Recursion

EECS2030: Advanced Object Oriented Programming Fall 2017

Chen-Wei Wang

Recursion: Principle

- Recursion is useful in expressing solutions to problems that can be recursively defined:
- Base Cases: Small problem instances immediately solvable.
- Recursive Cases:
- Large problem instances not immediately solvable.
- Solve by reusing solution(s) to strictly smaller problem instances.
- Similar idea learnt in high school: [mathematical induction]
- Recursion can be easily expressed programmatically in Java:
- In the body of a method m, there might be a call or calls to m itself.
- Each such self-call is said to be a recursive call.
- Inside the execution of $m(i)$, a recursive call $m(j)$ must be that $j<i$.

```
m(i) {
    m(j);/* recursive call with strictly smaller value */
}
```

2 of 40

Recursion: Factorial (1)

- Recall the formal definition of calculating the n factorial:

$$
n!=\left\{\begin{array}{lr}
1 & \text { if } n=0 \\
n \cdot(n-1) \cdot(n-2) \cdots \cdot 3 \cdot 2 \cdot 1 & \text { if } n \geq 1
\end{array}\right.
$$

- How do you define the same problem recursively?

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { if } n \geq 1\end{cases}
$$

- To solve n !, we combine n and the solution to $(n-1)$!.

```
int factorial (int n) {
    int result;
    if(n == 0) { /* base case */ result = 1; }
    else { /* recursive case */
        result = n * factorial (n - 1);
    }
    return result;
}
```


Recursion: Factorial (2)

Recursion: Factorial (3)

- When running factorial(5), a recursive call factorial(4) is made. Call to factorial(5) suspended until factorial(4) returns a value.
- When running factorial(4), a recursive call factorial(3) is made. Call to factorial(4) suspended until factorial(3) returns a value.
- factorial(0) returns 1 back to suspended call factorial(1).
- factorial(1) receives 1 from factorial(0), multiplies 1 to it, and returns 1 back to the suspended call factorial(2).
- factorial(2) receives 1 from factorial(1), multiplies 2 to it, and returns 2 back to the suspended call factorial(3).
- factorial(3) receives 2 from factorial(1), multiplies 3 to it, and returns 6 back to the suspended call factorial(4).
- factorial(4) receives 6 from factorial(3), multiplies 4 to it, and returns 24 back to the suspended call factorial(5).
- factorial(5) receives 24 from factorial(4), multiplies 5 to it, and returns 120 as the result.

Recursion: Factorial (4)

- When the execution of a method (e.g., factorial(5)) leads to a nested method call (e.g., factorial(4)):
- The execution of the current method (i.e., factorial(5)) is suspended, and a structure known as an activation record or activation frame is created to store information about the progress of that method (e.g., values of parameters and local variables).
- The nested methods (e.g., factorial(4)) may call other nested methods (factorial(3)).
- When all nested methods complete, the activation frame of the latest suspended method is re-activated, then continue its execution.
- What kind of data structure does this activation-suspension process correspond to?
[LIFO Stack]

Tracing Recursion using a Stack

- When a method is called, it is activated (and becomes active) and pushed onto the stack.
- When the body of a method makes a (helper) method call, that (helper) method is activated (and becomes active) and pushed onto the stack.
\Rightarrow The stack contains activation records of all active methods.
- Top of stack denotes the current point of execution.
- Remaining parts of stack are (temporarily) suspended.
- When entire body of a method is executed, stack is popped.
\Rightarrow The current point of execution is returned to the new top of stack (which was suspended and just became active).
- Execution terminates when the stack becomes empty .

Recursion: Fibonacci (1)

Recall the formal definition of calculating the $n_{t h}$ number in a Fibonacci series (denoted as F_{n}), which is already itself recursive:

$$
F_{n}= \begin{cases}1 & \text { if } n=1 \\ 1 & \text { if } n=2 \\ F_{n-1}+F_{n-2} & \text { if } n>2\end{cases}
$$

```
int fib (int n) {
    int result;
    if(n == 1) { /* base case */ result = 1; }
    else if(n == 2) { /* base case */ result = 1; }
    else { /* recursive case */
        result = fib (n-1) + fib (n - 2);
    }
    return result;
}
```


Rec＇：1．ision：Fibonacci（2）

$\{\mathrm{fib}(5)=\underline{\mathrm{fib}(4)}+\mathrm{fib}(3) ;$ push（fib（5））；suspended：$\langle\mathrm{fib}(5)\rangle$ ；active：fib（4）\} fib（4）＋fib（3）
$=\{\mathrm{fib}(4)=\underline{\mathrm{fib}(3)}+\mathrm{fib}(2)$ ；suspended：$\langle\mathrm{fib}(4), \mathrm{fib}(5)\rangle$ ；active：fib（3）\}
（fib（3）$+f i b(2))+f i b(3)$
$=\{\mathrm{fib}(3)=\underline{\mathrm{fib}(2)}+\mathrm{fib}(1)$ ；suspended：$\langle\mathrm{fib}(3), \mathrm{fib}(4), \mathrm{fib}(5)\rangle$ ；active： $\mathrm{fib}(2)\}$
$((f i b(2)+f i b(1))+f i b(2))+f i b(3)$
$=\{f i b(2)$ returns 1 ；suspended：〈fib（3），fib（4），fib（5）$;$ ；active：fib（1）\} $((1+f i b(1))+f i b(2))+f i b(3)$
$=\{$ fib（1）returns 1；suspended：〈fib（3），fib（4），fib（5）$;$ ；active：fib（3）\}
$((1+1)+f i b(2))+f i b(3)$
$=\{f i b(3)$ returns $1+1$ ；pop（）；suspended：$\langle f i b(4), f i b(5)\rangle$ ；active：fib（2）$\}$ $(2+f i b(2))+f i b(3)$
$=\{f i b(2)$ returns 1 ；suspended：〈fib（4），fib（5）\rangle ；active：fib（4）\} $(2+1)+f i b(3)$
$=\{f i b(4)$ returns $2+1$ ；pop（）；suspended：〈fib（5）\}; active: fib(3)\} $3+f i b(3)$
$=\{\mathrm{fib}(3)=\underline{\mathrm{fib}(2)}+\mathrm{fib}(1)$ ；suspended：$\langle\mathrm{fib}(3), \mathrm{fib}(5)\rangle$ ；active：fib（2）\} $3+(f i b(2)+f i b(1))$
$=\{f i b(2)$ returns 1 ；suspended：$\langle\mathrm{fib}(3), \mathrm{fib}(5)\rangle$ ；active：fib（1）\} $3+(1+f i b(1))$
$=\{$ fib（1）returns 1 ；suspended：$\langle\mathrm{fib}(3)$ ，fib（5）\rangle ；active：fib（3）\} $3+(1+1)$
$=\{f i b(3)$ returns $1+1$ ；pop（）；suspended：$\langle\mathrm{fib}(5)\rangle$ ；active：fib（5）\} $3+2$
$=\{$ fib（5）returns $3+2$ ；suspended：$\langle \rangle\}$
9 of 40^{5}

Java Library: String

```
public class StringTester {
    public static void main(String[] args) {
        String s = "abcd";
        System.out.println(s.isEmpty()) ; /* false */
        /* Characters in index range [0, 0) */
        String t0 = s.substring(0, 0);
        System.out.println(t0); /* " " */
    /* Characters in index range [0, 4) */
    String tI = s.substring(0, 4);
    System.out.println(tI); /* "abcd" */
    /* Characters in index range [1, 3) */
    String t2 = s.substring(1, 3);
    System.out.println(t2) ; / * "bo" */
    String t3 = s.substring(0, 2) + s.substring(2, 4);
    System.out.println(s.equals(t3)); /* true */
    for(int i = 0; i < s.length(); i ++) {
        System.out.print(s.charAt (i));
    }
    System.out.println();
    }
}
```

10 of 40

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards and backwards. Write a method that takes a string and determines whether or not it is a palindrome.

```
System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false
```

Base Case 1: Empty string \longrightarrow Return true immediately. Base Case 2: String of length $1 \longrightarrow$ Return true immediately. Recursive Case: String of length $\geq 2 \longrightarrow$

- 1st and last characters match, and
- the rest (i.e., middle) of the string is a palindrome.

Recursion: Palindrome (2)

```
boolean isPalindrome (String word) {
    if(word.length() == 0 || word.length() == 1) {
        /* base case */
        return true;
    }
    else
        /* recursive case */
        char firstChar = word.charAt(0);
        char lastChar = word.charAt(word.length() - 1);
        String middle = word.substring(1, word.length() - 1);
        return
            firstChar == lastChar
            /* See the API of java.lang.String.substring. */
            && isPalindrome (middle);
    }
}
```


Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a method that takes a string and returns its reverse.

```
System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf("ab")); "ba"
System.out.println(reverseOf("abc")); "cba"
System.out.println(reverseof("abcd")); "dcba"
```

Base Case 1: Empty string \longrightarrow Return empty string.
Base Case 2: String of length $1 \longrightarrow$ Return that string.
Recursive Case: String of length $\geq 2 \longrightarrow$

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 1) and 2).

Recursion: Reverse of a String (2)

```
String reverseOf (String s) {
    if(s.isEmpty()) { / * base case 1 */
        return "";
    }
    else if(s.length() == 1) { / * base case 2 */
        return s;
    }
    else { /* recursive case */
        String tail = s.substring(1, s.length());
        String reverseOfTail = reverseOf (tail);
        char head = s.charAt (0);
        return reverseOfTail + head;
    }
}
```


Recursion: Number of Occurrences (1)

Problem: Write a method that takes a string s and a character c, then count the number of occurrences of c in s.

```
System.out.println(occurrencesOf("", 'a'));
System.out.println(occurrencesOf("a", 'a'));
System.out.println(occurrencesOf("b", 'a'));
System.out.println(occurrencesOf("baaba", 'a'));
System.out.println(occurrencesOf("baaba", 'b'));
System.out.println(occurrencesOf("baaba", 'c'));
```

Base Case: Empty string \longrightarrow Return 0. Recursive Case: String of length $\geq 1 \longrightarrow$

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first character)
If head is equal to c, return $1+2$).
If head is not equal to c, return $0+2$).

Recursion: Number of Occurrences (2)

```
int occurrencesOf (String s, char c) {
    if(s.isEmpty()) {
        /* Base Case */
        return 0;
    }
    else {
        /* Recursive Case */
        char head = s.charAt (0);
        String tail = s.substring(1, s.length());
        if(head == c) {
            return 1 + occurrencesOf (tail, c);
            }
            else {
                return 0 + occurrencesOf (tail, c);
            }
    }
}
```


Recursion: All Positive (1)

Problem: Determine if an array of integers are all positive.

```
System.out.println(allPositive({}));
System.out.println(allPositive({1, 2, 3, 4, 5}));
System.out.println(allPositive({1, 2, -3, 4, 5}));
```

```
* false */
```

Base Case: Empty array \longrightarrow Return true immediately.
The base case is true \because we can not find a counter-example (i.e., a number not positive) from an empty array.

Recursive Case: Non-Empty array \longrightarrow

- 1st element positive, and
- the rest of the array is all positive .

Exercise: Write a method boolean somePostive (int []
a) which recursively returns true if there is some positive number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]
\because No witness (i.e., a positive number) from an empty array

Making Recursive Calls on an Array

- Recursive calls denote solutions to smaller sub-problems.
- Naively, explicitly create a new, smaller array:

```
void m(int[] a) {
    int[] subArray = new int[a.length - 1];
    for(int i=\1]; i < a.length; i ++) { subArray[0] = a[i - 1];
    m(subArray)}
```

- For efficiency, we pass the same array by reference and specify the range of indices to be considered:

```
void m(int[] a, int from, int to) {
    if(from == to) { /* base case */ }
    else {m(a, from + 1, to) } }
```

- m(a, 0, a.length - 1)
[Initial call; entire array]
- m(a, 1, a.length - 1) [1st r.c. on array of size a.length - 1]
- m(a, 2, a.length - 1) [2nd r.c. on array of size a.length - 2]
- m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]

Recursion: All Positive (2)

```
boolean allPositive(int[] a) {
    return allPositiveHelper (a, 0, a.length - 1);
}
boolean allPositiveHelper (int[] a, int from, int to) {
    if (from > to) { /* base case 1: empty range */
        return true;
    }
    else if(from == to) { /* base case 2: range of one element */
        return a[from] > 0;
    }
    else { /* recursive case */
        return a[from] > 0 && allPositiveHelper (a, from + I, to);
    }
}
```


Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a non-descending order.

```
System.out.println(isSorted({})); true
System.out.println(isSorted({1, 2, 2, 3, 4})); true
System.out.println(isSorted({1, 2, 2, 1, 3})); false
```

Base Case: Empty array \longrightarrow Return true immediately.
The base case is true \because we can not find a counter-example (i.e., a pair of adjacent numbers that are not sorted in a non-descending order) from an empty array.
Recursive Case: Non-Empty array \longrightarrow

- 1st and 2nd elements are sorted in a non-descending order, and
- the rest of the array, starting from the 2nd element, are sorted in a non-descending positive .

Recursion: Is an Array Sorted? (2)

```
boolean isSorted(int[] a) {
    return isSortedHelper (a, 0, a.length - 1);
}
boolean isSortedHelper (int[] a, int from, int to) {
    if (from > to) { /* base case 1: empty range */
        return true;
    }
    else if(from == to) { / * base case 2: range of one element */
        return true;
    }
    else {
        return a[from] <= a[from + 1]
            && isSortedHelper (a, from + 1, to);
    }
}
```


Recursion: Sorting an Array (1)

Problem: Sort an array into a non-descending order, using the selection-sort strategy.
Base Case: Arrays of size 0 or $1 \longrightarrow$ Completed immediately.
Recursive Case: Non-Empty array a \longrightarrow
Run an iteration from indices $i=0$ to a.length -1 .
In each iteration:

- In index range [i, a.length - 1], recursively compute the minimum element e.
- Swap $a[i]$ and e if $e<a[i]$.

Recursion: Sorting an Array (2)

```
public static int getMinIndex (int[] a, int from, int to) {
    if(from == to) { return from; }
    else {
        int minIndexOfTail = getMinIndex(a, from + 1, to);
        if(a[from] < a[minIndexOfTail]) { return from; }
        else { return minIndexOfTail; }
    }
}
public static void selectionSort(int[] a) {
    if(a.length == 0 || a.length == 1) { /* sorted, do nothing */ }
    else {
        for(int i = 0; i < a.length; i ++) {
            int minIndex = getMinIndex (a, i, a.length - 1);
            /* swap a[i] and a[minIndex] */
            int temp = a[i];
            a[i] = a[minIndex];
            a[minIndex] = temp;
        }
    }
}
```


Recursion: Binary Search (1)

- Searching Problem

Input: A number a and a sorted list of n numbers
$\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$
Output: Whether or not a exists in the input list

- An Efficient Recursive Solution

Base Case: Empty list \longrightarrow False.
Recursive Case: List of size $\geq 1 \longrightarrow$

- Compare the middle element against a.
- All elements to the left of middle are $\leq a$
- All elements to the right of middle are $\geq a$
- If the middlle element is equal to $a \longrightarrow$ True.
- If the middle element is not equal to a :
- If $a<$ middle, recursively find a on the left half.
- If $a>$ middle, recursively find a on the right half.

Recursion: Binary Search (2)

```
boolean binarySearch(int[] sorted, int key) {
    return binarysearchHelper (sorted, 0, sorted.length - 1, key);
}
boolean binarySearchHelper (int[] sorted, int from, int to, int key)
    if (from > to) { / * base case 1: empty range */
        return false; }
    else if(from == to) { / * base case 2: range of one element */
        return sorted[from] == key; }
    else {
        int middle = (from + to) / 2;
        int middleValue = sorted[middle];
        if(key < middleValue) {
            return binarySearchHelper (sorted, from, middle - 1, key);
        }
        else if (key > middleValue) {
            return binarySearchHelper (sorted, middle + 1, to, key);
        }
        else { return true; }
    }
}
```


Tower of Hanoi: Specification

- Given: A tower of 8 disks, initially stacked in decreasing size on one of 3 pegs

- Rules:
- Move only one disk at a time
- Never move a larger disk onto a smaller one
- Problem: Transfer the entire tower to one of the other pegs.

Tower of Hanoi: Strategy

- Generalize the problem by considering n disks.
- Introduce appropriate notation:
- T_{n} denotes the minimum number of moves required to to transfer n disks from one to another under the rules.
- General patterns are easier to perceive when the extreme or base cases are well understood.
- Look at small cases first:
- $T_{1}=1$
- $T_{2}=3$
- How about T_{3} ? Does it help us perceive the general case of n ?

Tower of Hanoi: A General Solution Pattern

A possible (yet to be proved as optimal) solution requires 3 steps:

1. Transfer the $n-1$ smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the $n-1$ disks back onto the largest disk. How many moves are required from the above 3 steps?

$$
\left(2 \times T_{n-1}\right)+1
$$

However, we have only proved that the \# moves required by this solution are sufficient:

$$
T_{n} \leq\left(2 \times T_{n-1}\right)+1
$$

But are the above steps all necessary? Can you justify?

$$
T_{n} \geq\left(2 \times T_{n-1}\right)+1
$$

Tower of Hanoi: Recurrence Relation for T_{n}

We end up with the following recurrence relation that allows us to compute T_{n} for any n we like:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=\left(2 \times T_{n-1}\right)+1 \text { for } n>0
\end{aligned}
$$

However, the above relation only gives us indirect information:
To calculate T_{n}, first calculate T_{n-1}, which requires the calculation of T_{n-2}, and so on.
Instead, we need a closed-form solution to the above recurrence relation, which allows us to directly calculate the value of T_{n}.

Tower of Hanoi:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{1}=2 \times T_{0}+1=1 \\
& T_{2}=2 \times T_{1}+1=3 \\
& T_{3}=2 \times T_{2}+1=7 \\
& T_{4}=2 \times T_{3}+1=15 \\
& T_{5}=2 \times T_{4}+1=31 \\
& T_{6}=2 \times T_{5}+1=63
\end{aligned}
$$

Guess:

$$
T_{n}=2^{n}-1 \quad \text { for } n \geq 0
$$

Prove by mathematical induction.

Tower of Hanoi: Prove by Mathematical Induction

Basis:

$$
T_{0}=2^{0}-1=0
$$

Induction:
Assume that

$$
T_{n-1}=2^{n-1}-1
$$

then

$$
\begin{aligned}
& T_{n} \\
= & \left\{\text { Recurrence relation for } T_{n}\right\} \\
& \left(2 \times T_{n-1}\right)+1 \\
= & \{\text { Inductive assumption }\} \\
& \left(2 \times\left(2^{n-1}-1\right)\right)+1 \\
= & \{\text { Arithmetic }\} \\
& 2^{n}-1
\end{aligned}
$$

Revisiting the Tower of Hanoi

Given: A tower of 8 disks, initially stacked in decreasing size on one of 3 pegs.
This shall require

$$
T_{8}=2^{8}-1=255
$$

moves to complete.

Tower of Hanoi in Java (1)

```
void towerOfHanoi(String[] disks)
    tohHelper (disks, 0, disks.length - 1, 1, 3);
}
void tohHelper(String[] disks, int from, int to, int p1, int p2) {
    if(from > to) { }
    else if(from == to) {
        print("move " + disks[to] + " from " + p1 + " to " + p2);
    }
    else {
        int intermediate = 6-p1 - p2;
            tohHelper (disks, from, to - 1, p1, intermediate);
        print("move " + disks[to] + " from " + p1 + " to " + p2);
            tohHelper (disks, from, to - 1, intermediate, p2);
    }
}
```

- tohHelper(disks, from, to, p1, p2) moves disks \{disks[from], disks[from + 1],..., disks[to]\} from peg p1 to peg p2.
- Peg id's are 1,2 , and $3 \Rightarrow$ The intermediate one is $6-p 1-p 2$. 33 of 40

Tower of Hanoi in Java (2)

Say d (disks) is $\{A, B, C\}$, where $A<B<C$.

Recursive Methods: Correctness Proofs

```
boolean allPositive(int[] a) { return allPosH (a, 0, a.length - 1);|}
boolean allPosH (int[] a, int from, int to) {
    if (from > to) { return true; }
    else if(from == to) { return a[from] > 0; }
    else { return a[from] > 0 && allPosH (a, from + 1, to); } }
```

- Via mathematical induction, prove that allPosh is correct: Base Cases
- In an empty array, there is no non-positive number \therefore result is true. [L3]
- In an array of size 1, the only one elements determines the result. [L4] Inductive Cases
- Inductive Hypothesis: allPosH (a, from + 1, to) returns true if a[from + 1], a[from + 2], ..., a[to] are all positive; false otherwise.
- allPosH (a, from, to) should return true if: 1) a[from] is positive; and 2) a[from +1], $a[f r o m+2], \ldots, a[t o]$ are all positive.
- By I.H. , result is $a[$ from $]>0 \wedge$ allPosH (a, from +1 , to).
- allpositive (a) is correct by invoking
allposH (a, 0, a.length - 1), examining the entire array.

Beyond this lecture ...

- Notes on Recursion:
http://www.eecs.yorku.ca/~jackie/teaching/ lectures/2017/F/EECS2030/slides/EECS2030_F17 Notes_Recursion.pdf
- APl for String: https://docs.oracle.com/javase/8/docs/api/ java/lang/String.html
- Fantastic resources for sharpening your recursive skills for the exam:
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
- The best approach to learning about recursion is via a functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

Index (1)

Recursion: Principle
Recursion: Factorial (1)
Recursion: Factorial (2)
Recursion: Factorial (3)
Recursion: Factorial (4)
Tracing Recursion using a Stack
Recursion: Fibonacci (1)
Recursion: Fibonacci (2)
Java Library: String
Recursion: Palindrome (1)
Recursion: Palindrome (2)
Recursion: Reverse of a String (1)
Recursion: Reverse of a String (2)
Recursion: Number of Occurrences (1)
000140

Index (2)

Recursion: Number of Occurrences (2)
Recursion: All Positive (1)
Making Recursive Calls on an Array
Recursion: All Positive (2)
Recursion: Is an Array Sorted? (1)
Recursion: Is an Array Sorted? (2)
Recursion: Sorting an Array (1)
Recursion: Sorting an Array (2)
Recursion: Binary Search (1)
Recursion: Binary Search (2)
Tower of Hanoi: Specification
Tower of Hanoi: Strategy
Tower of Hanoi: A General Solution Pattern
Tower of Hanoi: Recurrence Relation for T_{n}
090140

Index (3)

Tower of Hanoi:
A Hypothesized Closed Form Solution to T_{n}
Tower of Hanoi:

Prove by Mathematical Induction

Revisiting the Tower of Hanoi

Tower of Hanoi in Java (1)
Tower of Hanoi in Java (2)
Tower of Hanoi in Java (3)
Recursive Methods: Correctness Proofs
Beyond this lecture...

