
ADTs, Arrays, and Linked-Lists

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Abstract Data Types (ADTs)

● Given a problem, you are required to filter out irrelevant details.
● The result is an abstract data type (ADT) , whose interface

consists of a list of (unimplemented) operations.

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier ’s Obligations:
○ Implement all operations
○ Choose the “right” data structure (DS)

● Client ’s Benefits:
○ Correct output
○ Efficient performance

● The internal details of an implemented ADT should be hidden.
2 of 27

Standard ADTs

● Standard ADTs are reusable components that have been
adopted in solving many real-world problems.
e.g., Stacks, Queues, Lists, Tables, Trees, Graphs

● You will be required to:
○ Implement standard ADTs
○ Design algorithms that make use of standard ADTs

● For each standard ADT, you are required to know:
○ The list of supported operations (i.e., interface)
○ Time (and sometimes space) complexity of each operation

● In this lecture, we learn about two basic data structures:
○ arrays
○ linked lists

3 of 27

Basic Data Structure: Arrays

● An array is a sequence of indexed elements.
● Size of an array is fixed at the time of its construction.
● Supported operations on an array:

○ Accessing: e.g., int max = a[0];

Time Complexity: O(1) [constant operation]
○ Updating: e.g., a[i] = a[i + 1];

Time Complexity: O(1) [constant operation]
○ Inserting/Removing:

insertAt(String[] a, int n, String e, int i)
String[] result = new String[n + 1];
for(int j = 0; j < i; j ++){ result[i] = a[i]; }
result[i] = e;
for(int j = i + 1; j < n; j ++){ result[j] = a[j - 1]; }
return result;

Time Complexity: O(n) [linear operation]
4 of 27

Basic Data Structure: Singly-Linked Lists
● We know that arrays perform:

○ well in indexing
○ badly in inserting and deleting

● We now introduce an alternative data structure to arrays.
● A linked list is a series of connected nodes that collectively

form a linear sequence.
● Each node in a singly-linked list has:

○ A reference to an element of the sequence
○ A reference to the next node in the list

Contrast this relative positioning with the absolute indexing of arrays.

MSP

element next

● The last element in a singly-linked list is different from others.
How so? Its reference to the next node is simply null.

5 of 27

Singly-Linked List: How to Keep Track?
● Due to its “chained” structure, we can use a singly-linked list to

dynamically store as many elements as we desire.
○ By creating a new node and setting the relevant references.
○ e.g., inserting an element to the beginning/middle/end of a list
○ e.g., deleting an element from the list requires a similar procedure

● Contrary to the case of arrays , we simply cannot keep track of
all nodes in a lined list directly by indexing the next references.

● Instead, we only store a reference to the head (i.e., first node),
and find other parts of the list indirectly .

LAX MSP BOSATL

head tail

● Exercise: Given the head reference of a singly-linked list:
○ Count the number of nodes currently in the list [Running Time?]
○ Find the reference to its tail (i.e., last element) [Running Time?]

6 of 27

Singly-Linked List: Java Implementation

public class Node {
private String element;
private Node next;
public Node(String e, Node n) { element = e; next = n; }
public String getElement() { return element; }
public void setElement(String e) { element = e; }
public Node getNext() { return next; }
public void setNext(Node n) { next = n; }

}

public class SinglyLinkedList {
private Node head = null;
public void addFirst(String e) { . . . }
public void removeLast() { . . . }
public void addAt(int i, String e) { . . . }

}

7 of 27

Singly-Linked List: A Running ExampleApproach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

Approach 1
Node tom = new Node("Tom", null);
Node mark = new Node("Mark", tom);
Node alan = new Node("Alan", mark);

Approach 2
Node alan = new Node("Alan", null);
Node mark = new Node("Mark", null);
Node tom = new Node("Tom", null);
alan.setNext(mark);
mark.setNext(tom);

8 of 27

Singly-Linked List: Counting # of Nodes (1)

● Assume we are in the context of class SinglyLinkedList.

1 int getSize() {
2 int size = 0;
3 Node current = head;
4 while (current != null) {
5 /* exit when current == null */
6 current = current.getNext();
7 size ++;
8 }
9 return size;

10 }

● When does the while loop (Line 4) terminate? current is null
● Only the last node has a null next reference.
● RT of getSize O(n) [linear operation]

● Contrast: RT of a.length is O(1) [constant]
9 of 27

Singly-Linked List: Counting # of Nodes (2)
Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

1 int getSize() {
2 int size = 0;
3 Node current = head;
4 while (current != null) { /* exit when current == null */
5 current = current.getNext();
6 size ++;
7 }
8 return size;
9 }

current current != null Beginning of Iteration size

Alan true 1 1
Mark true 2 2
Tom true 3 3
null false – –

10 of 27

Singly-Linked List: Finding the Tail (1)

● Assume we are in the context of class SinglyLinkedList.
1 Node getTail() {
2 Node current = head;
3 Node tail = null;
4 while (current != null) {
5 /* exit when current == null */
6 tail = current;
7 current = current.getNext();
8 }
9 return tail;

10 }

● When does the while loop (Line 4) terminate? current is null
● Only the last node has a null next reference.
● RT of getTail is O(n) [linear operation]

● Contrast: RT of a[a.length - 1] is O(1) [constant]
11 of 27

Singly-Linked List: Finding the Tail (2)
Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

1 Node getTail() {
2 Node current = head;
3 Node tail = null;
4 while (current != null) { /* exit when current == null */
5 tail = current;
6 current = current.getNext();
7 }
8 return tail;
9 }

current current != null Beginning of Iteration tail

Alan true 1 Alan
Mark true 2 Mark
Tom true 3 Tom
null false – –

12 of 27

Singly-Linked List: Can We Do Better?

● It is frequently needed to
○ access the tail of list [e.g., a new customer joins service queue]
○ query about its size [e.g., is the service queue full?]

● How can we improve the running time of these two operations?
● We may trade space for time.
● In addition to head , we also declare:

○ A variable tail that points to the end of the list
○ A variable size that keeps tracks of the number of nodes in list
○ Running time of these operations are both O(1) !

● Nonetheless, we cannot declare variables to store references to
nodes in-between the head and tail. Why?
○ At the time of declarations, we simply do not know how many

nodes there will be at runtime.
13 of 27

Singly-Linked List: Inserting to the Front (1)

ATL BOSMSP

head

BOS

newest

MSP ATL

head

LAX

LAX MSP ATL BOS

headnewest

14 of 27

Singly-Linked List: Inserting to the Front (2)

● Assume we are in the context of class SinglyLinkedList.
1 void addFirst (String e) {
2 head = new Node(e, head);
3 if (size == 0) {
4 tail = head;
5 }
6 size ++;
7 }

● Remember that RT of accessing head or tail is O(1)
● RT of addFirst is O(1) [constant operation]

● Contrast: RT of inserting into an array is O(n) [linear]

15 of 27

Your Homework

● Complete the Java implementations and running time analysis
for removeFirst(), addLast(E e).

● Question: The removeLast() method may not be completed
in the same way as is addLast(String e). Why?

16 of 27

Singly-Linked List: Accessing the Middle (1)

● Assume we are in the context of class SinglyLinkedList.

1 Node getNodeAt (int i) {
2 if (i < 0 || i >= size) {
3 throw IllegalArgumentException("Invalid Index");
4 }
5 else {
6 int index = 0;
7 Node current = head;
8 while (index < i) { /* exit when index == i */
9 index ++;

10 /* current is set to node at index i
11 * last iteration: index incremented from i - 1 to i
12 */
13 current = current.getNext();
14 }
15 return current;
16 }
17 }

17 of 27

Singly-Linked List: Accessing the Middle (2)
Approach 1
Node<String> tom = new Node<>(“Tom”, null);
Node<String> mark = new Node<>(“Mark”, tom);
Node<String> alan = new Node<>(“Alan”, mark);

element

Node<String>

next

“Alan”element

Node<String>

next

“Mark”element

Node<String>

next

“Tom”element

Node<String>

null

head

Approach 2
Node<String> alan = new Node<>(“Alan”, null);
Node<String> mark = new Node<>(“Mark”, null);
Node<String> tom = new Node<>(“Tom”, null);
alan.setNext(mark);
mark.setNext(tom);

1 Node getNodeAt (int i) {
2 if (i < 0 || i >= size) { /* print error */ }
3 else {
4 int index = 0;
5 Node current = head;
6 while (index < i) { /* exit when index == i */
7 index ++;
8 current = current.getNext();
9 }

10 return current;
11 }
12 }

Let’s now consider list.getNodeAt(2) :

current index index < 2 Beginning of Iteration
Alan 0 true 1
Mark 1 true 2
Tom 2 false –

18 of 27

Singly-Linked List: Accessing the Middle (3)

● What is the worst case of the index i for getNodeAt(i)?
● Worst case: list.getNodeAt(list.size - 1)

● RT of getNodeAt is O(n) [linear operation]

● Contrast: RT of accessing an array element is O(1) [constant]

19 of 27

Singly-Linked List: Inserting to the Middle (1)

● Assume we are in the context of class SinglyLinkedList.

1 void addAt (int i, String e) {
2 if (i < 0 || i >= size) {
3 throw IllegalArgumentException("Invalid Index.");
4 }
5 else {
6 if (i == 0) {
7 addFirst(e);
8 }
9 else {

10 Node nodeBefore = getNodeAt(i - 1);
11 newNode = new Node(e, nodeBefore.getNext());
12 nodeBefore.setNext(newNode);
13 size ++;
14 }
15 }
16 }

20 of 27

Singly-Linked List: Inserting to the Middle (2)

● A call to addAt(i, e) may end up executing:
○ Line 3 (throw exception) [O(1)]

○ Line 7 (addFirst) [O(1)]

○ Lines 10 (getNodeAt) [O(n)]

○ Lines 11 – 13 (setting references) [O(1)]

● What is the worst case of the index i for addAt(i, e)?
● Worst case: list.addAt(list.getSize() - 1, e)

● RT of addAt is O(n) [linear operation]

● Contrast: RT of inserting into an array is O(n) [linear]
● On the other hand, for arrays, when given the index to an

element, the RT of inserting an element is always O(n) !

21 of 27

Singly-Linked List: Removing from the End

● Assume we are in the context of class SinglyLinkedList.

1 void removeLast () {
2 if (size == 0) {
3 System.err.println("Empty List.");
4 }
5 else if (size == 1) {
6 removeFirst();
7 }
8 else {
9 Node secondLastNode = getNodeAt(size - 2);

10 secondLastNode.setNext(null);
11 tail = secondLastNode;
12 size --;
13 }
14 }

Running time? O(n)
22 of 27

Singly-Linked List: Exercises
Consider the following two linked-list operations, where a
reference node is given as an input parameter:
● void insertAfter(Node n, String e)

○ Steps?
● Create a new node nn.
● Set nn’s next to n’s next.
● Set n’s next to nn.

○ Running time? [O(1)]

● void insertBefore(Node n, String e)

○ Steps?
● Iterate from the head, until current.next == n.
● Create a new node nn.
● Set nn’s next to current’s next (which is n).
● Set current’s next to nn.

○ Running time? [O(n)]
23 of 27

Your Homework

● Complete the Java implementation and running time analysis
for removeAt(int i).

24 of 27

Arrays vs. Singly-Linked Lists

hhhhhhhhhhhhhhhhhOPERATION

DATA STRUCTURE
ARRAY SINGLY-LINKED LIST

get size
O(1)get first/last element

get element at index i
O(1) O(n)remove last element

add/remove first element, add last element
O(n)

O(1)
add/remove i th element

given reference to (i − 1)th element
not given O(n)

25 of 27

Index (1)
Abstract Data Types (ADTs)
Standard ADTs
Basic Data Structure: Arrays
Basic Data Structure: Singly-Linked Lists
Singly-Linked List: How to Keep Track?
Singly-Linked List: Java Implementation
Singly-Linked List: A Running Example
Singly-Linked List: Counting # of Nodes (1)
Singly-Linked List: Counting # of Nodes (2)
Singly-Linked List: Finding the Tail (1)
Singly-Linked List: Finding the Tail (2)
Singly-Linked List: Can We Do Better?
Singly-Linked List: Inserting to the Front (1)
Singly-Linked List: Inserting to the Front (2)

26 of 27

Index (2)
Your Homework

Singly-Linked List: Accessing the Middle (1)

Singly-Linked List: Accessing the Middle (2)

Singly-Linked List: Accessing the Middle (3)

Singly-Linked List: Inserting to the Middle (1)

Singly-Linked List: Inserting to the Middle (2)

Singly-Linked List: Removing from the End

Singly-Linked List: Exercises

Your Homework

Arrays vs. Singly-Linked Lists
27 of 27

	Abstract Data Types (ADTs)
	Standard ADTs
	Basic Data Structure: Arrays
	Basic Data Structure: Singly-Linked Lists
	Singly-Linked List: How to Keep Track?
	Singly-Linked List: Java Implementation
	Singly-Linked List: A Running Example
	Singly-Linked List: Counting # of Nodes (1)
	Singly-Linked List: Counting # of Nodes (2)
	Singly-Linked List: Finding the Tail (1)
	Singly-Linked List: Finding the Tail (2)
	Singly-Linked List: Can We Do Better?
	Singly-Linked List: Inserting to the Front (1)
	Singly-Linked List: Inserting to the Front (2)
	Your Homework
	Singly-Linked List: Accessing the Middle (1)
	Singly-Linked List: Accessing the Middle (2)
	Singly-Linked List: Accessing the Middle (3)
	Singly-Linked List: Inserting to the Middle (1)
	Singly-Linked List: Inserting to the Middle (2)
	Singly-Linked List: Removing from the End
	Singly-Linked List: Exercises
	Your Homework
	Arrays vs. Singly-Linked Lists

