
Recursion

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:○ Base Cases: Small problem instances immediately solvable.○ Recursive Cases:● Large problem instances not immediately solvable.● Solve by reusing solution(s) to strictly smaller problem instances.

● Similar idea learnt in high school: [mathematical induction]● Recursion can be easily expressed programmatically in Java:○ In the body of a method m, there might be a call or calls to m itself .○ Each such self-call is said to be a recursive call .○ Inside the execution of m(i), a recursive call m(j) must be that j < i.
m (i) {
. . .
m (j);/* recursive call with strictly smaller value */
. . .

}

2 of 40

Recursion: Factorial (1)
● Recall the formal definition of calculating the n factorial:

n! = �������
1 if n = 0
n ⋅ (n − 1) ⋅ (n − 2) ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1 if n ≥ 1

● How do you define the same problem recursively?

n! = �������
1 if n = 0
n ⋅ (n − 1)! if n ≥ 1

● To solve n!, we combine n and the solution to (n - 1)!.
int factorial (int n) {
int result;
if(n == 0) { /* base case */ result = 1; }
else { /* recursive case */

result = n * factorial (n - 1);
}
return result;

}

3 of 40

Recursion: Factorial (2)

return 4 ∗ 6 = 24

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(5)

factorial(4)

return 1

return 1 ∗ 1 = 1

return 2 ∗ 1 = 2

return 3 ∗ 2 = 6

return 5 ∗ 24 = 120

4 of 40

Recursion: Factorial (3)

○ When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.○ When running factorial(4), a recursive call factorial(3) is made.
Call to factorial(4) suspended until factorial(3) returns a value.
. . .○ factorial(0) returns 1 back to suspended call factorial(1).○ factorial(1) receives 1 from factorial(0), multiplies 1 to it, and
returns 1 back to the suspended call factorial(2).○ factorial(2) receives 1 from factorial(1), multiplies 2 to it, and
returns 2 back to the suspended call factorial(3).○ factorial(3) receives 2 from factorial(1), multiplies 3 to it, and
returns 6 back to the suspended call factorial(4).○ factorial(4) receives 6 from factorial(3), multiplies 4 to it, and
returns 24 back to the suspended call factorial(5).○ factorial(5) receives 24 from factorial(4), multiplies 5 to it, and
returns 120 as the result.

5 of 40

Recursion: Factorial (4)

● When the execution of a method (e.g., factorial(5)) leads to a
nested method call (e.g., factorial(4)):○ The execution of the current method (i.e., factorial(5)) is

suspended , and a structure known as an activation record or
activation frame is created to store information about the

progress of that method (e.g., values of parameters and local
variables).○ The nested methods (e.g., factorial(4)) may call other nested
methods (factorial(3)).○ When all nested methods complete, the activation frame of the
latest suspended method is re-activated, then continue its
execution.

● What kind of data structure does this activation-suspension
process correspond to? [LIFO Stack]

6 of 40

Tracing Recursion using a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.
⇒ The stack contains activation records of all active methods.○ Top of stack denotes the current point of execution .○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

7 of 40

Recursion: Fibonacci (1)

Recall the formal definition of calculating the nth number in a
Fibonacci series (denoted as Fn), which is already itself
recursive:

Fn =
�����������

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

int fib (int n) {
int result;
if(n == 1) { /* base case */ result = 1; }
else if(n == 2) { /* base case */ result = 1; }
else { /* recursive case */

result = fib (n - 1) + fib (n - 2);
}
return result;

}

8 of 40

Recursion: Fibonacci (2)fib(5)

= {fib(5) = fib(4) + fib(3); push(fib(5)); suspended: �fib(5)�; active: fib(4)}
fib(4) + fib(3)

= {fib(4) = fib(3) + fib(2); suspended: �fib(4), fib(5)�; active: fib(3)}
(fib(3) + fib(2)) + fib(3)

= {fib(3) = fib(2) + fib(1); suspended: �fib(3), fib(4), fib(5)�; active: fib(2)}
((fib(2) + fib(1)) + fib(2)) + fib(3)

= {fib(2) returns 1; suspended: �fib(3), fib(4), fib(5)�; active: fib(1)}
((1 + fib(1)) + fib(2)) + fib(3)

= {fib(1) returns 1; suspended: �fib(3), fib(4), fib(5)�; active: fib(3)}((1 + 1) + fib(2)) + fib(3)= {fib(3) returns 1 + 1; pop(); suspended: �fib(4), fib(5)�; active: fib(2)}
(2 + fib(2)) + fib(3)

= {fib(2) returns 1; suspended: �fib(4), fib(5)�; active: fib(4)}(2 + 1) + fib(3)= {fib(4) returns 2 + 1; pop(); suspended: �fib(5)�; active: fib(3)}
3 + fib(3)

= {fib(3) = fib(2) + fib(1); suspended: �fib(3),fib(5)�; active: fib(2)}
3 + (fib(2) + fib(1))

= {fib(2) returns 1; suspended: �fib(3), fib(5)�; active: fib(1)}
3 + (1 + fib(1))

= {fib(1) returns 1; suspended: �fib(3), fib(5)�; active: fib(3)}
3 + (1 + 1)= {fib(3) returns 1 + 1; pop() ; suspended: �fib(5)�; active: fib(5)}
3 + 2= {fib(5) returns 3 + 2; suspended: ��}
59 of 40

Java Library: String
public class StringTester {
public static void main(String[] args) {
String s = "abcd";
System.out.println(s.isEmpty()); /* false */
/* Characters in index range [0, 0) */
String t0 = s.substring(0, 0);
System.out.println(t0); /* "" */
/* Characters in index range [0, 4) */
String t1 = s.substring(0, 4);
System.out.println(t1); /* "abcd" */
/* Characters in index range [1, 3) */
String t2 = s.substring(1, 3);
System.out.println(t2); /* "bc" */
String t3 = s.substring(0, 2) + s.substring(2, 4);
System.out.println(s.equals(t3)); /* true */
for(int i = 0; i < s.length(); i ++) {
System.out.print(s.charAt(i));

}
System.out.println();

}
}

10 of 40

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards
and backwards. Write a method that takes a string and
determines whether or not it is a palindrome.
System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string �→ Return true immediately.
Base Case 2: String of length 1 �→ Return true immediately.
Recursive Case: String of length ≥ 2 �→○ 1st and last characters match, and○ the rest (i.e., middle) of the string is a palindrome .

11 of 40

Recursion: Palindrome (2)

boolean isPalindrome (String word) {
if(word.length() == 0 || word.length() == 1) {
/* base case */
return true;

}
else {
/* recursive case */
char firstChar = word.charAt(0);
char lastChar = word.charAt(word.length() - 1);
String middle = word.substring(1, word.length() - 1);
return

firstChar == lastChar
/* See the API of java.lang.String.substring. */

&& isPalindrome (middle);
}

}

12 of 40

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.
System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf("ab")); "ba"
System.out.println(reverseOf("abc")); "cba"
System.out.println(reverseof("abcd")); "dcba"

Base Case 1: Empty string �→ Return empty string.
Base Case 2: String of length 1 �→ Return that string.
Recursive Case: String of length ≥ 2 �→

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 1) and 2).

13 of 40

Recursion: Reverse of a String (2)

String reverseOf (String s) {
if(s.isEmpty()) { /* base case 1 */
return "";

}
else if(s.length() == 1) { /* base case 2 */
return s;

}
else { /* recursive case */
String tail = s.substring(1, s.length());
String reverseOfTail = reverseOf (tail);
char head = s.charAt(0);
return reverseOfTail + head;

}
}

14 of 40

Recursion: Number of Occurrences (1)
Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of c in s.
System.out.println(occurrencesOf("", ’a’)); /* 0 */
System.out.println(occurrencesOf("a", ’a’)); /* 1 */
System.out.println(occurrencesOf("b", ’a’)); /* 0 */
System.out.println(occurrencesOf("baaba", ’a’)); /* 3 */
System.out.println(occurrencesOf("baaba", ’b’)); /* 2 */
System.out.println(occurrencesOf("baaba", ’c’)); /* 0 */

Base Case: Empty string �→ Return 0.
Recursive Case: String of length ≥ 1 �→

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)
If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

15 of 40

Recursion: Number of Occurrences (2)

int occurrencesOf (String s, char c) {
if(s.isEmpty()) {
/* Base Case */
return 0;

}
else {
/* Recursive Case */
char head = s.charAt(0);
String tail = s.substring(1, s.length());
if(head == c) {

return 1 + occurrencesOf (tail, c);
}
else {

return 0 + occurrencesOf (tail, c);
}

}
}

16 of 40

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /* true */
System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */
System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array �→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a number not positive) from an empty array.
Recursive Case: Non-Empty array �→○ 1st element positive, and○ the rest of the array is all positive .
Exercise: Write a method boolean somePostive(int[]
a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]∵ No witness (i.e., a positive number) from an empty array

17 of 40

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.● Naively , explicitly create a new, smaller array:

void m(int[] a) {
int[] subArray = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { subArray[0] = a[i - 1]; }
m(subArray) }

● For efficiency , we pass the same array by reference and
specify the range of indices to be considered:
void m(int[] a, int from, int to) {
if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]● m(a, 2, a.length - 1) [2nd r.c. on array of size a.length − 2]
. . .● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]

18 of 40

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);

}

boolean allPositiveHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return a[from] > 0;

}
else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);
}

}

19 of 40

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.
System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array �→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array �→○ 1st and 2nd elements are sorted in a non-descending order, and○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending positive .
20 of 40

Recursion: Is an Array Sorted? (2)

boolean isSorted(int[] a) {

return isSortedHelper (a, 0, a.length - 1);

}

boolean isSortedHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return true;

}
else {
return a[from] <= a[from + 1]

&& isSortedHelper (a, from + 1, to);
}

}

21 of 40

Recursion: Sorting an Array (1)

Problem: Sort an array into a non-descending order, using the
selection-sort strategy.
Base Case: Arrays of size 0 or 1 �→ Completed immediately.
Recursive Case: Non-Empty array a �→

Run an iteration from indices i = 0 to a.length − 1.
In each iteration:
● In index range [i ,a.length − 1], recursively compute the minimum

element e .
● Swap a[i] and e if e < a[i].

22 of 40

Recursion: Sorting an Array (2)
public static int getMinIndex (int[] a, int from, int to) {

if(from == to) { return from; }
else {
int minIndexOfTail = getMinIndex(a, from + 1, to);
if(a[from] < a[minIndexOfTail]) { return from; }
else { return minIndexOfTail; }

}
}
public static void selectionSort(int[] a) {
if(a.length == 0 || a.length == 1) { /* sorted, do nothing */ }
else {
for(int i = 0; i < a.length; i ++) {

int minIndex = getMinIndex (a, i, a.length - 1);

/* swap a[i] and a[minIndex] */
int temp = a[i];
a[i] = a[minIndex];
a[minIndex] = temp;

}
}

}

23 of 40

Recursion: Binary Search (1)
● Searching Problem

Input: A number a and a sorted list of n numbers�a1, a2, . . . , an� such that a′1 ≤ a′2 ≤. . . ≤ a′n
Output: Whether or not a exists in the input list

● An Efficient Recursive Solution
Base Case: Empty list �→ False.
Recursive Case: List of size ≥ 1 �→○ Compare the middle element against a.

● All elements to the left of middle are ≤ a● All elements to the right of middle are ≥ a○ If the middle element is equal to a �→ True.○ If the middle element is not equal to a:
● If a < middle, recursively find a on the left half.● If a > middle, recursively find a on the right half.

24 of 40

Recursion: Binary Search (2)
boolean binarySearch(int[] sorted, int key) {

return binarySearchHelper (sorted, 0, sorted.length - 1, key);
}

boolean binarySearchHelper (int[] sorted, int from, int to, int key) {

if (from > to) { /* base case 1: empty range */
return false; }

else if(from == to) { /* base case 2: range of one element */
return sorted[from] == key; }

else {
int middle = (from + to) / 2;
int middleValue = sorted[middle];
if(key < middleValue) {

return binarySearchHelper (sorted, from, middle - 1, key);
}
else if (key > middleValue) {

return binarySearchHelper (sorted, middle + 1, to, key);
}
else { return true; }

}
}

25 of 40

Tower of Hanoi: Specification
The Tower of Hanoi

Tower of Hanoi puzzle is attributed to the French
mathematician Edouard Lucas, who came up with it in 1883.
His formulation involved three pegs and eight distinctly-sized
disks stacked on one of the pegs from the biggest on the
bottom to the smallest on the top, like so:

● Given: A tower of 8 disks, initially
stacked in decreasing size on
one of 3 pegs

● Rules:○ Move only one disk at a time○ Never move a larger disk onto a
smaller one

● Problem: Transfer the entire
tower to one of the other pegs.

26 of 40

Tower of Hanoi: Strategy

● Generalize the problem by considering n disks.
● Introduce appropriate notation:○ Tn denotes the minimum number of moves required to to transfer n

disks from one to another under the rules.
● General patterns are easier to perceive when the extreme or

base cases are well understood.○ Look at small cases first:
● T1 = 1● T2 = 3● How about T3? Does it help us perceive the general case of n?

27 of 40

Tower of Hanoi: A General Solution Pattern
A possible (yet to be proved as optimal) solution requires 3 steps:
1. Transfer the n - 1 smallest disks to a different peg.
2. Move the largest to the remaining free peg.
3. Transfer the n - 1 disks back onto the largest disk.
How many moves are required from the above 3 steps?

(2 × Tn−1) + 1

However, we have only proved that the # moves required by this
solution are sufficient :

Tn ≤ (2 × Tn−1) + 1

But are the above steps all necessary? Can you justify?

Tn ≥ (2 × Tn−1) + 1
28 of 40

Tower of Hanoi: Recurrence Relation for Tn

We end up with the following recurrence relation that allows us to
compute Tn for any n we like:

T0 = 0
Tn = (2 × Tn−1) + 1 for n > 0

However, the above relation only gives us indirect information:
To calculate Tn, first calculate Tn−1, which requires the
calculation of Tn−2, and so on.

Instead, we need a closed-form solution to the above recurrence
relation, which allows us to directly calculate the value of Tn.

29 of 40

Tower of Hanoi:
A Hypothesized Closed Form Solution to Tn

T0 = 0
T1 = 2 × T0 + 1 = 1
T2 = 2 × T1 + 1 = 3
T3 = 2 × T2 + 1 = 7
T4 = 2 × T3 + 1 = 15
T5 = 2 × T4 + 1 = 31
T6 = 2 × T5 + 1 = 63
. . .

Guess:
Tn = 2n − 1 for n ≥ 0

Prove by mathematical induction.

30 of 40

Tower of Hanoi:
Prove by Mathematical Induction
Basis:

T0 = 20 − 1 = 0
Induction:

Assume that
Tn−1 = 2n−1 − 1

then
Tn= {Recurrence relation for Tn}(2 × Tn−1) + 1= {Inductive assumption}(2 × (2n−1 − 1)) + 1= {Arithmetic}
2n − 1

31 of 40

Revisiting the Tower of Hanoi

Given: A tower of 8 disks, initially stacked in decreasing size on
one of 3 pegs.
This shall require

T8 = 28 − 1 = 255

moves to complete.

32 of 40

Tower of Hanoi in Java (1)
void towerOfHanoi(String[] disks) {

tohHelper (disks, 0, disks.length - 1, 1, 3);

}
void tohHelper(String[] disks, int from, int to, int p1, int p2) {
if(from > to) { }
else if(from == to) {
print("move " + disks[to] + " from " + p1 + " to " + p2);

}
else {
int intermediate = 6 - p1 - p2;
tohHelper (disks, from, to - 1, p1, intermediate);
print("move " + disks[to] + " from " + p1 + " to " + p2);
tohHelper (disks, from, to - 1, intermediate, p2);

}
}

● tohHelper(disks, from, to, p1, p2) moves disks{disks[from],disks[from + 1],. . . ,disks[to]} from peg p1 to peg p2.● Peg id’s are 1, 2, and 3⇒ The intermediate one is 6 − p1 − p2.
33 of 40

Tower of Hanoi in Java (2)

Say ds (disks) is {A,B,C}, where A < B < C.

tohH(ds, 0, 2���{A,B,C}
, p1, p3) =

���

tohH(ds, 0, 1���{A,B}
, p1, p2) =

�������������������������������

tohH(ds, 0, 0���{A}
, p1, p3) = � Move A: p1 to p3

Move B: p1 to p2

tohH(ds, 0, 0���{A}
, p3, p2) = � Move A: p3 to p2

Move C: p1 to p3

tohH(ds, 0, 1���{A,B}
, p2, p3) =

�������������������������������

tohH(ds, 0, 0���{A}
, p2, p1) = � Move A: p2 to p1

Move B: p2 to p3

tohH(ds, 0, 0���{A}
, p1, p3) = � Move A: p1 to p3

34 of 40

Tower of Hanoi in Java (3)

towerOfHanio({A, B, C})

tohHelper({A, B, C}, 0, 2, p1, p3)

tohHelper({A, B, C}, 0, 1, p1, p2) tohHelper({A, B, C}, 0, 1, p2, p3)move C from p1 to p3

tohHelper({A, B, C}, 0, 0, p1, p3) move B from p1 to p2 tohHelper({A, B, C}, 0, 0, p3, p2)

move A from p1 to p3 move A from p3 to p2

tohHelper({A, B, C}, 0, 0, p2, p1) move B from p2 to p3 tohHelper({A, B, C}, 0, 0, p1, p3)

move A from p2 to p1 move A from p1 to p3

35 of 40

Recursive Methods: Correctness Proofs
1 boolean allPositive(int[] a) { return allPosH (a, 0, a.length - 1); }

2 boolean allPosH (int[] a, int from, int to) {
3 if (from > to) { return true; }
4 else if(from == to) { return a[from] > 0; }

5 else { return a[from] > 0 && allPosH (a, from + 1, to); } }

● Via mathematical induction, prove that allPosH is correct:
Base Cases● In an empty array, there is no non-positive number ∴ result is true. [L3]● In an array of size 1, the only one elements determines the result. [L4]
Inductive Cases● Inductive Hypothesis: allPosH(a, from + 1, to) returns true if

a[from + 1], a[from + 2], . . . , a[to] are all positive; false otherwise.● allPosH(a, from, to) should return true if: 1) a[from] is positive;
and 2) a[from + 1], a[from + 2], . . . , a[to] are all positive.

● By I.H. , result is a[from] > 0 ∧ allPosH(a, from + 1, to) . [L5]● allPositive(a) is correct by invoking
allPosH(a, 0, a.length - 1) , examining the entire array. [L1]

36 of 40

Beyond this lecture . . .
● Notes on Recursion:
http://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2017/F/EECS2030/slides/EECS2030_F17_
Notes_Recursion.pdf

● API for String:
https://docs.oracle.com/javase/8/docs/api/
java/lang/String.html

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2
● The best approach to learning about recursion is via a

functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

37 of 40

Index (1)
Recursion: Principle
Recursion: Factorial (1)
Recursion: Factorial (2)
Recursion: Factorial (3)
Recursion: Factorial (4)
Tracing Recursion using a Stack
Recursion: Fibonacci (1)
Recursion: Fibonacci (2)
Java Library: String
Recursion: Palindrome (1)
Recursion: Palindrome (2)
Recursion: Reverse of a String (1)
Recursion: Reverse of a String (2)
Recursion: Number of Occurrences (1)

38 of 40

Index (2)
Recursion: Number of Occurrences (2)
Recursion: All Positive (1)
Making Recursive Calls on an Array
Recursion: All Positive (2)
Recursion: Is an Array Sorted? (1)
Recursion: Is an Array Sorted? (2)
Recursion: Sorting an Array (1)
Recursion: Sorting an Array (2)
Recursion: Binary Search (1)
Recursion: Binary Search (2)
Tower of Hanoi: Specification
Tower of Hanoi: Strategy
Tower of Hanoi: A General Solution Pattern
Tower of Hanoi: Recurrence Relation for Tn

39 of 40

Index (3)
Tower of Hanoi:
A Hypothesized Closed Form Solution to Tn

Tower of Hanoi:
Prove by Mathematical Induction

Revisiting the Tower of Hanoi

Tower of Hanoi in Java (1)

Tower of Hanoi in Java (2)

Tower of Hanoi in Java (3)

Recursive Methods: Correctness Proofs

Beyond this lecture . . .

40 of 40

