Asymptotic Analysis of Algorithms

EECS2030: Advanced Object Oriented Programming
Fall 2017

CHEN-WEI WANG
Algorithm and Data Structure

- **A data structure** is:
 - A systematic way to store and organize data in order to facilitate *access* and *modifications*
 - Never suitable for all purposes: it is important to know its *strengths* and *limitations*

- **A well-specified computational problem** precisely describes the desired *input/output relationship*.
 - **Input**: A sequence of n numbers $\langle a_1, a_2, \ldots, a_n \rangle$
 - **Output**: A permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \ldots \leq a'_n$
 - An *instance* of the problem: $\langle 3, 1, 2, 5, 4 \rangle$

- **An algorithm** is:
 - A solution to a well-specified *computational problem*
 - A *sequence of computational steps* that takes value(s) as *input* and produces value(s) as *output*

- Steps in an *algorithm* manipulate well-chosen *data structure(s).*
1. **Correctness**:
 ○ Does the algorithm produce the expected output?
 ○ Use JUnit to ensure this.

2. **Efficiency**:
 ○ *Time Complexity*: processor time required to complete
 ○ *Space Complexity*: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?
Measuring Efficiency of an Algorithm

- **Time** is more of a concern than is **storage**.
- Solutions that are meant to be run on a computer should run *as fast as possible*.
- Particularly, we are interested in how running time depends on two **input factors**:
 1. size
e.g., sorting an array of 10 elements vs. 1m elements
 2. structure
e.g., sorting an already-sorted array vs. a hardly-sorted array
- **How do you determine the running time of an algorithm?**
 1. Measure time via *experiments*
 2. Characterize time as a *mathematical function* of the input size
Measure Running Time via Experiments

- Once the algorithm is implemented in Java:
 - Execute the program on *test inputs* of various *sizes* and *structures*.
 - For each test, record the *elapsed time* of the execution.
    ```java
    long startTime = System.currentTimeMillis();
    /* run the algorithm */
    long endTime = System.currentTimeMillis();
    long elapsed = endTime - startTime;
    ```
 - *Visualize* the result of each test.

- To make *sound statistical claims* about the algorithm’s *running time*, the set of input tests must be “reasonably” *complete*.
Example Experiment

- **Computational Problem:**
 - **Input:** A character \(c \) and an integer \(n \)
 - **Output:** A string consisting of \(n \) repetitions of character \(c \)
 e.g., Given input ‘*’ and 15, output *******************.

- **Algorithm 1 using `String` Concatenations:**
  ```java
  public static String repeat1(char c, int n) {
    String answer = "";
    for (int i = 0; i < n; i++) {
      answer += c;
    }
    return answer;
  }
  ```

- **Algorithm 2 using `StringBuilder` append’s:**
  ```java
  public static String repeat2(char c, int n) {
    StringBuilder sb = new StringBuilder();
    for (int i = 0; i < n; i++) {
      sb.append(c);
    }
    return sb.toString();
  }
  ```
Example Experiment: Detailed Statistics

<table>
<thead>
<tr>
<th>n</th>
<th>repeat1 (in ms)</th>
<th>repeat2 (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>2,884</td>
<td>1</td>
</tr>
<tr>
<td>100,000</td>
<td>7,437</td>
<td>1</td>
</tr>
<tr>
<td>200,000</td>
<td>39,158</td>
<td>2</td>
</tr>
<tr>
<td>400,000</td>
<td>170,173</td>
<td>3</td>
</tr>
<tr>
<td>800,000</td>
<td>690,836</td>
<td>7</td>
</tr>
<tr>
<td>1,600,000</td>
<td>2,847,968</td>
<td>13</td>
</tr>
<tr>
<td>3,200,000</td>
<td>12,809,631</td>
<td>28</td>
</tr>
<tr>
<td>6,400,000</td>
<td>59,594,275</td>
<td>58</td>
</tr>
<tr>
<td>12,800,000</td>
<td>265,696,421 (≈ 3 days)</td>
<td>135</td>
</tr>
</tbody>
</table>

- As *input size* is doubled, **rates of increase** for both algorithms are *linear*:
 - *Running time* of `repeat1` increases by ≈ 5 times.
 - *Running time* of `repeat2` increases by ≈ 2 times.
Example Experiment: Visualization

![Graph showing running time versus n for repeat1 and repeat2]
Experimental Analysis: Challenges

1. An algorithm must be *fully implemented* (i.e., translated into valid Java syntax) in order study its runtime behaviour *experimentally*.
 ○ What if our purpose is to *choose among alternative* data structures or algorithms to implement?
 ○ Can there be a *higher-level analysis* to determine that one algorithm or data structure is *superior* than others?

2. Comparison of multiple algorithms is only *meaningful* when experiments are conducted under the same environment of:
 ○ *Hardware*: CPU, running processes
 ○ *Software*: OS, JVM version

3. Experiments can be done only on *a limited set of test inputs*.
 ○ What if “*important*” inputs were not included in the experiments?
Moving Beyond Experimental Analysis

- A better approach to analyzing the **efficiency** (e.g., **running times**) of algorithms should be one that:
 - Allows us to calculate the **relative efficiency** (rather than absolute elapsed time) of algorithms in a ways that is *independent of* the hardware and software environment.
 - Can be applied using a **high-level description** of the algorithm (without fully implementing it).
 - Considers **all** possible inputs.

- We will learn a better approach that contains 3 ingredients:
 1. Counting **primitive operations**
 2. Approximating running time as a **function of input size**
 3. Focusing on the **worst-case** input (requiring the most running time)
Counting Primitive Operations

- A **primitive operation** corresponds to a low-level instruction with a **constant execution time**.
 - Assignment [e.g., \(x = 5; \)]
 - Indexing into an array [e.g., \(a[i] \)]
 - Arithmetic, relational, logical op. [e.g., \(a + b, z > w, b1 && b2 \)]
 - Accessing a field of an object [e.g., \(\text{acc.balance} \)]
 - Returning from a method [e.g., \(\text{return result}; \)]
 - Why is a method call is in general *not* a primitive operation?

- The **number of primitive operations** required by an algorithm should be **proportional** to its **actual running time** on a specific environment: \(RT = \sum_{i=1}^{N} t(i) \) [\(N = \# \text{ of PO's} \)]
 - Say \(c \) is the **absolute** time of executing a **primitive operation** on a specific computer platform.
 - \(RT = \sum_{i=1}^{N} t(i) = c \times N \approx N \)

\(\Rightarrow \) approximate \# of primitive operations that its steps contain.
Example: Counting Primitive Operations

```c
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i];
        }
        i ++
    }
    return currentMax;
}
```

of times \(i < n \) in **Line 3** is executed? \([n] \)

of times the loop body (**Line 4 to Line 6**) is executed? \([n-1] \)

- **Line 2**: 2 \([1 \text{ indexing} + 1 \text{ assignment}] \)
- **Line 3**: \(n+1 \) \([1 \text{ assignment} + n \text{ comparisons}] \)
- **Line 4**: \((n-1) \cdot 2 \) \([1 \text{ indexing} + 1 \text{ comparison}] \)
- **Line 5**: \((n-1) \cdot 2 \) \([1 \text{ indexing} + 1 \text{ assignment}] \)
- **Line 6**: \((n-1) \cdot 2 \) \([1 \text{ addition} + 1 \text{ assignment}] \)
- **Line 7**: 1 \([1 \text{ return}] \)

Total # of Primitive Operations: \(7n - 2 \)
Example: Approx. # of Primitive Operations

- Given # of primitive operations counted precisely as $7n^1 - 2$, we view it as

 $$7 \cdot n - 2 \cdot n^0$$

- We say
 - n is the highest power
 - 7 and 2 are the multiplicative constants
 - 2 is the lower term

- When approximating a function (considering that input size may be very large):
 - Only the highest power matters.
 - multiplicative constants and lower terms can be dropped.

 $\Rightarrow 7n - 2$ is approximately n

Exercise: Consider $7n + 2n \cdot \log n + 3n^2$:

- highest power?
- multiplicative constants?
- lower terms?
Approximating Running Time as a Function of Input Size

Given the *high-level description* of an algorithm, we associate it with a function f, such that $f(n)$ returns the *number of primitive operations* that are performed on an *input of size n*.

- $f(n) = 5$ [constant]
- $f(n) = \log_2 n$ [logarithmic]
- $f(n) = 4 \cdot n$ [linear]
- $f(n) = n^2$ [quadratic]
- $f(n) = n^3$ [cubic]
- $f(n) = 2^n$ [exponential]
Focusing on the Worst-Case Input

- **Average-case** analysis calculates the *expected running times* based on the probability distribution of input values.
- **Worst-case** analysis or **best-case** analysis?
What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing *behaviour in the limit*:
 - How the *running time* of the algorithm under analysis changes as the *input size* changes without bound
 - e.g., contrast $RT_1(n) = n$ with $RT_2(n) = n^2$

- Allows us to compare the *relative* performance of alternative algorithms:
 - For large enough inputs, the *multiplicative constants* and *lower-order* terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n − 100$ are considered equally efficient, asymptotically.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered less efficient than $RT_1(n) = 100n^2 + 100n + 2000$, asymptotically.
Three Notions of Asymptotic Bounds

We may consider three kinds of *asymptotic bounds* for the *running time* of an algorithm:

- Asymptotic *upper* bound $[O]\text{ [O]}$
- Asymptotic lower bound $[\Omega]\text{ [Ω]}$
- Asymptotic tight bound $[\Theta]\text{ [Θ]}$
Asymptotic Upper Bound: Definition

- Let $f(n)$ and $g(n)$ be functions mapping positive integers (input size) to positive real numbers (running time).
 - $f(n)$ characterizes the running time of some algorithm.
 - $O(g(n))$ denotes a collection of functions.
- $O(g(n))$ consists of all functions that can be upper bounded by $g(n)$, starting at some point, using some constant factor.
- $f(n) \in O(g(n))$ if there are:
 - A real constant $c > 0$
 - An integer constant $n_0 \geq 1$
 such that:
 \[f(n) \leq c \cdot g(n) \quad \text{for} \quad n \geq n_0 \]

- For each member function $f(n)$ in $O(g(n))$, we say that:
 - $f(n) \in O(g(n))$ [f(n) is a member of “big-Oh of g(n)”]
 - $f(n)$ is $O(g(n))$ [f(n) is “big-Oh of g(n)”]
 - $f(n)$ is order of $g(n)$
Asymptotic Upper Bound: Visualization

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_0</td>
<td></td>
</tr>
</tbody>
</table>

From n_0, $f(n)$ is upper bounded by $c \cdot g(n)$, so $f(n)$ is $O(g(n))$.

![Graph showing asymptotic upper bound]
Asymptotic Upper Bound: Example (1)

Prove: The function $8n + 5$ is $O(n)$.

Strategy: Choose a real constant $c > 0$ and an integer constant $n_0 \geq 1$, such that for every integer $n \geq n_0$:

$$8n + 5 \leq c \cdot n$$

Can we choose $c = 9$? What should the corresponding n_0 be?

<table>
<thead>
<tr>
<th>n</th>
<th>8n + 5</th>
<th>9n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>54</td>
</tr>
</tbody>
</table>

Therefore, we prove it by choosing $c = 9$ and $n_0 = 5$.

We may also prove it by choosing $c = 13$ and $n_0 = 1$. Why?
Asymptotic Upper Bound: Example (2)

Prove: The function \(f(n) = 5n^4 + 3n^3 + 2n^2 + 4n + 1 \) is \(O(n^4) \).

Strategy: Choose a real constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \), such that for every integer \(n \geq n_0 \):

\[
5n^4 + 3n^3 + 2n^2 + 4n + 1 \leq c \cdot n^4
\]

\[
f(1) = 5 + 3 + 2 + 4 + 1 = 15
\]

Choose \(c = 15 \) and \(n_0 = 1 \)!
Asymptotic Upper Bound: Proposition (1)

If \(f(n) \) is a polynomial of degree \(d \), i.e.,

\[
f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d
\]

and \(a_0, a_1, \ldots, a_d \) are integers (i.e., negative, zero, or positive), then \(f(n) \) is \(O(n^d) \).

Proof:

1. We know that for \(n \geq 1 \):
 \[
n^0 \leq n^1 \leq n^2 \leq \cdots \leq n^d
 \]

2. By choosing \(c = |a_0| + |a_1| + \cdots + |a_d| \):
 \[
a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d \leq |a_0| \cdot n^d + |a_1| \cdot n^d + \cdots + |a_d| \cdot n^d
 \]

3. By choosing \(n_0 = 1 \):
 \[
a_0 \cdot 1^0 + a_1 \cdot 1^1 + \cdots + a_d \cdot 1^d \leq |a_0| \cdot 1^d + |a_1| \cdot 1^d + \cdots + |a_d| \cdot 1^d
 \]

That is, we prove by choosing

\[
\begin{align*}
c &= |a_0| + |a_1| + \cdots + |a_d| \\
n_0 &= 1
\end{align*}
\]
Asymptotic Upper Bound: Proposition (2)

\[O(n^0) \subset O(n^1) \subset O(n^2) \subset \ldots \]

If a function \(f(n) \) is upper bounded by another function \(g(n) \) of degree \(d, \; d \geq 0 \), then \(f(n) \) is also upper bounded by all other functions of a strictly higher degree (i.e., \(d + 1, \; d + 2, \; \text{etc.} \)).
Asymptotic Upper Bound: More Examples

- $5n^2 + 3n \cdot \log n + 2n + 5$ is $O(n^2)$
 $[c = 15, n_0 = 1]$
- $20n^3 + 10n \cdot \log n + 5$ is $O(n^3)$
 $[c = 35, n_0 = 1]$
- $3 \cdot \log n + 2$ is $O(\log n)$
 $[c = 5, n_0 = 2]$

 ○ Why can’t n_0 be 1?
 ○ Choosing $n_0 = 1$ means $\Rightarrow f(1)$ is upper-bounded by $c \cdot \log 1$:
 - We have $f(1) = 3 \cdot \log 1 + 2$, which is 2.
 - We have $c \cdot \log 1$, which is 0.
 $\Rightarrow f(1)$ is not upper-bounded by $c \cdot \log 1$
 [Contradiction!]
- 2^{n+2} is $O(2^n)$
 $[c = 4, n_0 = 1]$
- $2n + 100 \cdot \log n$ is $O(n)$
 $[c = 102, n_0 = 1]$
Using Asymptotic Upper Bound Accurately

- Use the big-Oh notation to characterize a function (of an algorithm’s running time) \textit{as closely as possible}. For example, say $f(n) = 4n^3 + 3n^2 + 5$:
 - Recall: $O(n^3) \subset O(n^4) \subset O(n^5) \subset \ldots$
 - It is the \textit{most accurate} to say that $f(n)$ is $O(n^3)$.
 - It is also true, but not very useful, to say that $f(n)$ is $O(n^4)$ and that $f(n)$ is $O(n^5)$.

- Do not include \textit{constant factors} and \textit{lower-order terms} in the big-Oh notation.
 For example, say $f(n) = 2n^2$ is $O(n^2)$, do not say $f(n)$ is $O(4n^2 + 6n + 9)$.

Classes of Functions

<table>
<thead>
<tr>
<th>upper bound</th>
<th>class</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>cheapest</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>logarithmic</td>
<td></td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td></td>
</tr>
<tr>
<td>$O(n \cdot \log(n))$</td>
<td>“n-log-n”</td>
<td></td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td></td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td></td>
</tr>
<tr>
<td>$O(n^k), k \geq 1$</td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>$O(a^n), a > 1$</td>
<td>exponential</td>
<td>most expensive</td>
</tr>
</tbody>
</table>
Rates of Growth: Comparison

The graph illustrates the rates of growth for different functions:
- Linear
- Exponential
- Constant
- Logarithmic
- N-Log-N
- Quadratic
- Cubic
- Linear-N
- Logarithmic
- Constant

The x-axis represents the input n, while the y-axis represents f(n) on a logarithmic scale.
Upper Bound of Algorithm: Example (1)

```c
maxOf (int x, int y) {
    int max = x;
    if (y > x) {
        max = y;
    }
    return max;
}
```

- # of primitive operations: 4
 2 assignments + 1 comparison + 1 return = 4
- Therefore, the running time is \(O(1) \).
- That is, this is a constant-time algorithm.
Upper Bound of Algorithm: Example (2)

```
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i];
        }
        i ++
    }
    return currentMax; }
```

- From last lecture, we calculated that the # of primitive operations is \(7n - 2\).
- Therefore, the running time is \(O(n)\).
- That is, this is a linear-time algorithm.
Upper Bound of Algorithm: Example (3)

```java
containsDuplicate (int[] a, int n) {
    for (int i = 0; i < n; ) {
        for (int j = 0; j < n; ) {
            if (i != j && a[i] == a[j]) {
                return true; }
            j ++; }
        i ++; }
    return false; }
```

- Worst case is when we reach Line 8.
- # of primitive operations \(\approx c_1 + n \cdot n \cdot c_2\), where \(c_1\) and \(c_2\) are some constants.
- Therefore, the running time is \(O(n^2)\).
- That is, this is a quadratic algorithm.
Upper Bound of Algorithm: Example (4)

```cpp
int sumMaxAndCrossProducts (int[] a, int n) {
    int max = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > max) { max = a[i]; }
    }
    int sum = max;
    for (int j = 0; j < n; j++) {
        for (int k = 0; k < n; k++) {
            sum += a[j] * a[k];
        }
    }
    return sum;
}
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1, c_2, c_3, and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a *quadratic* algorithm.
Upper Bound of Algorithm: Example (5)

```java
triangularSum (int[] a, int n) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
            sum += a[j];
        }
    }
    return sum;
}
```

- # of primitive operations $\approx n + (n - 1) + \cdots + 2 + 1 = \frac{n(n+1)}{2}$
- Therefore, the running time is $O\left(\frac{n^2+n}{2}\right) = O(n^2)$.
- That is, this is a quadratic algorithm.
Index (1)

Algorithm and Data Structure
Measuring "Goodness" of an Algorithm
Measuring Efficiency of an Algorithm
Measure Running Time via Experiments
Example Experiment
Example Experiment: Detailed Statistics
Example Experiment: Visualization
Experimental Analysis: Challenges
Moving Beyond Experimental Analysis
Counting Primitive Operations
Example: Counting Primitive Operations
Example: Approx. # of Primitive Operations
Approximating Running Time as a Function of Input Size
Index (2)

Focusing on the Worst-Case Input
What is Asymptotic Analysis?
Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)
Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately
Classes of Functions
Rates of Growth: Comparison
Upper Bound of Algorithm: Example (1)
Index (3)

Upper Bound of Algorithm: Example (2)

Upper Bound of Algorithm: Example (3)

Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)