Algorithm and Data Structure

- A **data structure** is:
 - A systematic way to store and organize data in order to facilitate access and modifications
 - Never suitable for all purposes: it is important to know its strengths and limitations
- A **well-specified computational problem** precisely describes the desired input/output relationship.
 - Input: A sequence of \(n \) numbers \((a_1, a_2, \ldots, a_n)\)
 - Output: A permutation (reordering) \((a'_1, a'_2, \ldots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \ldots \leq a'_n\)
 - An instance of the problem: \((3, 1, 2, 5, 4)\)
- An **algorithm** is:
 - A solution to a well-specified computational problem
 - A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an algorithm manipulate well-chosen data structure(s).

Measuring “Goodness” of an Algorithm

1. **Correctness**:
 - Does the algorithm produce the expected output?
 - Use JUnit to ensure this.
2. Efficiency:
 - **Time Complexity**: processor time required to complete
 - **Space Complexity**: memory space required to store data

Correctness is always the priority. How about efficiency? Is **time** or **space** more of a concern?

Measuring Efficiency of an Algorithm

- **Time** is more of a concern than is **storage**.
- Solutions that are meant to be run on a computer should run **as fast as possible**.
- Particularly, we are interested in how **running time** depends on two **input factors**:
 1. **size**
 - e.g., sorting an array of 10 elements vs. 1m elements
 2. **structure**
 - e.g., sorting an already-sorted array vs. a hardly-sorted array
- **How do you determine the running time of an algorithm?**
 1. Measure time via **experiments**
 2. Characterize time as a **mathematical function** of the input size
Measure Running Time via Experiments

- Once the algorithm is implemented in Java:
 - Execute the program on test inputs of various sizes and structures.
 - For each test, record the elapsed time of the execution.

```java
long startTime = System.currentTimeMillis();
// run the algorithm */
long endTime = System.currentTimeMillis();
long elapsed = endTime - startTime;
```

- Visualize the result of each test.

- To make sound statistical claims about the algorithm's running time, the set of input tests must be "reasonably" complete.

Example Experiment

- **Computational Problem:**
 - **Input:** A character c and an integer n
 - **Output:** A string consisting of n repetitions of character c e.g., Given input ‘*’ and 15, output **************.

- **Algorithm 1** using String Concatenations:

```java
public static String repeat1(char c, int n) {
  String answer = "";
  for (int i = 0; i < n; i++) { answer += c; }
  return answer;
}
```

- **Algorithm 2** using StringBuilder append's:

```java
public static String repeat2(char c, int n) {
  StringBuilder sb = new StringBuilder();
  for (int i = 0; i < n; i++) { sb.append(c); }
  return sb.toString();
}
```

Example Experiment: Detailed Statistics

<table>
<thead>
<tr>
<th>n</th>
<th>repeat1 (in ms)</th>
<th>repeat2 (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>2,884</td>
<td>1</td>
</tr>
<tr>
<td>100,000</td>
<td>7,437</td>
<td>1</td>
</tr>
<tr>
<td>200,000</td>
<td>39,158</td>
<td>2</td>
</tr>
<tr>
<td>400,000</td>
<td>170,173</td>
<td>3</td>
</tr>
<tr>
<td>800,000</td>
<td>690,836</td>
<td>7</td>
</tr>
<tr>
<td>1,600,000</td>
<td>2,847,968</td>
<td>13</td>
</tr>
<tr>
<td>3,200,000</td>
<td>12,809,631</td>
<td>28</td>
</tr>
<tr>
<td>6,400,000</td>
<td>59,594,275</td>
<td>58</td>
</tr>
<tr>
<td>12,800,000</td>
<td>265,696,421</td>
<td>135</td>
</tr>
</tbody>
</table>

- As input size is doubled, rates of increase for both algorithms are linear:
 - Running time of repeat1 increases by \(\approx 5\) times.
 - Running time of repeat2 increases by \(\approx 2\) times.

Example Experiment: Visualization
Experimental Analysis: Challenges

1. An algorithm must be fully implemented (i.e., translated into valid Java syntax) in order to study its runtime behaviour experimentally.
 - What if our purpose is to choose among alternative data structures or algorithms to implement?
 - Can there be a higher-level analysis to determine that one algorithm or data structure is superior than others?

2. Comparison of multiple algorithms is only meaningful when experiments are conducted under the same environment of:
 - Hardware: CPU, running processes
 - Software: OS, JVM version

3. Experiments can be done only on a limited set of test inputs.
 - What if "important" inputs were not included in the experiments?

Moving Beyond Experimental Analysis

- A better approach to analyzing the efficiency (e.g., running times) of algorithms should be one that:
 - Allows us to calculate the relative efficiency (rather than absolute elapsed time) of algorithms in a way that is independent of the hardware and software environment.
 - Can be applied using a high-level description of the algorithm (without fully implementing it).
 - Considers all possible inputs.

- We will learn a better approach that contains 3 ingredients:
 1. Counting primitive operations
 2. Approximating running time as a function of input size
 3. Focusing on the worst-case input (requiring the most running time)

Counting Primitive Operations

- A primitive operation corresponds to a low-level instruction with a constant execution time.
 - Assignment [e.g., x = 5;]
 - Indexing into an array [e.g., a[i]]
 - Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
 - Accessing a field of an object [e.g., acc.balance]
 - Returning from a method [e.g., return result;]

- The number of primitive operations required by an algorithm should be proportional to its actual running time on a specific environment: \(RT = \sum_{i=1}^{N} t(i) \) [\(N = \# \text{ of PO's} \)]
 - Say \(c \) is the absolute time of executing a primitive operation on a specific computer platform.
 - \(RT = \sum_{i=1}^{N} t(i) = c \times N = N \) \(\Rightarrow \) approximate # of primitive operations that its steps contain.

Example: Counting Primitive Operations

```
public int findMax (int[] a, int n) {
    int currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i];
        }
        i ++
    }
    return currentMax;
}
```

- # of times \(i < n \) in Line 3 is executed? \(n \)
- # of times the loop body (Line 4 to Line 6) is executed? \(n - 1 \)

- Line 2: 2 [1 indexing + 1 assignment]
- Line 3: \(n + 1 \) [1 assignment + \(n \) comparisons]
- Line 4: \((n - 1) \cdot 2 \) [1 indexing + 1 comparison]
- Line 5: \((n - 1) \cdot 2 \) [1 indexing + 1 assignment]
- Line 6: \((n - 1) \cdot 2 \) [1 addition + 1 assignment]
- Line 7: 1 [1 return]

- Total # of Primitive Operations: \(7n - 2 \)
Example: Approx. # of Primitive Operations

- Given # of primitive operations counted precisely as $7n^1 - 2$, we view it as $7n - 2 \cdot n^0$
- We say
 - n is the **highest power**
 - 7 and 2 are the **multiplicative constants**
 - 2 is the **lower term**
- When approximating a function (considering that input size may be very large):
 - Only the **highest power** matters.
 - **multiplicative constants** and lower terms can be dropped.

$$
\Rightarrow 7n - 2 \text{ is approximately } n
$$

Exercise: Consider $7n + 2n \cdot \log n + 3n^2$:
- highest power? $[n^2]$
- multiplicative constants? $[7, 2, 3]$
- lower terms? $[7n + 2n \cdot \log n]$

Approximating Running Time as a Function of Input Size

Given the **high-level description** of an algorithm, we associate it with a function $f(n)$ such that $f(n)$ returns the number of **primitive operations** that are performed on an **input of size** n.

- $f(n) = 5$ [constant]
- $f(n) = \log_2 n$ [logarithmic]
- $f(n) = 4 \cdot n$ [linear]
- $f(n) = n^2$ [quadratic]
- $f(n) = n^3$ [cubic]
- $f(n) = 2^n$ [exponential]

Focusing on the Worst-Case Input

- **Average-case analysis** calculates the expected running times based on the probability distribution of input values.
- **worst-case analysis** or **best-case analysis**?

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing **behaviour in the limit**:
 - How the **running time** of the algorithm under analysis changes as the **input size** changes without bound
 - e.g., contrast $RT_1(n) = n$ with $RT_2(n) = n^2$
- Allows us to compare the **relative** performance of alternative algorithms:
 - For large enough inputs, the **multiplicative constants** and lower-order terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_2(n) = 100n^2 + 3n - 100$ are considered **equally efficient, asymptotically**.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, **asymptotically**.
Three Notions of Asymptotic Bounds

We may consider three kinds of \textit{asymptotic bounds} for the \textit{running time} of an algorithm:

- Asymptotic \textbf{upper} bound \([O]\)
- Asymptotic lower bound \([\Omega]\)
- Asymptotic tight bound \([\Theta]\)

Asymptotic Upper Bound: Definition

- Let \(f(n)\) and \(g(n)\) be functions mapping positive integers (input size) to positive real numbers (running time).
 - \(f(n)\) characterizes the running time of some algorithm.
 - \(O(g(n))\) denotes a collection of functions.
- \(O(g(n))\) consists of all functions that can be upper bounded by \(g(n)\), starting at some point, using some constant factor.
- \(f(n) \in O(g(n))\) if there are:
 - A real constant \(c > 0\)
 - An integer constant \(n_0 \geq 1\)
 such that:
 \[f(n) \leq c \cdot g(n) \quad \text{for } n \geq n_0 \]
- For each member function \(f(n)\) in \(O(g(n))\), we say that:
 - \(f(n) \in O(g(n))\) \([f(n) \text{ is a member of “big-Oh of } g(n)\text{”}]\)
 - \(f(n) \text{ is } O(g(n))\) \([f(n) \text{ is “big-Oh of } g(n)\text{”}]\)
 - \(f(n) \text{ is order of } g(n)\)

Asymptotic Upper Bound: Visualization

From \(n_0\), \(f(n)\) is upper bounded by \(c \cdot g(n)\), so \(f(n)\) is \(O(g(n))\).

Asymptotic Upper Bound: Example (1)

Prove: The function \(8n + 5\) is \(O(n)\).

Strategy: Choose a real constant \(c > 0\) and an integer constant \(n_0 \geq 1\), such that for every integer \(n \geq n_0\):
\[8n + 5 \leq c \cdot n \]

Can we choose \(c = 9\)? What should the corresponding \(n_0\) be?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(8n + 5)</th>
<th>(9n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>54</td>
</tr>
</tbody>
</table>

Therefore, we prove it by choosing \(c = 9\) and \(n_0 = 5\).
We may also prove it by choosing \(c = 13\) and \(n_0 = 1\). Why?
Asymptotic Upper Bound: Example (2)

Proof: The function \(f(n) = 5n^4 + 3n^3 + 2n^2 + 4n + 1 \) is \(O(n^4) \).

Strategy: Choose a real constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \), such that for every integer \(n \geq n_0 \):

\[
5n^4 + 3n^3 + 2n^2 + 4n + 1 \leq c \cdot n^4
\]

Choose \(f = 15 \) and \(n_0 = 1 \).

Asymptotic Upper Bound: Proposition (2)

\[
O(n^0) \subset O(n^1) \subset O(n^2) \subset \ldots
\]

If a function \(f(n) \) is **upper bounded** by another function \(g(n) \) of degree \(d, d \geq 0 \), then \(f(n) \) is also upper bounded by all other functions of a **strictly higher degree** (i.e., \(d + 1, d + 2, \ldots \)).

Asymptotic Upper Bound: Proposition (1)

If \(f(n) \) is a polynomial of degree \(d \), i.e.,

\[
f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d
\]

and \(a_0, a_1, \ldots, a_d \) are integers (i.e., negative, zero, or positive), then \(f(n) \) is \(O(n^d) \).

Proof:

1. We know that for \(n \geq 1 \):

\[
r^0 \leq n^1 \leq n^2 \leq \cdots \leq n^d
\]

2. By choosing \(c = |a_0| + |a_1| + \cdots + |a_d| \):

\[
a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d \leq |a_0| \cdot n^0 + |a_1| \cdot n^1 + \cdots + |a_d| \cdot n^d
\]

3. By choosing \(n_0 = 1 \):

\[
a_0 \cdot 1^0 + a_1 \cdot 1^1 + \cdots + a_d \cdot 1^d \leq |a_0| \cdot 1^0 + |a_1| \cdot 1^1 + \cdots + |a_d| \cdot 1^d
\]

That is, we prove by choosing

\[
c = |a_0| + |a_1| + \cdots + |a_d|
\]

\[
n_0 = 1
\]

Asymptotic Upper Bound: More Examples

- \(5n^2 + 3n \cdot \log n + 2n + 5 \) is \(O(n^2) \) \([c = 15, n_0 = 1]\)
- \(20n^3 + 10n \cdot \log n + 5 \) is \(O(n^3) \) \([c = 35, n_0 = 1]\)
- \(3 \cdot \log n + 2 \) is \(O(\log n) \) \([c = 5, n_0 = 2]\)
- \(2^{n+2} \) is \(O(2^n) \) \([c = 4, n_0 = 1]\)
- \(2n + 100 \cdot \log n \) is \(O(n) \) \([c = 102, n_0 = 1]\)
Using Asymptotic Upper Bound Accurately

- Use the big-Oh notation to characterize a function (of an algorithm’s running time) as closely as possible. For example, say \(f(n) = 4n^3 + 3n^2 + 5 \):
 - Recall: \(O(n^3) \subset O(n^4) \subset O(n^5) \subset \ldots \)
 - It is the most accurate to say that \(f(n) \) is \(O(n^3) \).
 - It is also true, but not very useful, to say that \(f(n) \) is \(O(n^4) \) and that \(f(n) \) is \(O(n^5) \).
- Do not include constant factors and lower-order terms in the big-Oh notation. For example, say \(f(n) = 2n^2 \) is \(O(n^2) \), do not say \(f(n) \) is \(O(4n^2 + 6n + 9) \).

Classes of Functions

<table>
<thead>
<tr>
<th>upper bound</th>
<th>class</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>constant</td>
<td>cheapest</td>
</tr>
<tr>
<td>(O(\log(n)))</td>
<td>logarithmic</td>
<td></td>
</tr>
<tr>
<td>(O(n))</td>
<td>linear</td>
<td></td>
</tr>
<tr>
<td>(O(n \cdot \log(n)))</td>
<td>“n-log-n”</td>
<td></td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>quadratic</td>
<td></td>
</tr>
<tr>
<td>(O(n^3))</td>
<td>cubic</td>
<td></td>
</tr>
<tr>
<td>(O(n^k), k \geq 1)</td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>(O(a^n), a > 1)</td>
<td>exponential</td>
<td>most expensive</td>
</tr>
</tbody>
</table>

Upper Bound of Algorithm: Example (1)

```java
maxOf (int x, int y) {
    int max = x;
    if (y > x) {
        max = y;
    }
    return max;
}
```

- # of primitive operations: 4
 - 2 assignments + 1 comparison + 1 return = 4
- Therefore, the running time is \(O(1) \).
- That is, this is a constant-time algorithm.
Upper Bound of Algorithm: Example (2)

```cpp
findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > currentMax) {
            currentMax = a[i];
            i ++
        }
    }
    return currentMax;
}
```

- From last lecture, we calculated that the # of primitive operations is $7n - 2$.
- Therefore, the running time is $O(n)$.
- That is, this is a **linear-time** algorithm.

Upper Bound of Algorithm: Example (3)

```cpp
containsDuplicate (int[] a, int n) {
    for (int i = 0; i < n; ) {
        for (int j = 0; j < n; ) {
            if (i != j && a[i] == a[j]) {
                return true;
            }
            j ++;
        }
        i ++;
    }
    return false;
}
```

- Worst case is when we reach Line 8.
- # of primitive operations $\approx c_1 + n \cdot n \cdot c_2$, where c_1 and c_2 are some constants.
- Therefore, the running time is $O(n^2)$.
- That is, this is a **quadratic** algorithm.

Upper Bound of Algorithm: Example (4)

```cpp
sumMaxAndCrossProducts (int[] a, int n) {
    int max = a[0];
    for (int i = 1; i < n; ) {
        if (a[i] > max) {
            max = a[i];
            currentMax = a[i];
            i ++
        }
    }
    return currentMax;
}
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1, c_2, c_3, and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a **quadratic** algorithm.

Upper Bound of Algorithm: Example (5)

```cpp
triangularSum (int[] a, int n) {
    int sum = 0;
    for (int i = 0; i < n; i ++) {
        for (int j = i; j < n; j ++) {
            sum += a[j];
        }
    }
    return sum;
}
```

- # of primitive operations $\approx n + (n - 1) + \cdots + 2 + 1 = \frac{n(n+1)}{2}$
- Therefore, the running time is $O(n^2 + n) = O(n^2)$.
- That is, this is a **quadratic** algorithm.