.

11 of 20

Interface (1.2)
Recall: sin30○ = 1

2 and cos30○ = 1
2 ⋅√3

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
�

32a · cos30� = a ·
�

3

2a2a

30�30�

(a ·
�

3, a)(a ·
�

3, a)

We consider the same point represented differently as:
● r = 2a, = 30○ [polar system]
● x = 2a ⋅ cos30○ = a ⋅√3, y = 2a ⋅ sin30○ = a [cartesian system]
12 of 20

Interface (2)

interface Point {
double getX();
double getY();

}

● An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

● Methods getX and getY similar to getArea in Polygon, have
no implementations, but signatures only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!

13 of 20

Interface (3)
public class CartesianPoint implements Point {
double x;
double y;
CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.
● Attributes x and y declared according to the Cartesian system
● All method from the interface Point are implemented in the

sub-class CartesianPoint.
● ∴ CartesianPoint can be used as a dynamic type
● Point p = new CartesianPoint(3, 4) allowed!
14 of 20

Interface (4)
public class PolarPoint implements Point {
double phi;
double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.
● Attributes phi and r declared according to the Polar system
● All method from the interface Point are implemented in the

sub-class PolarPoint.
● ∴ PolarPoint can be used as a dynamic type
● Point p = new PolarPoint(3, ⇡

6) allowed! [360○ = 2⇡]
15 of 20

Interface (5)

1 public class PointTester {
2 public static void main(String[] args) {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p;
7 p = new CartisianPoint(X, Y); /* polymorphism */
8 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
9 p = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

10 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
11 }
12 }

● Lines 7 and 9 illustrate polymorphism, how?
● Lines 8 and 10 illustrate dynamic binding, how?

16 of 20

Interface (6)
● An interface :○ Has all its methods with no implementation bodies.○ Leaves complete freedom to its implementors.
● Recommended to use an interface as the static type of:○ A variable

e.g., Point p○ A method parameter
e.g., void moveUp(Point p)○ A method return value
e.g., Point getPoint(double v1, double v2, boolean
isCartesian)

● It is forbidden to use an interface as a dynamic type
e.g., Point p = new Point(. . .) is not allowed!

● Instead, create objects whose dynamic types are descendant
classes of the interface ⇒ Exploit dynamic binding !

17 of 20

Abstract Classes vs. Interfaces:
When to Use Which?
● Use interfaces when:○ There is a common set of functionalities that can be implemented

via a variety of strategies.
e.g., Interface Point declares signatures of getX() and getY().○ Each descendant class represents a different implementation
strategy for the same set of functionalities.○ CartesianPoint and PolarPoinnt represent different
strategies for supporting getX() and getY().● Use abstract classes when:○ Some (not all) implementations can be shared by descendants,
and some (not all) implementations cannot be shared .
e.g., Abstract class Polygon:● Defines implementation of getPerimeter, to be shared by

Rectangle and Triangle.● Declares signature of getArea, to be implemented by Rectangle
and Triangle.

18 of 20

Index (1)
Abstract Class (1)
Abstract Class (2)
Abstract Class (3)
Abstract Class (4)
Abstract Class (5)
Abstract Class (6)
Abstract Class (7.1)
Abstract Class (7.2)
Abstract Class (8)
Interface (1.1)
Interface (1.2)
Interface (2)
Interface (3)
Interface (4)

19 of 20

Index (2)
Interface (5)

Interface (6)

Abstract Classes vs. Interfaces:
When to Use Which?

20 of 20

Generics in Java

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Motivating Example: A Book of Objects
1 class Book {

2 String[] names;
3 Object[] records;
4 /* add a name-record pair to the book */
5 void add (String name, Object record) { . . . }

6 /* return the record associated with a given name */
7 Object get (String name) { . . . } }

Question: Which line has a type error?
1 Date birthday; String phoneNumber;
2 Book b; boolean isWednesday;
3 b = new Book();
4 phoneNumber = "416-67-1010";

5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);

7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

2 of 22

Motivating Example: Observations (1)
● In the Book class:○ By declaring the attribute

Object[] records

We meant that each book instance may store any object whose
static type is a descendant class of Object.○ Accordingly, from the return type of the get method, we only know
that the returned record is an Object, but not certain about its
dynamic type (e.g., Date, String, etc.).∴ a record retrieved from the book, e.g., b.get("Yuna"), may
only be called upon methods in its static type (i.e,. Object).● In the tester code of the Book class:○ In Line 1, the static types of variables birthday (i.e., Date) and
phoneNumber (i.e., String) are descendant classes of
Object.○ So, Line 5 and Line 7 compile.

3 of 22

Motivating Example: Observations (2)
Due to polymorphism , the dynamic types of stored objects
(e.g., phoneNumber and birthday) need not be the same.○ Methods supported in the dynamic types (e.g., method getDay of

class Date) may be new methods not inherited from Object.○ This is why Line 8 would fail to compile, and may be fixed using an
explicit cast :
isWednesday = ((Date) b.get("Yuna")).getDay() == 4;

○ But what if the dynamic type of the returned object is not a Date?
isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

○ To avoid such a ClassCastException at runtime, we need to
check its dynamic type before performing a cast:
if (b.get("Suyeon") instanceof Date) {

isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

}

4 of 22

Motivating Example: Observations (2.1)

● It seems: combining instanceof check and type cast works.
● Can you see any potential problem(s)?
● Hints: What happens when you have a large number of

records of distinct dynamic types stored in the book
(e.g., Date, String, Person, Account, etc.)?

5 of 22

Motivating Example: Observations (2.2)
Imagine that the tester code (or an application) stores 100
different record objects into the book.○ All of these records are of static type Object, but of distinct

dynamic types.
Object rec1 = new C1(); b.add(. . ., rec1);
Object rec2 = new C2(); b.add(. . ., rec2);
. . .
Object rec100 = new C100(); b.add(. . ., rec100);

where classes C1 to C100 are descendant classes of Object.○ Every time you retrieve a record from the book, you need to check
“exhaustively” on its dynamic type before calling some method(s).

Object rec = b.get("Jim");
if (rec instanceof C1) { ((C1) rec).m1; }

. . .
else if (rec instanceof C100) { ((C100) rec).m100; }

○ Writing out this list multiple times is tedious and error-prone!
6 of 22

Motivating Example: Observations (3)
We need a solution that:● Saves us from explicit instanceof checks and type casts● Eliminates the occurrences of ClassCastException
As a sketch, this is how the solution looks like:● When the user declares a Book object b, they must

commit to the kind of record that b stores at runtime .
e.g., b stores either Date objects only or String objects only,
but not a mix .● When attempting to store a new record object rec into b, what
if rec’s static type is not a descendant class of the type of
book that the user previously commits to?⇒ A compilation error● When attempting to retrieve a record object from b, there is
no longer a need to check and cast .
∵ Static types of all records in b are guaranteed to be the same.

7 of 22

Parameters
● In mathematics:○ The same function is applied with different argument values.

e.g., 2 + 3, 1 + 1, 10 + 101, etc.○ We generalize these instance applications into a definition.
e.g., + ∶ (Z ×Z)→Z is a function that takes two integer
parameters and returns an integer.● In Java programming:○ We want to call a method , with different argument values, to

achieve a similar goal.
e.g., acc.deposit(100), acc.deposit(23), etc.○ We generalize these possible method calls into a definition.
e.g., In class Account, a method void deposit(int amount)

takes one integer parameter .● When you design a mathematical function or a Java method,
always consider the list of parameters , each of which
representing a set of possible argument values.

8 of 22

Java Generics: Design of a Generic Book

class Book <E> {

String[] names;
E [] records;
/* add a name-record pair to the book */
void add (String name, E record) { . . . }

/* return the record associated with a given name */
E get (String name) { . . . } }

Question: Which line has a type error?
1 Date birthday; String phoneNumber;
2 Book<Date> b ; boolean isWednesday;

3 b = new Book<Date>() ;

4 phoneNumber = "416-67-1010";

5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);

7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

9 of 22

Java Generics: Observations
● In class Book:○ At the class level, we parameterize the type of records that an

instance of book may store: class Book< E >

where E is the name of a type parameter, which should be
instantiated when the user declares an instance of Book.○ Every occurrence of Object (the most general type of records) is
replaced by E .○ As soon as E at the class level is committed to some known type
(e.g., Date, String, etc.), every occurrence of E will be
replaced by that type.● In the tester code of Book:○ In Line 2, we commit that the book b will store Date objects only.○ Line 5 now fails to compile. [String is not a Date]○ Line 7 still compiles.○ Line 8 does not need any instance check and type cast, and does
not cause any ClassCastException.∵ Only Date objects were allowed to be stored.10 of 22

Bad Example of using Generics

Has the following client made an appropriate choice?
Book<Object> book

NO!!!!!!!!!!!!!!!!!!!!!!!○ It allows all kinds of objects to be stored.∵ All classes are descendants of Object .○ We can expect very little from an object retrieved from this book.∵ The static type of book’s items are Object , root of the class
hierarchy, has the minimum amount of features available for use.∵ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

11 of 22

Generic Classes: Singly-Linked List (1)

public class Node< E > {

private E element;
private Node< E > next;
public Node(E e, Node< E > n) { element = e; next = n; }

public E getElement() { return element; }

public Node< E > getNext() { return next; }

public void setNext(Node< E > n) { next = n; }

public void setElement(E e) { element = e; }

}

public class SinglyLinkedList< E > {

private Node< E > head;
private Node< E > tail;
private int size = null;

public void addFirst(E e) { . . . }

Node< E > getNodeAt (int i) { . . . }

. . .
}

12 of 22

Generic Classes: Singly-Linked List (2)Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

Approach 1
Node<String> tom = new Node<>("Tom", null);

Node<String> mark = new Node<>("Mark", tom);
Node<String> alan = new Node<>("Alan", mark);

Approach 2
Node<String> alan = new Node<>("Alan", null);

Node<String> mark = new Node<>("Mark", null);

Node<String> tom = new Node<>("Tom", null);

alan.setNext(mark);
mark.setNext(tom);

13 of 22

Generic Classes: Singly-Linked List (3)
Assume we are in the context of class SinglyLinkedList.
void addFirst (E e) {

head = new Node< E >(e, head);
if (size == 0) { tail = head; }

size ++;

}

Node< E > getNodeAt (int i) {

if (i < 0 || i >= size) {

throw new IllegalArgumentException("Invalid Index"); }

else {

int index = 0;

Node< E > current = head;
while (index < i) {

index ++; current = current.getNext();
}

return current;
}

}

14 of 22

Generic Stack: Interface

public interface Stack< E > {

public int size();
public boolean isEmpty();
public E top();
public void push(E e);
public E pop();

}

15 of 22

Generic Stack: Architecture

ArrayedStack�E� LinkedStack�E�

Stack�E�
implements

implements

16 of 22

Generic Stack: Array Implementation
public class ArrayedStack< E > implements Stack< E > {

private static final int MAX_CAPACITY = 1000;

private E [] data;
private int t; /* top index */
public ArrayedStack() {

data = (E []) new Object[MAX_CAPACITY];
t = -1; }

public int size() { return (t + 1); }

public boolean isEmpty() { return (t == -1); }

public E top() {

if (isEmpty()) { /* Error: Empty Stack. */ }

else { return data[t]; } }

public void push(E e) {

if (size() == MAX_CAPACITY) { /* Error: Stack Full. */ }

else { t ++; data[t] = e; } }

public E pop() {

E result;
if (isEmpty()) { /* Error: Empty Stack */ }

else { result = data[t]; data[t] = null; t --; }

return result; }

}17 of 22

Generic Stack: SLL Implementation

public class LinkedStack< E > implements Stack< E > {

private SinglyLinkedList< E > data;
public LinkedStack() {

data = new SinglyLinkedList< E >();

}

public int size() { return data.size(); }

public boolean isEmpty() { return size() == 0; }

public E top() {

if (isEmpty()) { /* Error: Empty Stack. */ }

else { return data.getFirst(); } }

public void push(E e) {

data.addFirst(e); }

public E pop() {

E result;
if (isEmpty()) { /* Error: Empty Stack */ }

else { result = top(); data.removeFirst(); }

return result; }

}

18 of 22

Generic Stack: Testing Both Implementations

@Test
public void testPolymorphicStacks() {

Stack<String> s = new ArrayedStack<>();
s. push ("Alan"); /* dynamic binding */

s. push ("Mark"); /* dynamic binding */

s. push ("Tom"); /* dynamic binding */
assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s. top ());

s = new LinkedStack<>();
s. push ("Alan"); /* dynamic binding */

s. push ("Mark"); /* dynamic binding */

s. push ("Tom"); /* dynamic binding */
assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s. top ());

}

19 of 22

Beyond this lecture . . .

● Study https://docs.oracle.com/javase/tutorial/
java/generics/index.html for further details on Java
generics.

20 of 22

Index (1)
Motivating Example: A Book of Objects
Motivating Example: Observations (1)
Motivating Example: Observations (2)
Motivating Example: Observations (2.1)
Motivating Example: Observations (2.2)
Motivating Example: Observations (3)
Parameters
Java Generics: Design of a Generic Book
Java Generics: Observations
Bad Example of using Generics
Generic Classes: Singly-Linked List (1)
Generic Classes: Singly-Linked List (2)
Generic Classes: Singly-Linked List (3)
Generic Stack: Interface

21 of 22

Index (2)
Generic Stack: Architecture

Generic Stack: Array Implementation

Generic Stack: SLL Implementation

Generic Stack: Testing Both Implementations

Beyond this lecture . . .

22 of 22

Wrap-Up

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

What You Learned (1)

● Procedural Programming in Java○ Utilities classes○ Recursion (implementation, running time, correctness)
● Data Structures○ Arrays○ Maps and Hash Tables○ Singly-Linked Lists○ Stacks and Queues○ Binary Trees

2 of 8

What You Learned (2)
● Object-Oriented Programming in Java○ classes, attributes, encapsulation, objects, reference data types○ methods: constructors, accessors, mutators, helper○ dot notation, context objects○ aliasing○ inheritance:

● code reuse● expectations● static vs. dynamic types● rules of substitutions● casts and instanceof checks● polymorphism and method arguments/return values● method overriding and dynamic binding: e.g., equals● abstract classes vs. interfaces● generics (vs. collection of Object)○ keywords: private, this, protected, static, extends,
super, abstract, implements

3 of 8

What You Learned (3)

● Integrated Development Environment (IDE) for Java: Eclipse○ Break Point and Debugger○ Unit Testing using JUnit

4 of 8

Beyond this course. . . (1)

● Introduction to Algorithms (3rd

Ed.) by Cormen, etc.

● DS by DS, Algo. by Algo.:
○ Understand math analysis
○ Read pseudo code○ Translate into Java code○ Write and pass JUnit tests

5 of 8

Beyond this course. . . (2)

● Design Patterns: Elements of

Reusable Object-Oriented

Software by Gamma, etc.

● Patter by Pattern:
○ Understand the problem
○ Read the solution (not in Java)○ Translate into Java code○ Write and pass JUnit tests

6 of 8

Beyond this course. . . (3)

Visit my lectures on EECS3311 Software Design:
http://www.eecs.yorku.ca/˜jackie/teaching/

lectures/index.html#EECS3311_F17○ Design by Contracts○ Design Patterns○ Program Verification

7 of 8

Wish You All the Best

● What you have learned will be assumed in EECS2011.
● Logic is your friend: Learn/Review EECS1019/EECS1090.
● Do not abandon Java during the break!!
● As ever, feel free to get in touch and let me know how you’re

doing :D

8 of 8

	01-Utility-Classes-4up
	02-Unit-Regression-Testing-4up
	03-Classes-and-Objects-4up
	04-Asymptotic-Analysis-4up
	05-ADTs-Arrays-Linked-Lists-4up
	06-Stacks-and-Queues-4up
	07-Recursion-4up
	08-Binary-Trees-4up
	09-Inheritance-4up
	10-Abstract-Classes-Interfaces-4up
	11-Generics-4up
	12-Wrapup-4up

