Binary Trees

EECS2030: Advanced

 Object Oriented Programming Fall 2017Chen-Wei Wang

General Trees

- A linear data structure is a sequence, where stored objects can be related via the "before" and "after" relationships. e.g., arrays, singly-linked lists, and doubly-linked lists
- A tree is a non-linear collection of nodes.
- Each node stores some data object.
- Nodes stored in a tree is organized in a non-linear manner.
- In a tree, the relationships between stored objects are hierarchical : some objects are "above" others, and some are "below" others.
- The main terminology for the tree data structure comes from that of family trees: parents, siblings, children, ancestors, descendants.

General Trees: Terminology (1)

- root of tree : top element of the tree e.g., root of the above family tree: David
- parent of node v : node immediately above and connected to v e.g., parent of Vanessa: Elsa
- children of node v : nodes immediately below and connected to v e.g., children of Elsa: Shirley, Vanessa, and Peter e.g., children of Ernesto: \varnothing

General Trees: Terminology (2)

- ancestors of node $v: v+v$'s parent $+v$'s grand parent $+\ldots$ e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David e.g., ancestors of David: David
- descendants of node $v: v+v$'s children $+v$'s grand children $+\ldots$ e.g., descendants of Vanessa: Vanessa e.g., descendants of David: the entire family tree

General Trees: Terminology (3)

- siblings of node v : nodes whose parents are the same as v 's e.g., siblings of Vanessa: Shirley and Peter
- subtree rooted at v : a tree formed by all descendant of v
- external nodes (leaves) : nodes that have no children e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter
- internal nodes: nodes that has at least one children e.g., non-leaves of the above tree: David, Chris, Elsa

Exercise: Identifying Subtrees

How many subtrees are there?

15 subtrees
[i.e., subtrees rooted at each node]

Size of Subtree	Roots of Subtrees
1	$\mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$
3	D, E, F, G
7	B, C
15	A

General Tree: Important Characteristics

There is a single unique path along the edges from the root to any particular node.

legal tree organization

illegal tree organization (nontrees)

General Trees: Ordered Trees

A tree is ordered if there is a meaningful linear order among the children of each node.

General Trees: Unordered Trees

A tree is unordered if the order among the children of each node does not matter.

Binary Trees

- A binary tree is an ordered tree which satisfies the following properties:

1. Each node has at most two children.
2. Each child node is labeled as either a left child or a right child .
3. A left child precedes a right child in the order of children of a node.

Binary Trees: Terminology (1)

For an internal node n :

- Subtree rooted at its left child is called left subtree. n has no left child $\Rightarrow n$'s left subtree is empty
- Subtree rooted at its right child is called right subtree.
n has no right child $\Rightarrow n$'s right subtree is empty

A's left subtree is rooted at B and right subtree rooted at C .
H 's left subtree and right subtree are both empty.

Binary Trees: Recursive Definition

A binary tree is either:

- An empty tree; or
- A nonempty tree with a root node r that
- has a left binary subtree rooted at its left child
- has a right binary subtree rooted at its right child
\Rightarrow To solve problems recursively on a binary tree rooted at r :
- Do something with root r.
- Recur on r's left subtree.
- Recur on r's right subtree. [strictly smaller problem]

Similar to how we recur on subarrays (by passing the from and to indices), we recur on subtrees by passing their roots (i.e., the current root's left child and right child).

Binary Trees: Application (1)

A decision tree is a binary tree used to to express the decision-making process:

- Each internal node has two children (yes and no).
- Each external node represents a decision.

Binary Trees: Application (2)

An arithmetic expression can be represented using a binary tree:

- Each internal node denotes an operator (unary or binary).
- Each external node denotes an operand (i.e., a number). e.g., Use a binary tree to represent the arithmetic expression

$$
(((3+1) * 3) /((9-5)+2))-((3 *(7-4))+6)
$$

- To print, or to evaluate, the expression that is represented by a binary tree, certain traversal over the entire tree is required.

Tree Traversal Algorithms: Definition

- A traversal of a tree T is a systematic way of visiting all the nodes of T.
- The visit of each node may be associated with an action: e.g.,
- print the node element
- determine if the node element satisfies certain property
- accumulate the node element value to some global counter

Tree Traversal Algorithms: Common Types

- Inorder: Visit left subtree, then parent, then right subtree.

```
inorder (r): if(r != null) {/*subtree with root r is not empty*/
    inorder (r's left child)
visit and act on the subtree rooted at r
    inorder (r's right child) }
```

- Preorder: Visit parent, then left subtree, then right subtree.

```
preorder (r): if(r != null) {/*subtree with root r is not empty*/
visit and act on the subtree rooted at r
preorder ( }\mp@subsup{r}{}{\prime}s\mathrm{ left child)
preorder ( }r\mathrm{ 's right child) }
```

- Postorder: Visit left subtree, then right subtree, then parent.

```
postorder (r): if(r != null) {/*subtree with root r is not empty*|
    postorder ( }\mp@subsup{r}{}{\prime}\mathrm{ s left child)
    postorder (r's right child)
    visit and act on the subtree rooted at r }
```


Tree Traversal: Inorder

inorder traversal from the root A :

Tree Traversal: Preorder

preorder traversal from the root A:

Tree Traversal: Postorder

postorder traversal from the root A:

Tree Traversal: Exercises

- inorder traversal from the root:

$$
3+1 * 3 / 9-5+2-3 * 7-4+6
$$

- preorder traversal from the root:

$$
-/ \star+313+-952+\star 3-746
$$

- postorder traversal from the root:

$$
31+3 * 95-2+/ 374-\star 6+-
$$

Binary Tree in Java: Linked Node

```
public class BTNode \{
    private String element;
    private BTNode left;
    private BTNode right;
    BTNode(String element) \{
        this.element \(=\) element;
    \}
    public String getElement() \{ return element; \}
    public BTNode getLeft() \{ return left; \}
    public BTNode getRight() \{ return right; \}
    public void setElement(String element) \{ this.element = element; \}
    public void setLeft(BTNode left) \{ this.left = left; \}
    public void setRight(BTNode right) \{ this.right = right; \}
\}
```


Binary Tree in Java: Root Note

```
public class BinaryTree {
    private BTNode root;
    public BinaryTree() {
        /* Initialize an empty binary tree with root being null. */
    }
    public void setRoot(BTNode root) {
        this.root = root;
    }
}
```


Binary Tree in Java: Adding Nodes (1)

```
public class BinaryTree {
    private BTNode root;
    public void addToLeft(BTNode n, String element) {
        if(n.getLeft() != null) {
            throw new IllegalArgumentException("Left is already there");
        }
        n.setLeft(new BTNode(element));
    }
    public void addToRight(BTNode n, String element) {
        if(n.getRight() != null) {
            throw new IllegalArgumentException("Right is already there");
        }
        n.setRight(new BTNode(element));
    }
}
```

- The way we implement the add methods is not recursive.
- These two add methods assume that the caller calls them by passing references of the parent nodes.

Binary Tree in Java: Adding Nodes (2)

Exercise: Write Java code to construct the following binary tree:


```
BinaryTree bt = new BinaryTree(); /* empty binary tree */
BTNode root = new BTNode("D"); /* node disconnected from BT */
bt.setRoot(root); /* node connected to BT */
bt.addToLeft(root, "B");
bt.addToRight(root, "F");
bt.addToLeft(root.getLeft(), "A");
bt.addToRight(root.getLeft(), "C");
bt.addToLeft(root.getRight(), "E");
bt.addToRight(root.getRight(), "G");
```


Binary Tree in Java: Counting Size (1)

Size of a tree rooted at r is 1 (counting r itself) plus the size of r 's left subtree and plus the size of r 's right subtree.

```
public class BinaryTree {
    private BTNode root;
    public int size() { return sizeHelper (root); }
    private int sizeHelper (BTNode root) {
        if(root == null) {
        return 0;
        }
        else {
            return
                1
            + sizeHelper (root.getLeft())
            + sizeHelper (root.getRight());
        }
    }
}
```


Binary Tree in Java: Counting Size (2)

```
@Test
public void testBTSize() {
    BinaryTree bt = new BinaryTree();
    assertEquals(0, bt.size());
    BTNode root = new BTNode("D");
    bt.setRoot(root);
    assertEquals(1, bt.size());
    bt.addToLeft(root, "B");
    bt.addToRight(root, "F");
    bt.addToLeft(root.getLeft(), "A");
    bt.addToRight(root.getLeft(), "C");
    bt.addToLeft(root.getRight(), "E");
    bt.addToRight(root.getRight(), "G");
    assertEquals(7, bt.size());
}
```


Binary Tree in Java: Membership (1)

An element e exists in a tree rooted at r if either r contains e, or r 's left subtree contains e, or r's right subtree contains e.

```
public class BinaryTree {
    private BTNode root;
    public boolean has(String e) { return hasHelper (root, e); }
    private boolean hasHelper (BTNode root, String e) {
        if(root == null) {
        return false;
        }
        else {
            return
                root.getElement().equals(e)
                || hasHelper (root.getLeft(), e)
                | | hasHelper (root.getRight(), e);
            }
    }
}
```

27 of 37

Binary Tree in Java: Membership (2)

```
@Test
public void testBTMembership() {
    BinaryTree bt = new BinaryTree();
    assertFalse(bt.has("D"));
    BTNode root = new BTNode("D");
    bt.setRoot(root);
    assertTrue(bt.has("D"));
    assertFalse(bt.has("A"));
    bt.addToLeft(root, "B");
    bt.addToRight(root, "F");
    bt.addToLeft(root.getLeft(), "A");
    bt.addToRight(root.getLeft(), "C");
    bt.addToLeft(root.getRight(), "E");
    bt.addToRight(root.getRight(), "G");
    assertTrue (bt.has("A")) ; assertTrue(bt.has("B"));
    assertTrue(bt.has("C")); assertTrue(bt.has("D"));
    assertTrue(bt.has("E")) ; assertTrue(bt.has("F"));
    assertTrue(bt.has("G")) ;
    assertFalse(bt.has("H"));
    assertFalse(bt.has("I"));
}
```

28 of 37

Binary Tree in Java: Inorder Traversal (1)

```
public class BinaryTree {
    private BTNode root;
    public ArrayList<String> inroder() {
        ArrayList<String> list = new ArrayList<>();
        inorderHelper (root, list);
        return list;
    }
    private void inorderHelper (BTNode root, ArrayList<String> list)
        if(root != null) {
            inorderHelper (root.getLeft(), list);
            list.add(root.getElement()) ;
            inorderHelper (root.getRight(), list);
        }
    }
}
```


Binary Tree in Java: Inorder Traversal (2)

```
@Test
public void testBT_inorder() {
    BinaryTree bt = new BinaryTree();
    BTNode root = new BTNode("D");
    bt.setRoot(root);
    bt.addToLeft(root, "B");
    bt.addToRight(root, "F");
    bt.addToLeft(root.getLeft(), "A");
    bt.addToRight(root.getLeft(), "C");
    bt.addToLeft(root.getRight(), "E");
    bt.addToRight(root.getRight(), "G");
    ArrayList<String> list = bt.inroder() ;
    assertEquals(list.get(0), "A");
    assertEquals(list.get(1), "B");
    assertEquals(list.get(2), "C");
    assertEquals(list.get(3), "D");
    assertEquals(list.get(4), "E");
    assertEquals(list.get(5), "F");
    assertEquals(list.get(6), "G");
}
```


Binary Tree in Java: Preorder Traversal (1)

```
public class BinaryTree {
    private BTNode root;
    public ArrayList<String> preorder() {
        ArrayList<string> list = new ArrayList<>();
        preorderHelper (root, list);
        return list;
    }
    private void preorderHelper (BTNode root, ArrayList<String> list)
        if(root != null) {
            list.add(root.getElement());
            preorderHelper (root.getLeft(), list);
            preorderHelper (root.getRight(), list);
        }
    }
}
```


Binary Tree in Java: Preorder Traversal (2)

```
@Test
public void testBT_inorder() {
    BinaryTree bt = new BinaryTree();
    BTNode root = new BTNode("D");
    bt.setRoot(root);
    bt.addToLeft(root, "B");
    bt.addToRight(root, "F");
    bt.addToLeft(root.getLeft(), "A");
    bt.addToRight(root.getLeft(), "C");
    bt.addToLeft(root.getRight(), "E");
    bt.addToRight(root.getRight(), "G");
    ArrayList<String> list = bt.preorder() ;
    assertEquals(list.get(0), "D");
    assertEquals(list.get(1), "B");
    assertEquals(list.get(2), "A");
    assertEquals(list.get(3), "C");
    assertEquals(list.get(4), "F");
    assertEquals(list.get(5), "E");
    assertEquals(list.get(6), "G");
}
```


Binary Tree in Java: Postorder Traversal (1)

```
public class BinaryTree {
    private BTNode root;
    public ArrayList<String> preorder() {
        ArrayList<string> list = new ArrayList<>();
        postorderHelper (root, list);
        return list;
    }
    private void postorderHelper (BTNode root, ArrayList<string> list) {
        if(root != null) {
            list.add(root.getElement()) ;
                postorderHelper (root.getLeft(), list);
                postorderHelper (root.getRight(), list);
            }
    }
}
```


Binary Tree in Java: Postorder Traversal (2)

```
@Test
public void testBT_inorder() {
    BinaryTree bt = new BinaryTree();
    BTNode root = new BTNode("D");
    bt.setRoot(root);
    bt.addToLeft(root, "B");
    bt.addToRight(root, "F");
    bt.addToLeft(root.getLeft(), "A");
    bt.addToRight(root.getLeft(), "C");
    bt.addToLeft(root.getRight(), "E");
    bt.addToRight(root.getRight(), "G");
    ArrayList<String> list = bt.postorder() ;
    assertEquals(list.get(0), "A");
    assertEquals(list.get(1), "C");
    assertEquals(list.get(2), "B");
    assertEquals(list.get(3), "E");
    assertEquals(list.get(4), "G");
    assertEquals(list.get(5), "F");
    assertEquals(list.get(6), "D");
}
```


Index (1)

General Trees
General Trees: Terminology (1)
General Trees: Terminology (2)
General Trees: Terminology (3)
Exercise: Identifying Subtrees
General Tree: Important Characteristics
General Trees: Ordered Trees
General Trees: Unordered Trees
Binary Trees
Binary Trees: Terminology (1)
Binary Trees: Recursive Definition
Binary Trees: Application (1)
Binary Trees: Application (2)
Tree Traversal Algorithms: Definition
30ण゙3т

Index (2)

Tree Traversal Algorithms: Common Types
Tree Traversal: Inorder
Tree Traversal: Preorder
Tree Traversal: Postorder
Tree Traversal: Exercises
Binary Tree in Java: Linked Node
Binary Tree in Java: Root Node
Binary Tree in Java: Adding Nodes (1)
Binary Tree in Java: Adding Nodes (2)
Binary Tree in Java: Counting Size (1)
Binary Tree in Java: Counting Size (2)
Binary Tree in Java: Membership (1)
Binary Tree in Java: Membership (2)
Binary Tree in Java: Inorder Traversal (1)
300137

Index (3)

Binary Tree in Java: Inorder Traversal (2)

Binary Tree in Java: Preorder Traversal (1)

Binary Tree in Java: Preorder Traversal (2)

Binary Tree in Java: Postorder Traversal (1)

Binary Tree in Java: Postorder Traversal (2)

