Asymptotic Analysis of Algorithms

EECS2030: Advanced
Object Oriented Programming
Fall 2017

CHEN-WEI WANG

Algorithm and Data Structure

- A data structure is:
 - A systematic way to store and organize data in order to facilitate access and modifications
 - Never suitable for all purposes: it is important to know its strengths and limitations
- A well-specified computational problem precisely describes the desired input/output relationship.
 - **Input:** A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$
 - **Output:** A permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \le a'_2 \le \ldots \le a'_n$
 - ∘ An instance of the problem: ⟨3, 1, 2, 5, 4⟩
- An *algorithm* is:
 - A solution to a well-specified *computational problem*
 - A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an *algorithm* manipulate well-chosen *data structure(s)*.

Measuring "Goodness" of an Algorithm

1. Correctness:

- Does the algorithm produce the expected output?
- · Use JUnit to ensure this.
- **2.** Efficiency:
 - o Time Complexity: processor time required to complete
 - o Space Complexity: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?

3 of 35

Measuring Efficiency of an Algorithm

- *Time* is more of a concern than is *storage*.
- Solutions that are meant to be run on a computer should run as fast as possible.
- Particularly, we are interested in how running time depends on two input factors:
 - 1. size
 - e.g., sorting an array of 10 elements vs. 1m elements
 - 2. structure
 - e.g., sorting an already-sorted array vs. a hardly-sorted array
- How do you determine the running time of an algorithm?
- 1. Measure time via *experiments*
- 2. Characterize time as a *mathematical function* of the input size

Measure Running Time via Experiments

- Once the algorithm is implemented in Java:
 - Execute the program on *test inputs* of various *sizes* and *structures*.
 - For each test, record the *elapsed time* of the execution.

```
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- o Visualize the result of each test.
- To make *sound statistical claims* about the algorithm's *running time*, the set of input tests must be "reasonably" *complete*.

5 of 35

Example Experiment

- Computational Problem:
 - **Input**: A character c and an integer n
 - Output: A string consisting of n repetitions of character c
 e.g., Given input '*' and 15, output ************
- Algorithm 1 using String Concatenations:

```
public static String repeat1(char c, int n) {
   String answer = "";
   for (int i = 0; i < n; i ++) {         answer += c;     }
   return answer; }</pre>
```

• Algorithm 2 using StringBuilder append's:

```
public static String repeat2(char c, int n) {
   StringBuilder sb = new StringBuilder();
   for (int i = 0; i < n; i ++) {      sb.append(c);
   return sb.toString(); }</pre>
```


n	repeat1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
1,600,000	2,847,968	13
3,200,000	12,809,631	28
6,400,000	59,594,275	58
12,800,000	265,696,421 (≈ 3 days)	135

- As input size is doubled, rates of increase for both algorithms are linear:
 - Running time of repeat1 increases by ≈ 5 times.
 - Running time of repeat 2 increases by ≈ 2 times.

7 of 35

8 of 35

Example Experiment: Visualization

LASSONDE

Experimental Analysis: Challenges

- 1. An algorithm must be *fully implemented* (i.e., translated into valid Java syntax) in order study its runtime behaviour *experimentally*.
 - What if our purpose is to choose among alternative data structures or algorithms to implement?
 - Can there be a <u>higher-level analysis</u> to determine that one algorithm or data structure is <u>superior</u> than others?
- **2.** Comparison of multiple algorithms is only *meaningful* when experiments are conducted under the same environment of:
 - Hardware: CPU, running processes
 - Software: OS, JVM version
- **3.** Experiments can be done only on *a limited set of test inputs*.
 - What if "important" inputs were not included in the experiments?

9 of 35

Moving Beyond Experimental Analysis

- A better approach to analyzing the *efficiency* (e.g., *running times*) of algorithms should be one that:
 - Allows us to calculate the relative efficiency (rather than absolute elapsed time) of algorithms in a ways that is independent of the hardware and software environment.
 - Can be applied using a <u>high-level description</u> of the algorithm (without fully implementing it).
 - o Considers all possible inputs.
- We will learn a better approach that contains 3 ingredients:
 - 1. Counting primitive operations
 - 2. Approximating running time as a function of input size
 - 3. Focusing on the worst-case input (requiring the most running time)

10 of 35

Counting Primitive Operations

A <u>primitive operation</u> corresponds to a low-level instruction with

a constant execution time.

Assignment [e.g., x = 5;]
Indexing into an array [e.g., a [i]]
Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
Accessing a field of an object [e.g., acc.balance]

• Returning from a method [e.g., return result;]

• Why is a method call is in general *not* a primitive operation?

• The <u>number of primitive operations</u> required by an algorithm should be <u>proportional</u> to its <u>actual running time</u> on a specific environment: $RT = \sum_{i=1}^{N} t(i)$ [N = # of PO's]

 Say c is the absolute time of executing a primitive operation on a specific computer platform.

```
\circ RT = \sum_{i=1}^{N} t(i) = c \times N \approx N
```

⇒ approximate # of primitive operations that its steps contain.

11 of 35

ions

Example: Counting Primitive Operations

```
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i]; }
        i ++ }
    return currentMax; }
```

```
# of times i < n in Line 3 is executed?
                                                             [ n ]
 # of times the loop body (Line 4 to Line 6) is executed? [n-1]
                                     [1 indexing + 1 assignment]
• Line 2:
           2
Line 3:
                                 [1 assignment + n comparisons]
           n+1
                                     [1 indexing + 1 comparison]
Line 4:
           (n-1) \cdot 2
           (n-1) \cdot 2
                                     [1 indexing + 1 assignment]
Line 5:
Line 6:
           (n-1) \cdot 2
                                      [1 addition + 1 assignment]
Line 7:
                                                       [1 return]
```

• Total # of Primitive Operations: 7n - 2

Example: Approx. # of Primitive OperationsLASSONDE

• Given # of primitive operations counted precisely as $7n^1 - 2$, we view it as

$$7 \cdot n - 2 \cdot n^0$$

- We say
 - n is the highest power
 - 7 and 2 are the *multiplicative constants*
 - ∘ 2 is the *lower term*
- When approximating a function (considering that input size may be very large):
 - o Only the *highest power* matters.
 - *multiplicative constants* and *lower terms* can be dropped.
 - \Rightarrow 7*n* 2 is approximately *n*

Exercise: Consider $7n + 2n \cdot log n + 3n^2$:

- highest power?
- multiplicative constants?
- lower terms?

 $[7n + 2n \cdot log n]$

3 of 35

 $[n^2]$

[7, 2, 3]

Approximating Running Time as a Function of Input Size

Given the *high-level description* of an algorithm, we associate it with a function f, such that $\frac{f(n)}{f(n)}$ returns the *number of primitive operations* that are performed on an *input of size n*.

$$f(n) = 5$$
 [constant]

$$f(n) = log_2 n$$
 [logarithmic]

$$f(n) = 4 \cdot n$$
 [linear]

$$f(n) = n^2$$
 [quadratic]

$$f(n) = n^3$$
 [cubic]

$$f(n) = 2^n$$
 [exponential]

14 of 35

Focusing on the Worst-Case Input

- Average-case analysis calculates the expected running times based on the probability distribution of input values.
- worst-case analysis or best-case analysis?

15 of 35

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing behaviour in the limit:
 - How the *running time* of the algorithm under analysis changes as the *input size* changes without bound
 - e.g., contrast $RT_1(n) = n$ with $RT_2(n) = n^2$
- Allows us to compare the *relative* performance of alternative algorithms:
 - For large enough inputs, the multiplicative constants and lower-order terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n 100$ are considered **equally efficient**, *asymptotically*.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, asymptotically.

Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the running time of an algorithm:

 Asymptotic 	upper	bound	[<i>O</i>]	
--------------------------------	-------	-------	--------------	--

· Asymptotic lower bound $[\Omega]$

 Asymptotic tight bound [Θ]

17 of 35

Asymptotic Upper Bound: Definition

- Let f(n) and g(n) be functions mapping positive integers (input size) to positive real numbers (running time).
 - \circ f(n) characterizes the running time of some algorithm.
 - \circ O(g(n)) denotes a collection of functions.
- O(g(n)) consists of all functions that can be upper bounded by g(n), starting at some point, using some constant factor.
- $f(n) \in O(g(n))$ if there are:
 - A real constant c > 0
 - An integer *constant* $n_0 \ge 1$

such that:

$$f(n) \le c \cdot g(n)$$
 for $n \ge n_0$

- For each member function f(n) in O(g(n)), we say that:
 - \circ $f(n) \in O(q(n))$
- [f(n) is a member of "big-Oh of g(n)"]
- \circ f(n) is O(g(n))

[f(n) is "big-Oh of g(n)"]

- \circ f(n) is order of g(n)

18 of 35

Asymptotic Upper Bound: Visualization

From n_0 , f(n) is upper bounded by $c \cdot g(n)$, so f(n) is O(g(n)).

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$8n + 5 < c \cdot n$$

Can we choose c = 9? What should the corresponding n_0 be?

n	8n + 5	9n
1	13	9
2	21	18
3	29	27
4	37	36
5	45	45
6	53	54

Therefore, we prove it by choosing c = 9 and $n_0 = 5$.

We may also prove it by choosing c = 13 and $n_0 = 1$. Why?

Asymptotic Upper Bound: Example (2)

Prove: The function $f(n) = 5n^4 + 3n^3 + 2n^2 + 4n + 1$ is $O(n^4)$.

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$5n^4 + 3n^3 + 2n^2 + 4n + 1 \le c \cdot n^4$$

$$f(1) = 5 + 3 + 2 + 4 + 1 = 15$$

Choose c = 15 and $n_0 = 1!$

21 of 35

Asymptotic Upper Bound: Proposition (1)

If f(n) is a polynomial of degree d, i.e.,

$$f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d$$

and a_0, a_1, \dots, a_d are integers (i.e., negative, zero, or positive), then f(n) is $O(n^d)$.

Proof:

1. We know that for n > 1:

- $n^0 < n^1 < n^2 < \cdots < n^d$
- **2.** By choosing $c = |a_0| + |a_1| + \cdots + |a_d|$:

$$a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d \le |a_0| \cdot n^d + |a_1| \cdot n^d + \dots + |a_d| \cdot n^d$$

3. By choosing $n_0 = 1$:

$$a_0 \cdot 1^0 + a_1 \cdot 1^1 + \dots + a_d \cdot 1^d \le |a_0| \cdot 1^d + |a_1| \cdot 1^d + \dots + |a_d| \cdot 1^d$$

That is, we prove by choosing

$$c = |a_0| + |a_1| + \cdots + |a_d|$$

 $n_0 = 1$

22 of 35

Asymptotic Upper Bound: Proposition (2)

$O(n^0) \subset O(n^1) \subset O(n^2) \subset \dots$

If a function f(n) is upper bounded by another function g(n) of degree d. d > 0. then f(n) is also upper bounded by all other functions of a *strictly higher degree* (i.e., d + 1, d + 2, *etc.*).

23 of 35

Asymptotic Upper Bound: More Examples LASSONDE

- $5n^2 + 3n \cdot loan + 2n + 5$ is $O(n^2)$ $[c = 15, n_0 = 1]$ • $20n^3 + 10n \cdot logn + 5$ is $O(n^3)$
- $[c = 35, n_0 = 1]$ • $3 \cdot logn + 2$ is O(logn) $[c = 5, n_0 = 2]$
 - Why can't n_0 be 1?
 - Choosing $n_0 = 1$ means $\Rightarrow f(1)$ is upper-bounded by $c \cdot log[1]$:
 - We have $f(\boxed{1}) = 3 \cdot log 1 + 2$, which is 2.
 - We have $c \cdot log 1$, which is 0.
 - $\Rightarrow f(1)$ is **not** upper-bounded by $c \cdot log(1)$ [Contradiction!]
- 2^{n+2} is $O(2^n)$ $[c = 4, n_0 = 1]$
- $2n + 100 \cdot logn \text{ is } O(n)$ $[c = 102, n_0 = 1]$

Using Asymptotic Upper Bound Accurately LASSONDE

• Use the big-Oh notation to characterize a function (of an algorithm's running time) as closely as possible.

For example, say $f(n) = 4n^3 + 3n^2 + 5$:

- Recall: $O(n^3) \subset O(n^4) \subset O(n^5) \subset \dots$
- It is the *most accurate* to say that f(n) is $O(n^3)$.
- It is also true, but not very useful, to say that f(n) is $O(n^4)$ and that f(n) is $O(n^5)$.
- Do not include *constant factors* and *lower-order terms* in the big-Oh notation.

For example, say $f(n) = 2n^2$ is $O(n^2)$, do not say f(n) is $O(4n^2 + 6n + 9)$.

25 of 35

Classes of Functions

upper bound	class	cost	
<i>O</i> (1)	constant	cheapest	
O(log(n))	logarithmic		
<i>O</i> (<i>n</i>)	linear		
$O(n \cdot log(n))$	"n-log-n"		
$O(n^2)$	quadratic		
$O(n^3)$	cubic		
$O(n^k), k \ge 1$	polynomial		
$O(a^n), a > 1$	exponential	most expensive	

Rates of Growth: Comparison

27 of 35

Upper Bound of Algorithm: Example (1)


```
1  maxOf (int x, int y) {
2   int max = x;
3   if (y > x) {
4    max = y;
5   }
6   return max;
7  }
```

- # of primitive operations: 4
 2 assignments + 1 comparison + 1 return = 4
- Therefore, the running time is O(1).
- That is, this is a *constant-time* algorithm.

26 of 35

Upper Bound of Algorithm: Example (2)


```
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i]; }
        i ++ }
    return currentMax; }
```

- From last lecture, we calculated that the # of primitive operations is 7n 2.
- Therefore, the running time is O(n).
- That is, this is a *linear-time* algorithm.

29 of 35

Upper Bound of Algorithm: Example (3)


```
1     containsDuplicate (int[] a, int n) {
2       for (int i = 0; i < n; ) {
3          for (int j = 0; j < n; ) {
4          if (i != j && a[i] == a[j]) {
5               return true; }
6          j ++; }
7       i ++; }
8       return false; }</pre>
```

- Worst case is when we reach Line 8.
- # of primitive operations $\approx c_1 + n \cdot n \cdot c_2$, where c_1 and c_2 are some constants.
- Therefore, the running time is $O(n^2)$.
- That is, this is a *quadratic* algorithm.

30 of 35

Upper Bound of Algorithm: Example (4)


```
1  sumMaxAndCrossProducts (int[] a, int n) {
2   int max = a[0];
3   for(int i = 1; i < n;) {
4    if (a[i] > max) { max = a[i]; }
5   }
6   int sum = max;
7   for (int j = 0; j < n; j ++) {
8    for (int k = 0; k < n; k ++) {
9       sum += a[j] * a[k]; } }
0   return sum; }</pre>
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1 , c_2 , c_3 , and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

31 of 35

Upper Bound of Algorithm: Example (5)


```
1  triangularSum (int[] a, int n) {
2   int sum = 0;
3  for (int i = 0; i < n; i ++) {
4   for (int   j = i; j < n; j ++) {
5    sum += a[j]; } }
6  return sum; }</pre>
```

- # of primitive operations $\approx n + (n-1) + \cdots + 2 + 1 = \frac{n \cdot (n+1)}{2}$
- Therefore, the running time is $O(\frac{n^2+n}{2}) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

Index (1)

Algorithm and Data Structure

Measuring "Goodness" of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Example Experiment

Example Experiment: Detailed Statistics

Example Experiment: Visualization Experimental Analysis: Challenges Moving Beyond Experimental Analysis

Counting Primitive Operations

Example: Counting Primitive Operations Example: Approx. # of Primitive Operations

Approximating Running Time as a Function of Input Size

Index (2)

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds

Asymptotic Upper Bound: Definition

Asymptotic Upper Bound: Visualization

Asymptotic Upper Bound: Example (1)

Asymptotic Upper Bound: Example (2)

Asymptotic Upper Bound: Proposition (1)

Asymptotic Upper Bound: Proposition (2)

Asymptotic Upper Bound: More Examples

Using Asymptotic Upper Bound Accurately

Classes of Functions

Rates of Growth: Comparison

Upper Bound of Algorithm: Example (1)

Index (3)

Upper Bound of Algorithm: Example (2)

Upper Bound of Algorithm: Example (3)

Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)