Recursion: Principle

- **Recursion** is useful in expressing solutions to problems that can be recursively defined:
 - **Base Cases**: Small problem instances immediately solvable.
 - **Recursive Cases**:
 - Large problem instances not immediately solvable.
 - Solve by reusing solution(s) to strictly smaller problem instances.

- Similar idea learnt in high school: [mathematical induction]

- Recursion can be easily expressed programmatically in Java:
 - In the body of a method, there might be a call or calls to m itself.
 - Each such self-call is said to be a recursive call.
 - Inside the execution of m(i), a recursive call m(j) must be that j < i.

```
int factorial(int n) {
    if (n == 0) {
        // base case
        result = 1;
    } else {
        // recursive case
        result = n * factorial(n - 1);
    }
    return result;
}
```

Recursion: Factorial (1)

- Recall the formal definition of calculating the n factorial:
 \[
 n! = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1 & \text{if } n \geq 1
 \end{cases}
 \]

- How do you define the same problem recursively?
 \[
 n! = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot (n-1)! & \text{if } n \geq 1
 \end{cases}
 \]

- To solve n!, we combine n and the solution to (n - 1)!

\[
\begin{align*}
\text{factorial(5)} & \Rightarrow \text{return } 5 \cdot 24 = 120 \\
\text{factorial(4)} & \Rightarrow \text{return } 4 \cdot 6 = 24 \\
\text{factorial(3)} & \Rightarrow \text{return } 3 \cdot 2 = 6 \\
\text{factorial(2)} & \Rightarrow \text{return } 2 \cdot 1 = 2 \\
\text{factorial(1)} & \Rightarrow \text{return } 1 \cdot 1 = 1 \\
\text{factorial(0)} & \Rightarrow \text{return } 1
\end{align*}
\]
Recursion: Factorial (3)

- When running `factorial(5)`, a recursive call `factorial(4)` is made. Call to `factorial(5)` suspended until `factorial(4)` returns a value.
- When running `factorial(4)`, a recursive call `factorial(3)` is made. Call to `factorial(4)` suspended until `factorial(3)` returns a value.
- `factorial(0)` returns 1 back to suspended call `factorial(1)`.
- `factorial(1)` receives 1 from `factorial(0)`, multiplies 1 to it, and returns 1 back to the suspended call `factorial(2)`.
- `factorial(2)` receives 1 from `factorial(1)`, multiplies 2 to it, and returns 2 back to the suspended call `factorial(3)`.
- `factorial(3)` receives 2 from `factorial(1)`, multiplies 3 to it, and returns 6 back to the suspended call `factorial(4)`.
- `factorial(4)` receives 6 from `factorial(3)`, multiplies 4 to it, and returns 24 back to the suspended call `factorial(5)`.
- `factorial(5)` receives 24 from `factorial(4)`, multiplies 5 to it, and returns 120 as the result.

Recursion: Factorial (4)

- When the execution of a method (e.g., `factorial(5)`) leads to a nested method call (e.g., `factorial(4)`):
 - The execution of the current method (i.e., `factorial(5)`) is suspended, and a structure known as an activation record or activation frame is created to store information about the progress of that method (e.g., values of parameters and local variables).
 - The nested methods (e.g., `factorial(4)`) may call other nested methods (`factorial(3)`).
 - When all nested methods complete, the activation frame of the latest suspended method is re-activated, then continue its execution.

- What kind of data structure does this activation-suspension process correspond to? [LIFO Stack]

Recursion: Fibonacci (1)

Recall the formal definition of calculating the n_{th} number in a Fibonacci series (denoted as F_n), which is already itself recursive:

$$ F_n = \begin{cases} 1 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \\ F_{n-1} + F_{n-2} & \text{if } n > 2 \end{cases} $$

```java
int fib(int n) {
    int result;
    if(n == 1) { /* base case */ result = 1; }
    else if(n == 2) { /* base case */ result = 1; }
    else { /* recursive case */
        result = fib(n - 1) + fib(n - 2);
    }
    return result;
}
```

Tracing Recursion using a Stack

- When a method is called, it is activated (and becomes active) and pushed onto the stack.
- When the body of a method makes a (helper) method call, that (helper) method is activated (and becomes active) and pushed onto the stack.
 ⇒ The stack contains activation records of all active methods.
 - Top of stack denotes the current point of execution.
 - Remaining parts of stack are (temporarily) suspended.
- When entire body of a method is executed, stack is popped.
 ⇒ The current point of execution is returned to the new top of stack (which was suspended and just became active).
- Execution terminates when the stack becomes empty.
Recursion: Fibonacci (2)

```java
public class StringTester {
    public static void main(String[] args) {
        String s = "abcd";
        System.out.println(s.isEmpty()); // false */
        // Characters in index range [0, 0] */
        String t0 = s.substring(0, 0);
        System.out.println(t0); /* "" */
        // Characters in index range [0, 4] */
        String t1 = s.substring(0, 4);
        System.out.println(t1); /* "abcd" */
        // Characters in index range [1, 3] */
        String t2 = s.substring(1, 3);
        System.out.println(t2); /* "bcd" */
        String t3 = s.substring(0, 2) + s.substring(2, 4);
        System.out.println(s.equals(t3)); /* true */
        for (int i = 0; i < s.length(); i++) {
            System.out.print(s.charAt(i));
        }
        System.out.println();
    }
}
```

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards and backwards. Write a method that takes a string and determines whether or not it is a palindrome.

```java
System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false
```

Base Case 1: Empty string → Return `true` immediately.

Base Case 2: String of length 1 → Return `true` immediately.

Recursive Case: String of length ≥ 2 →
- 1st and last characters match, **and**
- the rest (i.e., middle) of the string **is a palindrome**.

Recursion: Palindrome (2)

```java
public class StringTester {
    public static boolean isPalindrome(String word) {
        if (word.length() == 0 || word.length() == 1) {
            / * base case */
            return true;
        } else {
            // recursive case */
            char firstChar = word.charAt(0);
            char lastChar = word.charAt(word.length() - 1);
            String middle = word.substring(1, word.length() - 1);
            return firstChar == lastChar
                    /* See the API of java.lang.String.substring. */
                    && isPalindrome(middle);
        }
    }
}
```
Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a method that takes a string and returns its reverse.

```
System.out.println(reverseOf("")); // ""
System.out.println(reverseOf("a")); // "a"
System.out.println(reverseOf("ab")); // "ba"
System.out.println(reverseOf("abc")); // "cba"
System.out.println(reverseOf("abcd")); // "dcba"
```

Base Case 1: Empty string → Return *empty string.*
Base Case 2: String of length 1 → Return *that string.*
Recursive Case: String of length ≥ 2 →

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)
Return the concatenation of 1) and 2).

Recursion: Number of Occurrences (1)

Problem: Write a method that takes a string `s` and a character `c`, then count the number of occurrences of `c` in `s`.

```
System.out.println(occurrencesOf("", 'a')); // 0  
System.out.println(occurrencesOf("a", 'a')); // 1  
System.out.println(occurrencesOf("ab", 'a')); // 1  
System.out.println(occurrencesOf("baaba", 'a')); // 3  
System.out.println(occurrencesOf("baaba", 'b')); // 2  
System.out.println(occurrencesOf("baaba", 'c')); // 0  
```

Base Case: Empty string → Return 0.
Recursive Case: String of length ≥ 1 →

1) Head of `s` (i.e., first character)
2) Number of occurrences of `c` in the tail of `s` (i.e., all but the first character)
If head is equal to `c`, return 1 + 2).
If head is not equal to `c`, return 0 + 2).

Recursion: Reverse of a String (2)

```
String reverseOf (String s) {
    if(s.isEmpty()) { /* base case 1 */
        return "";
    }
    else if(s.length() == 1) { /* base case 2 */
        return s;
    }
    else { /* recursive case */
        String tail = s.substring(1, s.length());
        String reverseOfTail = reverseOf (tail);
        char head = s.charAt(0);  
        return reverseOfTail + head;
    }
}
```

Recursion: Number of Occurrences (2)

```
int occurrencesOf (String s, char c) {  
    if(s.isEmpty()) { /* Base Case */
        return 0;
    }
    else { /* Recursive Case */
        char head = s.charAt(0);  
        String tail = s.substring(1, s.length());
        if(head == c) {  
            return 1 + occurrencesOf (tail, c);
        }
        else {  
            return 0 + occurrencesOf (tail, c);
        }
    }
}
```
Recursion: All Positive (1)

Problem: Determine if an array of integers are all positive.

```java
void specify the
System.out.println(allPositive()); /* true */
System.out.println(allPositive([1, 2, 3, 4, 5])); /* true */
System.out.println(allPositive([1, 2, 3, 4, 5])); /* false */
```

Base Case: Empty array → Return true immediately. The base case is true : we can not find a counter-example (i.e., a number not positive) from an empty array.

Recursive Case: Non-Empty array →

- 1st element positive, and
- the rest of the array is all positive.

Exercise: Write a method boolean somePositive(int[] a) which recursively returns true if there is some positive number in a, and false if there are no positive numbers in a.

Hint: What to return in the base case of an empty array? [false] ∴ No witness (i.e., a positive number) from an empty array.

Recursion: All Positive (2)

```java
boolean allPositive(int[] a) {
    // Recursive case
    return allPositiveHelper(a, 0, a.length - 1);
}

boolean allPositiveHelper(int[] a, int from, int to) {
    if (from == to) { // base case 1: empty range */
        return true;
    } else if (from == to) { // base case 2: range of one element */
        return a[from] > 0;
    } else { /* recursive case */
        return a[from] > 0 && allPositiveHelper(a, from + 1, to);
    }
}
```

Making Recursive Calls on an Array

- Recursive calls denote solutions to smaller sub-problems.
- Naively, explicitly create a new, smaller array:

```java
void m(int[] a) {
    int[] subArray = new int[a.length - 1];
    for (int i = 1; i < a.length; i++) { subArray[0] = a[i - 1]; }
    m(subArray);
}
```

- For efficiency, we pass the same array by reference and specify the range of indices to be considered:

```java
void m(int[] a, int from, int to) {
    if (from == to) { /* base case */
    } else { m(a, from + 1, to); }
    m(a, 0, a.length - 1); // Initial call; entire array
    m(a, 1, a.length - 1); // 1st r.c. on array of size a.length - 1
    m(a, 2, a.length - 1); // 2nd r.c. on array of size a.length - 2
    m(a, a.length - 1, a.length - 1); // Last r.c. on array of size 1
}
```

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a non-descending order.

```java
System.out.println(isSorted()); true
System.out.println(isSorted([1, 2, 2, 3, 4])); true
System.out.println(isSorted([1, 2, 2, 1, 3])); false
```

Base Case: Empty array → Return true immediately.

The base case is true : we can not find a counter-example (i.e., a pair of adjacent numbers that are not sorted in a non-descending order) from an empty array.

Recursive Case: Non-Empty array →

- 1st and 2nd elements are sorted in a non-descending order, and
- the rest of the array, starting from the 2nd element, are sorted in a non-descending positive order.
Recursion: Is an Array Sorted? (2)

```java
boolean isSorted(int[] a) {
    return isSortedHelper(a, 0, a.length - 1);
}

boolean isSortedHelper(int[] a, int from, int to) {
    if (from > to) { // Base case 1: empty range
        return true;
    }
    else if (from == to) { // base case 2: range of one element
        return true;
    } else {
        return a[from] <= a[from + 1] && isSortedHelper(a, from + 1, to);
    }
}
```

Recursion: Sorting an Array (2)

```java
public static int getMinIndex(int[] a, int from, int to) {
    if (from == to) { return from; }
    else {
        int minIndexOfTail = getMinIndex(a, from + 1, to);
        if (a[from] < a[minIndexOfTail]) { return from; }
        else { return minIndexOfTail; }
    }
}

public static void selectionSort(int[] a) {
    if (a.length == 0 || a.length == 1) { // sorted, do nothing
    } else {
        for (int i = 0; i < a.length; i++) {
            int minIndex = getMinIndex(a, i, a.length - 1);
            int temp = a[i];
            a[i] = a[minIndex];
            a[minIndex] = temp;
        }
    }
}
```

Recursion: Sorting an Array (1)

Problem: Sort an array into a non-descending order, using the **selection-sort** strategy.

Base Case: Arrays of size 0 or 1 → Completed immediately.

Recursive Case: Non-Empty array a →
- Run an iteration from indices i = 0 to a.length - 1.
- In each iteration:
 - In index range [i, a.length - 1], recursively compute the minimum element
 - Swap a[i] and a[-1] if a < a[i].

Recursion: Binary Search (1)

Searching Problem
- **Input:** A number a and a **sorted** list of n numbers a₁, a₂, ..., aₙ such that a₁ ≤ a₂ ≤ ... ≤ aₙ
- **Output:** Whether or not a exists in the input list

An Efficient Recursive Solution
- **Base Case:** Empty list → **False.**
- **Recursive Case:** List of size ≥ 1 →
 - **Compare** the middle element against a.
 - All elements to the left of middle are ≤ a
 - All elements to the right of middle are ≥ a
 - If the middle element is equal to a → **True.**
 - If the middle element is not equal to a:
 - If a < middle, recursively find a on the left half.
 - If a > middle, recursively find a on the right half.
Recursion: Binary Search (2)

```java
boolean binarySearch(int[] sorted, int key) {
    return binarySearchHelper(sorted, 0, sorted.length - 1, key);
}

boolean binarySearchHelper(int[] sorted, int from, int to, int key) {
    if (from > to) { // base case 1: empty range
        return false;
    } else if (from == to) { // base case 2: range of one element
        return sorted[from] == key;
    } else {
        int middle = (from + to) / 2;
        int middleValue = sorted[middle];
        if (key < middleValue) {
            return binarySearchHelper(sorted, from, middle - 1, key);
        } else if (key > middleValue) {
            return binarySearchHelper(sorted, middle + 1, to, key);
        } else { return true; }
    }
}
```

Tower of Hanoi: Specification

- **Given:** A tower of 8 disks, initially stacked in decreasing size on one of 3 pegs.
- **Rules:**
 - Move only one disk at a time
 - Never move a larger disk onto a smaller one
- **Problem:** Transfer the entire tower to one of the other pegs.

Tower of Hanoi: Strategy

- Generalize the problem by considering \(n \) disks.
- Introduce appropriate notation:
 - \(T_n \) denotes the *minimum* number of moves required to transfer \(n \) disks from one to another under the rules.
- General patterns are easier to perceive when the extreme or base cases are well understood.
 - Look at small cases first:
 - \(T_1 = 1 \)
 - \(T_2 = 3 \)
 - How about \(T_3 \)? Does it help us perceive the general case of \(n \)?

Tower of Hanoi: A General Solution Pattern

A possible (yet to be proved as optimal) solution requires 3 steps:

1. Transfer the \(n - 1 \) smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the \(n - 1 \) disks back onto the largest disk.

How many moves are required from the above 3 steps?

\[
(2 \times T_{n-1}) + 1
\]

However, we have only proved that the # moves required by this solution are sufficient:

\[
T_n \leq (2 \times T_{n-1}) + 1
\]

But are the above steps all necessary? Can you justify?

\[
T_n \geq (2 \times T_{n-1}) + 1
\]
Tower of Hanoi: Recurrence Relation for T_n

We end up with the following recurrence relation that allows us to compute T_n for any n we like:

\[
T_0 = 0 \\
T_n = (2 \times T_{n-1}) + 1 \quad \text{for } n > 0
\]

However, the above relation only gives us indirect information:

To calculate T_n, first calculate T_{n-1}, which requires the calculation of T_{n-2}, and so on.

Instead, we need a closed-form solution to the above recurrence relation, which allows us to directly calculate the value of T_n.

Tower of Hanoi: Prove by Mathematical Induction

Basis:

\[T_0 = 2^0 - 1 = 0 \]

Induction:

Assume that \(T_{n-1} = 2^{n-1} - 1 \) then

\[T_n = \begin{cases}
\text{Recurrence relation for } T_n \\
(2 \times T_{n-1}) + 1 \\
\text{Inductive assumption} \\
(2 \times (2^{n-1} - 1)) + 1 \\
\text{Arithmetic} \\
2^n - 1
\end{cases} \]

Revisiting the Tower of Hanoi

Given: A tower of 8 disks, initially stacked in decreasing size on one of 3 pegs.

This shall require \(T_8 = 2^8 - 1 = 255 \) moves to complete.
Tower of Hanoi in Java (1)

```java
towerOfHanoi(String[] disks) {
    tohHelper(disks, 0, disks.length - 1, 1, 3);
}

tohHelper(String[] disks, int from, int to, int p1, int p2) {
    if (from > to) {
        print("move " + disks[to] + " from " + p1 + " to " + p2);
    } else if (from == to) {
        print("move " + disks[to] + " from " + p1 + " to " + p2);
    } else {
        tohHelper(disks, from, to - 1, p1, intermediate);
        print("move " + disks[to] + " from " + p1 + " to " + p2);
        tohHelper(disks, from - 1, intermediate, p2);
    }
}
```

- `tohHelper(disks, from, to, p1, p2)` moves disks `{disks[from], disks[from + 1], ..., disks[to]}` from peg `p1` to peg `p2`.
- Peg id's are 1, 2, and 3 ⇒ The intermediate one is `6 - p1 - p2`.

Tower of Hanoi in Java (2)

Say `ds` (disks) is `{A, B, C}`, where `A < B < C`.

```
tohH(ds, 0, 0, p1, p3) =
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>move</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A, p1</td>
<td>p3</td>
</tr>
<tr>
<td></td>
<td>A, p3</td>
<td>p1</td>
</tr>
</tbody>
</table>
```

Recursive Methods: Correctness Proofs

1. `allPositive(int[] a)` returns `allPosH(a, 0, a.length - 1)` if:
 - `a[from]` is positive.
 - `a[to]` are all positive.

2. Via mathematical induction, prove that `allPosH` is correct:
 - **Base Cases**
 - In an empty array, there is no non-positive number. Result is `true`. [L3]
 - In an array of size 1, the only one element determines the result. [L4]
 - **Inductive Cases**
 - **Inductive Hypothesis**: `allPosH(a, from + 1, to)` returns `true` if `a[from + 1], a[from + 2], ..., a[to]` are all positive; `false` otherwise.
 - `allPosH(a, from, to)` should return `true` if: 1) `a[from]` is positive; and 2) `a[from + 1], a[from + 2], ..., a[to]` are all positive.

3. By **L.H.**, result is `a[from] > 0 ∧ allPosH(a, from + 1, to)` examining the entire array. [L1]
Beyond this lecture ...

- Notes on Recursion:
- API for String:
 https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
- Fantastic resources for sharpening your recursive skills for the exam:
 http://codingbat.com/java/Recursion-1
 http://codingbat.com/java/Recursion-2
- The best approach to learning about recursion is via a functional programming language:
 Haskell Tutorial: https://www.haskell.org/tutorial/