
Classes and Objects
Readings: Chapters 3 – 4 of the Course Notes

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/course_archive/2014-15/W/1030/book.pdf
http://www.eecs.yorku.ca/~jackie

Separation of Concerns: App vs. Model

● So far we have developed:
Supplier: A single utility class.
Client: A class with its main method using the utility methods.

● In Java:
○ We may define more than one (non-utility) classes
○ Each class may contain more than one methods

● object-oriented programming in Java:

○ Use classes to define templates
○ Use objects to instantiate classes
○ At runtime, create objects and call methods on objects, to simulate

interactions between real-life entities.

2 of 147

Object Orientation:
Observe, Model, and Execute

Real World: Entities

Entities:
jim, jonathan, …

Entities:
p1(2, 3), p2(-1, -2), …

…

Compile-Time: Classes
(definitions of templates)

class Person {
 String name;
 double weight;
 double height;
}

class Potint {
 double x;
 double y;
}

…

Run-Time: Objects
(instantiations of templates)

Person
name
weight
height

“Jim”
80

1.80
jim

Person
name
weight
height

“Jonathan”
80

1.80
jonathan

Point
x
y

2
3

p1

Point
x
y

-1
-2

p2

…

Model Execute

○ We observe how real-world entities behave.
○ We model the common attributes and behaviour of a set of

entities in a single class.
○ We execute the program by creating instances of classes, which

interact in a way analogous to that of real-world entities.

3 of 147

Object-Oriented Programming (OOP)

● In real life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.

● Entities:
○ Possess attributes;
○ Exhibit bebaviour ; and
○ Interact with each other.

● Goals: Solve problems programmatically by
○ Classifying entities of interest

Entities in the same class share common attributes and bebaviour.
○ Manipulating data that represent these entities

Each entity is represented by specific values.

4 of 147

OO Thinking: Templates vs. Instances (1.1)

A person is a being, such as a human, that has certain
attributes and behaviour constituting personhood: a person
ages and grows on their heights and weights.

● A template called Person defines the common
○ attributes (e.g., age, weight, height) [≈ nouns]
○ behaviour (e.g., get older, gain weight) [≈ verbs]

5 of 147

OO Thinking: Templates vs. Instances (1.2)

● Persons share these common attributes and behaviour .
○ Each person possesses an age, a weight, and a height.
○ Each person’s age, weight, and height might be distinct

e.g., jim is 50-years old, 1.8-meters tall and 80-kg heavy
e.g., jonathan is 65-years old, 1.73-meters tall and 90-kg heavy

● Each person, depending on the specific values of their
attributes, might exhibit distinct behaviour:
○ When jim gets older, he becomes 51
○ When jonathan gets older, he becomes 66.
○ jim’s BMI is based on his own height and weight [80

1.82]
○ jonathan’s BMI is based on his own height and weight [90

1.732]

6 of 147

OO Thinking: Templates vs. Instances (2.1)

Points on a two-dimensional plane are identified by their signed
distances from the X- and Y-axises. A point may move
arbitrarily towards any direction on the plane. Given two points,
we are often interested in knowing the distance between them.

● A template called Point defines the common
○ attributes (e.g., x, y) [≈ nouns]
○ behaviour (e.g., move up, get distance from) [≈ verbs]

7 of 147

OO Thinking: Templates vs. Instances (2.2)

● Points share these common attributes and behaviour .
○ Each point possesses an x-coordinate and a y-coordinate.
○ Each point’s location might be distinct

e.g., p1 is located at (3,4)
e.g., p2 is located at (−4,−3)

● Each point, depending on the specific values of their attributes
(i.e., locations), might exhibit distinct behaviour:
○ When p1 moves up for 1 unit, it will end up being at (3,5)
○ When p2 moves up for 1 unit, it will end up being at (−4,−2)
○ Then, p1’s distance from origin: [

√
32 + 52]

○ Then, p2’s distance from origin: [
√

(−4)2 + (−2)2]

8 of 147

OO Thinking: Templates vs. Instances (3)
● A template defines what’s shared by a set of related entities.

○ Common attributes (age in Person, x in Point)
○ Common behaviour (get older for Person, move up for Point)

● Each template may be instantiated into multiple instances.
○ Person instances: jim and jonathan
○ Point instances: p1 and p2

● Each instance may have specific values for the attributes.
○ Each Person instance has an age:
jim is 50-years old, jonathan is 65-years old

○ Each Point instance has a location:
p1 is at (3,4), p2 is at (−3,−4)

● Therefore, instances of the same template may exhibit distinct
behaviour .
○ Each Person instance can get older: jim getting older from 50 to

51; jonathan getting older from 65 to 66.
○ Each Point instance can move up: p1 moving up from (3,3)

results in (3,4); p1 moving up from (−3,−4) results in (−3,−3).
9 of 147

OOP: Classes ≈ Templates

In Java, you use a class to define a template that enumerates
attributes that are common to a set of entities of interest.

public class Person {
int age;
String nationality;
double weight;
double height;

}

public class Point {
double x;
double y;

}

10 of 147

OOP:
Define Constructors for Creating Objects (1.1)
● Within class Point, you define constructors , specifying how

instances of the Point template may be created.
public class Point {
. . . /* attributes: x, y */
Point(double newX, double newY) {
x = newX;
y = newY; } }

● In the corresponding tester class, each call to the Point
constructor creates an instance of the Point template.
public class PersonTester {
public static void main(String[] args) {

Point p1 = new Point (2, 4);
println(p1.x + " " + p1.y);
Point p2 = new Point (-4, -3);
println(p2.x + " " + p2.y); } }

11 of 147

OOP:
Define Constructors for Creating Objects (1.2)

Point p1 = new Point(2, 4);

1. RHS (Source) of Assignment: new Point(2, 4) creates
a new Point object in memory.

2.0

4.0

x

y

Point

2. LHS (Target) of Assignment: Point p1 declares a variable
that is meant to store the address of some Point object .

3. Assignment: Executing = stores new object’s address in p1.

2.0

4.0

x

y

Point

p1

12 of 147

The this Reference (1)
● Each class may be instantiated to multiple objects at runtime.
class Point {
double x; double y;
void moveUp(double units) { y += units; }

}

● Each time when we call a method of some class, using the dot
notation, there is a specific target /context object.

1 Point p1 = new Point(2, 3);
2 Point p2 = new Point(4, 6);
3 p1.moveUp(3.5);
4 p2.moveUp(4.7);

○ p1 and p2 are called the call targets or context objects .
○ Lines 3 and 4 apply the same definition of the moveUp method.
○ But how does Java distinguish the change to p1.y versus the

change to p2.y?
13 of 147

The this Reference (2)
● In the method definition, each attribute has an implicit this

which refers to the context object in a call to that method.
class Point {
double x;
double y;
Point(double newX, double newY) {
this.x = newX;
this.y = newY;

}
void moveUp(double units) {
this.y = this.y + units;

}
}

● Each time when the class definition is used to create a new
Point object , the this reference is substituted by the name of
the new object.

14 of 147

The this Reference (3)
● After we create p1 as an instance of Point
Point p1 = new Point(2, 3);

● When invoking p1.moveUp(3.5), a version of moveUp that is
specific to p1 will be used:
class Point {
double x;
double y;
Point(double newX, double newY) {

p1 .x = newX;

p1 .y = newY;

}
void moveUp(double units) {

p1 .y = p1 .y + units;

}
}

15 of 147

The this Reference (4)
● After we create p2 as an instance of Point
Point p2 = new Point(4, 6);

● When invoking p2.moveUp(4.7), a version of moveUp that is
specific to p2 will be used:
class Point {
double x;
double y;
Point(double newX, double newY) {

p2 .x = newX;

p2 .y = newY;

}
void moveUp(double units) {

p2 .y = p2 .y + units;

}
}

16 of 147

The this Reference (5)

The this reference can be used to disambiguate when the
names of input parameters clash with the names of class
attributes.
class Point {
double x;
double y;
Point(double x, double y) {
this.x = x;
this.y = y;

}
void setX(double x) {
this.x = x;

}
void setY(double y) {
this.y = y;

}
}

17 of 147

The this Reference (6.1): Common Error

The following code fragment compiles but is problematic:

class Person {
String name;
int age;
Person(String name, int age) {
name = name;
age = age;

}
void setAge(int age) {
age = age;

}
}

Why? Fix?

18 of 147

The this Reference (6.2): Common Error

Always remember to use this when input parameter names
clash with class attribute names.

class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;

}
void setAge(int age) {
this.age = age;

}
}

19 of 147

OOP:
Define Constructors for Creating Objects (2.1)
● Within class Person, you define constructors , specifying how

instances of the Person template may be created.
public class Person {
. . . /* attributes: age, nationality, weight, height */
Person(int newAge, String newNationality) {
age = newAge;
nationality = newNationality; } }

● In the corresponding tester class, each call to the Person
constructor creates an instance of the Person template.
public class PersonTester {
public static void main(String[] args) {

Person jim = new Person (50, "British");
println(jim.nationlaity + " " + jim.age);
Person jonathan = new Person (60, "Canadian");
println(jonathan.nationlaity + " " + jonathan.age); } }

20 of 147

OOP:
Define Constructors for Creating Objects (2.2)

Person jim = new Person(50, "British");

1. RHS (Source) of Assignment: new Person(50, "British")

creates a new Person object in memory.

50

“British”

age

nationality

Person

0.0

0.0

weight

height

2. LHS (Target) of Assignment: Point jim declares a variable
that is meant to store the address of some Person object .

3. Assignment: Executing = stores new object’s address in jim.

50

“British”

age

nationality

Person

jim

0.0

0.0

weight

height
21 of 147

OOP: Methods (1.1)
● A method is a named block of code, reusable via its name.

{
 …
 /* implementation of method m */
}

m

…
RT

T1T1 p1p1

T2T2 p2p2

TnTn pnpn

● The Signature of a method consists of:
○ Return type [RT (which can be void)]
○ Name of method [m]
○ Zero or more parameter names [p1, p2, . . . , pn]
○ The corresponding parameter types [T1, T2, . . . , Tn]

● A call to method m has the form: m(a1,a2, . . . ,an)

Types of argument values a1, a2, . . . , an must match the the
corresponding parameter types T1, T2, . . . , Tn.

22 of 147

OOP: Methods (1.2)
● In the body of the method, you may

○ Declare and use new local variables
Scope of local variables is only within that method.

○ Use or change values of attributes.
○ Use values of parameters, if any.

class Person {
String nationality;
void changeNationality(String newNationality) {
nationality = newNationality; } }

● Call a method , with a context object , by passing arguments.
class PersonTester {
public static void main(String[] args) {
Person jim = new Person(50, "British");
Person jonathan = new Person(60, "Canadian");
jim.changeNationality("Korean");
jonathan.changeNationality("Korean"); } }

23 of 147

OOP: Methods (2)

● Each class C defines a list of methods.
○ A method m is a named block of code.

● We reuse the code of method m by calling it on an object obj
of class C.

For each method call obj.m(. . .):
○ obj is the context object of type C
○ m is a method defined in class C
○ We intend to apply the code effect of method m to object obj.

e.g., jim.getOlder() vs. jonathan.getOlder()
e.g., p1.moveUp(3) vs. p2.moveUp(3)

● All objects of class C share the same definition of method m.
● However:
∵ Each object may have distinct attribute values.
∴ Applying the same definition of method m has distinct effects.

24 of 147

OOP: Methods (3)
1. Constructor

○ Same name as the class. No return type. Initializes attributes.
○ Called with the new keyword.
○ e.g., Person jim = new Person(50, "British");

2. Mutator
○ Changes (re-assigns) attributes
○ void return type
○ Cannot be used when a value is expected
○ e.g., double h = jim.setHeight(78.5) is illegal!

3. Accessor
○ Uses attributes for computations (without changing their values)
○ Any return type other than void
○ An explicit return statement (typically at the end of the method)

returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI();
e.g., println(p1.getDistanceFromOrigin());

25 of 147

OOP: The Dot Notation (1)
● A binary operator:

○ LHS an object
○ RHS an attribute or a method

● Given a variable of some reference type that is not null:
○ We use a dot to retrieve any of its attributes .

Analogous to ’s in English
e.g., jim.nationality means jim’s nationality

○ We use a dot to invoke any of its mutator methods , in order to
change values of its attributes.
e.g., jim.changeNationality("CAN") changes the
nationality attribute of jim

○ We use a dot to invoke any of its accessor methods , in order to
use the result of some computation on its attribute values.
e.g., jim.getBMI() computes and returns the BMI calculated
based on jim’s weight and height

○ Return value of an accessor method must be stored in a variable.
e.g., double jimBMI = jim.getBMI()

26 of 147

OOP: The Dot Notation (2)

● LHS of dot can be more complicated than a variable :

○ It can be a path that brings you to an object

class Person {
String name;
Person spouse;

}

○ Say we have Person jim = new Person("Jim Davies")
○ Inquire about jim’s name? [jim.name]
○ Inquire about jim’s spouse’s name? [jim.spouse.name]
○ But what if jim is single (i.e., jim.spouse == null)?

Calling jim.spouse.name will trigger NullPointerException!!
○ Assuming that:
● jim is not single. [jim.spouse != null]
● The marriage is mutual. [jim.spouse.spouse != null]

What does jim.spouse.spouse.name mean? [jim.name]
27 of 147

OOP: Method Calls
1 Point p1 = new Point (3, 4);

2 Point p2 = new Point (-6, -8);

3 System.out.println(p1. getDistanceFromOrigin());

4 System.out.println(p2. getDistanceFromOrigin());

5 p1. moveUp(2) ;

6 p2. moveUp(2) ;

7 System.out.println(p1. getDistanceFromOrigin());

8 System.out.println(p2. getDistanceFromOrigin());

● Lines 1 and 2 create two different instances of Point
● Lines 3 and 4: invoking the same accessor method on two

different instances returns distinct values
● Lines 5 and 6: invoking the same mutator method on two

different instances results in independent changes
● Lines 3 and 7: invoking the same accessor method on the

same instance may return distinct values, why? Line 5
28 of 147

OOP: Class Constructors (1)

● The purpose of defining a class is to be able to create
instances out of it.

● To instantiate a class, we use one of its constructors .
● A constructor

○ declares input parameters
○ uses input parameters to initialize some or all of its attributes

29 of 147

OOP: Class Constructors (2)
public class Person {
int age;
String nationality;
double weight;
double height;
Person(int initAge, String initNat) {
age = initAge;
nationality = initNat;

}
Person (double initW, double initH) {
weight = initW;
height = initH;

}
Person(int initAge, String initNat,

double initW, double initH) {
. . . /* initialize all attributes using the parameters */

}
}

30 of 147

OOP: Class Constructors (3)

public class Point {
double x;
double y;

Point(double initX, double initY) {
x = initX;
y = initY;

}

Point(char axis, double distance) {
if (axis == ’x’) { x = distance; }
else if (axis == ’y’) { y = distance; }
else { System.out.println("Error: invalid axis.") }

}
}

31 of 147

OOP: Class Constructors (4)

● For each class, you may define one or more constructors :
○ Names of all constructors must match the class name.
○ No return types need to be specified for constructors.
○ Each constructor must have a distinct list of input parameter types.
○ Each parameter that is used to initialize an attribute must have a

matching type.
○ The body of each constructor specifies how some or all

attributes may be initialized .

32 of 147

OOP: Object Creation (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:

System.out.println("(" + p1.x + ", " + p1.y + ")");

(2.0, 4.0)

33 of 147

OOP: Object Creation (2)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PersonTester {
public static void main(String[] args) {
/* initialize age and nationality only */
Person jim = new Person(50, "BRI");
/* initialize age and nationality only */
Person jonathan = new Person(65, "CAN");
/* initialize weight and height only */
Person alan = new Person(75, 1.80);
/* initialize all attributes of a person */
Person mark = new Person(40, "CAN", 69, 1.78);

}
}

34 of 147

OOP: Object Creation (3)

50age

nationality

Person

jim

0.0

0.0

weight

height

“BRI”

Person jim = new Person(50, “BRI”)

65age

nationality

Person

jonathan

0.0

0.0

weight

height

“CAN”

Person jonathan = new Person(65, “CAN”)

0age

nationality

Person

alan

75.0

1.80

weight

height

null

Person alan = new Person(75, 1.80)

40age

nationality

Person

mark

69.0

1.78

weight

height

“CAN”

Person mark = new Person(40, “CAN”, 69, 1.78)

35 of 147

OOP: Object Creation (4)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PointTester {
public static void main(String[] args) {
Point p1 = new Point(3, 4);
Point p2 = new Point(-3 -2);
Point p3 = new Point(’x’, 5);
Point p4 = new Point(’y’, -7);

}
}

36 of 147

OOP: Object Creation (5)

3.0

4.0

x

y

Person

p1

Point p1 = new Point(3, 4)

-3.0

-2.0

x

y

Person

p2

Point p2 = new Point(-3, -2)

5.0

0

x

y

Person

p3

Point p3 = new Point(‘x’, 5)

0

-7.0

x

y

Person

p4

Point p4 = new Point(‘y’, -7)

37 of 147

OOP: Object Creation (6)

● When using the constructor, pass valid argument values:
○ The type of each argument value must match the corresponding

parameter type.
○ e.g., Person(50, "BRI") matches
Person(int initAge, String initNationality)

○ e.g., Point(3, 4) matches
Point(double initX, double initY)

● When creating an instance, uninitialized attributes implicitly get
assigned the default values .
○ Set uninitialized attributes properly later using mutator methods

Person jim = new Person(50, "British");
jim.setWeight(85);
jim.setHeight(1.81);

38 of 147

OOP: Mutator Methods

● These methods change values of attributes.
● We call such methods mutators (with void return type).

public class Person {
. . .
void gainWeight(double units) {
weight = weight + units;

}
}

public class Point {
. . .
void moveUp() {
y = y + 1;

}
}

39 of 147

OOP: Accessor Methods
● These methods return the result of computation based on

attribute values.
● We call such methods accessors (with non-void return type).
public class Person {
. . .
double getBMI() {
double bmi = height / (weight * weight);
return bmi;

}
}

public class Point {
. . .
double getDistanceFromOrigin() {
double dist = Math.sqrt(x*x + y*y);
return dist;

}
}40 of 147

OOP: Use of Mutator vs. Accessor Methods

● Calls to mutator methods cannot be used as values.
○ e.g., System.out.println(jim.setWeight(78.5)); ×

○ e.g., double w = jim.setWeight(78.5); ×

○ e.g., jim.setWeight(78.5); ✓

● Calls to accessor methods should be used as values.
○ e.g., jim.getBMI(); ×

○ e.g., System.out.println(jim.getBMI()); ✓

○ e.g., double w = jim.getBMI(); ✓

41 of 147

OOP: Method Parameters

● Principle 1: A constructor needs an input parameter for
every attribute that you wish to initialize.
e.g., Person(double w, double h) vs.
Person(String fName, String lName)

● Principle 2: A mutator method needs an input parameter for
every attribute that you wish to modify.
e.g., In Point, void moveToXAxis() vs.
void moveUpBy(double unit)

● Principle 3: An accessor method needs input parameters if
the attributes alone are not sufficient for the intended
computation to complete.
e.g., In Point, double getDistFromOrigin() vs.
double getDistFrom(Point other)

42 of 147

The this Reference (7.1): Exercise

Consider the Person class

class Person {
String name;
Person spouse;
Person(String name) {
this.name = name;

}
}

How do you implement a mutator method marry which marries
the current Person object to an input Person object?

43 of 147

The this Reference (7.2): Exercise

void marry(Person other) {
if(this.spouse != null || other.spouse != null) {
System.out.println("Error: both must be single.");

}
else { this.spouse = other; other.spouse = this; }

}

When we call jim.marry(elsa): this is substituted by the
call target jim, and other is substituted by the argument
elsa.
void marry(Person other) {
. . .
jim.spouse = elsa;
elsa.spouse = jim;

}
}

44 of 147

Java Data Types (1)
A (data) type denotes a set of related runtime values.

1. Primitive Types
○ Integer Type
● int [set of 32-bit integers]
● long [set of 64-bit integers]

○ Floating-Point Number Type
● double [set of 64-bit FP numbers]

○ Character Type
● char [set of single characters]

○ Boolean Type
● boolean [set of true and false]

2. Reference Type : Complex Type with Attributes and Methods
○ String [set of references to character sequences]
○ Person [set of references to Person objects]
○ Point [set of references to Point objects]
○ Scanner [set of references to Scanner objects]

45 of 147

Java Data Types (2)
● A variable that is declared with a type but uninitialized is

implicitly assigned with its default value .
○ Primitive Type
● int i; [0 is implicitly assigned to i]
● double d; [0.0 is implicitly assigned to d]
● boolean b; [false is implicitly assigned to b]

○ Reference Type
● String s; [null is implicitly assigned to s]
● Person jim; [null is implicitly assigned to jim]
● Point p1; [null is implicitly assigned to p1]
● Scanner input; [null is implicitly assigned to input]

● You can use a primitive variable that is uninitialized .
Make sure the default value is what you want!

● Calling a method on a uninitialized reference variable crashes
your program. [NullPointerException]
Always initialize reference variables!

46 of 147

Java Data Types (3.1)
● An attribute may be of type ArrayList , storing references to

other objects.
class Person { Person spouse; }

● Methods may take as parameters references to other objects.
class Person {
void marry(Person other) { . . . } }

● Return values from methods may be references to other
objects.
class Point {
void moveUpBy(int i) { y = y + i; }
Point movedUpBy(int i) {
Point np = new Point(x, y);
np.moveUp(i);
return np;

}
}

47 of 147

Java Data Types (3.2.1)
An attribute may be of type ArrayList<Point> , storing
references to Point objects.

1 class PointCollector {
2 ArrayList<Point> points;
3 PointCollector() { points = new ArrayList<>(); }
4 void addPoint(Point p) {
5 points.add (p); }
6 void addPoint(double x, double y) {
7 points.add (new Point(x, y)); }
8 ArrayList<Point> getPointsInQuadrantI() {

9 ArrayList<Point> q1Points = new ArrayList<>();

10 for(int i = 0; i < points.size(); i ++) {
11 Point p = points.get(i);
12 if(p.x > 0 && p.y > 0) { q1Points.add (p); } }

13 return q1Points ;

14 } }

L8 & L9 may be replaced by:
for(Point p : points) { q1Points.add(p); }

48 of 147

Java Data Types (3.2.2)

1 class PointCollectorTester {
2 public static void main(String[] args) {
3 PointCollector pc = new PointCollector();
4 System.out.println(pc.points.size()); /* 0 */
5 pc.addPoint(3, 4);
6 System.out.println(pc.points.size()); /* 1 */
7 pc.addPoint(-3, 4);
8 System.out.println(pc.points.size()); /* 2 */
9 pc.addPoint(-3, -4);

10 System.out.println(pc.points.size()); /* 3 */
11 pc.addPoint(3, -4);
12 System.out.println(pc.points.size()); /* 4 */
13 ArrayList<Point> ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /* 1 */
15 System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
16 /* (3, 4) */
17 }
18 }

49 of 147

Java Data Types (3.3.1)
An attribute may be of type Point[] , storing references to
Point objects.

1 class PointCollector {
2 Point[] points; int nop; /* number of points */
3 PointCollector() { points = new Point[100]; }
4 void addPoint(double x, double y) {
5 points[nop] = new Point(x, y); nop++; }
6 Point[] getPointsInQuadrantI() {
7 Point[] ps = new Point[nop];
8 int count = 0; /* number of points in Quadrant I */
9 for(int i = 0; i < nop; i ++) {

10 Point p = points[i];
11 if(p.x > 0 && p.y > 0) { ps[count] = p; count ++; } }

12 Point[] q1Points = new Point[count];

13 /* ps contains null if count < nop */

14 for(int i = 0; i < count; i ++) { q1Points[i] = ps[i] }

15 return q1Points ;

16 } }

Required Reading: Point and PointCollector
50 of 147

Java Data Types (3.3.2)

1 class PointCollectorTester {
2 public static void main(String[] args) {
3 PointCollector pc = new PointCollector();
4 System.out.println(pc.nop); /* 0 */
5 pc.addPoint(3, 4);
6 System.out.println(pc.nop); /* 1 */
7 pc.addPoint(-3, 4);
8 System.out.println(pc.nop); /* 2 */
9 pc.addPoint(-3, -4);

10 System.out.println(pc.nop); /* 3 */
11 pc.addPoint(3, -4);
12 System.out.println(pc.nop); /* 4 */
13 Point[] ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /* 1 */
15 System.out.println("(" + ps[0].x + ", " + ps[0].y + ")");
16 /* (3, 4) */
17 }
18 }

51 of 147

OOP: Object Alias (1)
1 int i = 3;
2 int j = i; System.out.println(i == j); /* true */
3 int k = 3; System.out.println(k == i && k == j); /* true */

○ Line 2 copies the number stored in i to j.
○ After Line 4, i, j, k refer to three separate integer placeholder,

which happen to store the same value 3.

1 Point p1 = new Point(2, 3);
2 Point p2 = p1; System.out.println(p1 == p2); /* true */
3 Point p3 = new Point(2, 3);
4 Systme.out.println(p3 == p1 || p3 == p2); /* false */
5 Systme.out.println(p3.x == p1.x && p3.y == p1.y); /* true */
6 Systme.out.println(p3.x == p2.x && p3.y == p2.y); /* true */

○ Line 2 copies the address stored in p1 to p2.
○ Both p1 and p2 refer to the same object in memory!
○ p3, whose contents are same as p1 and p2, refer to a different

object in memory.
52 of 147

OO Program Programming: Object Alias (2.1)

Problem: Consider assignments to primitive variables:

1 int i1 = 1;
2 int i2 = 2;
3 int i3 = 3;
4 int[] numbers1 = {i1, i2, i3};
5 int[] numbers2 = new int[numbers1.length];
6 for(int i = 0; i < numbers1.length; i ++) {
7 numbers2[i] = numbers1[i];
8 }
9 numbers1[0] = 4;

10 System.out.println(numbers1[0]);
11 System.out.println(numbers2[0]);

53 of 147

OO Program Programming: Object Alias (2.2)
Problem: Consider assignments to reference variables:
1 Person alan = new Person("Alan");
2 Person mark = new Person("Mark");
3 Person tom = new Person("Tom");
4 Person jim = new Person("Jim");
5 Person[] persons1 = {alan, mark, tom};
6 Person[] persons2 = new Person[persons1.length];
7 for(int i = 0; i < persons1.length; i ++) {
8 persons2[i] = persons1[i]; }
9 persons1[0].setAge(70);

10 System.out.println(jim.age);
11 System.out.println(alan.age);
12 System.out.println(persons2[0].age);
13 persons1[0] = jim;
14 persons1[0].setAge(75);
15 System.out.println(jim.age);
16 System.out.println(alan.age);
17 System.out.println(persons2[0].age);

54 of 147

Call by Value vs. Call by Reference (1)

● Consider the general form of a call to some mutator method
m, with context object co and argument value arg:

co.m (arg)

○ Argument variable arg is not passed directly for the method call.
○ Instead, argument variable arg is passed indirectly : a copy of

the value stored in arg is made and passed for the method call.

● What can be the type of variable arg? [Primitive or Reference]
○ arg is primitive type (e.g., int, char, boolean, etc.):

Call by Value : Copy of arg’s stored value
(e.g., 2, ‘j’, true) is made and passed.

○ arg is reference type (e.g., String, Point, Person, etc.):
Call by Reference : Copy of arg’s stored reference/address

(e.g., Point@5cb0d902) is made and passed.

55 of 147

Call by Value vs. Call by Reference (2.1)

For illustration, let’s assume the following variant of the Point
class:

class Point {
int x;
int y;
Point(int x, int y) {
this.x = x;
this.y = y;

}
void moveVertically(int y){
this.y += y;

}
void moveHorizontally(int x){
this.x += x;

}
}

56 of 147

Call by Value vs. Call by Reference (2.2.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByVal() {
3 Util u = new Util();
4 int i = 10;
5 assertTrue(i == 10);
6 u.reassignInt(i);
7 assertTrue(i == 10);
8 }

● Before the mutator call at L6, primitive variable i stores 10.

● When executing the mutator call at L6, due to call by value , a
copy of variable i is made.
⇒ The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

● ∴ After the mutator call at L6, variable i still stores 10.
57 of 147

Call by Value vs. Call by Reference (2.2.2)

Before reassignInt During reassignInt After reassignInt

10inti

10inti

10intj

10inti

11intj

58 of 147

Call by Value vs. Call by Reference (2.3.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_1() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.reassignRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==3 && p.y==4);
9 }

● Before the mutator call at L6, reference variable p stores the
address of some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to
call by reference , a copy of address stored in p is made.
⇒ The assignment p = np is only effective on this copy, not the
original variable p itself.

● ∴ After the mutator call at L6, variable p still stores the original
address (i.e., same as refOfPBefore).

59 of 147

Call by Value vs. Call by Reference (2.3.2)

Before reassignRef During reassignRef After reassignRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

3

4

x

y

Point

p

q
6

8

x

y

Point

60 of 147

Call by Value vs. Call by Reference (2.4.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_2() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.changeViaRef(p);
7 assertTrue(p==refOfPBefore);
8 assertTrue(p.x==6 && p.y==8);
9 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by reference , a

copy of address stored in p is made. [Alias: p and q store same address.]

⇒ Calls to q.moveHorizontally and q.moveVertically are
effective on both p and q.

● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore), but its x and y have been modified via q.

61 of 147

Call by Value vs. Call by Reference (2.4.2)

Before changeViaRef During changeViaRef After changeViaRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

6

8

x

y

Point

p

q

62 of 147

Aggregation vs. Composition: Terminology
Container object: an object that contains others.
Containee object: an object that is contained within another.

● e.g., Each course has a faculty member as its instructor.
○ Container : Course Containee: Faculty.

● e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
○ Container : Student, Faculty Containees: Course.

e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
⇒ Containees may be shared by different classes of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
⇒ Containees may exist independently without their containers.

● e.g., In a file system, each directory contains a list of files.
○ Container : Directory Containees: File.

e.g., Each file has exactly one parent directory.
⇒ A containee may be owned by only one container .
e.g., Deleting a directory also deletes the files it contains.
⇒ Containees may co-exist with their containers.

63 of 147

Aggregation: Independent Containees
Shared by Containers (1.1)

Course Faculty
prof
1

class Course {
String title;
Faculty prof;
Course(String title) {
this.title = title;

}
void setProf(Faculty prof) {
this.prof = prof;

}
Faculty getProf() {
return this.prof;

}
}

class Faculty {
String name;
Faculty(String name) {
this.name = name;

}
void setName(String name) {
this.name = name;

}
String getName() {
return this.name;

}
}

64 of 147

Aggregation: Independent Containees
Shared by Containers (1.2)
@Test
public void testAggregation1() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf(prof);
eecs3311.setProf(prof);
assertTrue(eecs2030.getProf() == eecs3311.getProf());
/* aliasing */
prof.setName("Jeff");
assertTrue(eecs2030.getProf() == eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);
assertTrue(eecs2030.getProf() != eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));
assertTrue(eecs3311.getProf().getName().equals("Jonathan"));

}

65 of 147

Aggregation: Independent Containees
Shared by Containers (2.1)

Student
cs
*

Course Faculty
te

*

class Student {
String id; ArrayList<Course> cs; /* courses */
Student(String id) { this.id = id; cs = new ArrayList<>(); }
void addCourse(Course c) { cs.add(c); }
ArrayList<Course> getCS() { return cs; }

}

class Course { String title; }

class Faculty {
String name; ArrayList<Course> te; /* teaching */
Faculty(String name) { this.name = name; te = new ArrayList<>(); }
void addTeaching(Course c) { te.add(c); }
ArrayList<Course> getTE() { return te; }

}

66 of 147

Aggregation: Independent Containees
Shared by Containers (2.2)
@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030);
p.addTeaching(eecs3311);
s.addCourse(eecs2030);
s.addCourse(eecs3311);

assertTrue(eecs2030.getProf() == s.getCS().get(0).getProf());
assertTrue(s.getCS().get(0).getProf() == s.getCS().get(1).getProf());
assertTrue(eecs3311 == s.getCS().get(1));
assertTrue(s.getCS().get(1) == p.getTE().get(1));

}

67 of 147

OOP: The Dot Notation (3.1)
In real life, the relationships among classes are sophisticated.

Student
cs
*

Course Faculty
te

*

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class Student:
○ Writing cs denotes the list of registered courses.
○ Writing cs[i] (where i is a valid index) navigates to the class
Course, which changes the context to class Course.

68 of 147

OOP: The Dot Notation (3.2)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Student {
. . . /* attributes */
/* Get the student’s id */
String getID() { return this.id; }
/* Get the title of the ith course */
String getCourseTitle(int i) {
return this.cs.get(i).title;

}
/* Get the instructor’s name of the ith course */
String getInstructorName(int i) {
return this.cs.get(i).prof.name;

}
}

69 of 147

OOP: The Dot Notation (3.3)
class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Course {
. . . /* attributes */
/* Get the course’s title */
String getTitle() { return this.title; }
/* Get the instructor’s name */
String getInstructorName() {
return this.prof.name;

}
/* Get title of ith teaching course of the instructor */
String getCourseTitleOfInstructor(int i) {
return this.prof.te.get(i).title;

}
}

70 of 147

OOP: The Dot Notation (3.4)

class Student {
String id;
ArrayList<Course> cs;

}

class Course {
String title;
Faculty prof;

}

class Faculty {
String name;
ArrayList<Course> te;

}

class Faculty {
. . . /* attributes */
/* Get the instructor’s name */
String getName() {
return this.name;

}
/* Get the title of ith teaching course */
String getCourseTitle(int i) {
return this.te.get(i).title;

}
}

71 of 147

Composition: Dependent Containees
Owned by Containers (1.1)

Directory File
files
*

parent
1

Assumption: Files are not shared among directories.

class File {
String name;
File(String name) {
this.name = name;

}
}

class Directory {
String name;
File[] files;
int nof; /* num of files */
Directory(String name) {
this.name = name;
files = new File[100];

}
void addFile(String fileName) {
files[nof] = new File(fileName);
nof ++;

}
}

72 of 147

Composition: Dependent Containees
Owned by Containers (1.2.1)

1 @Test
2 public void testComposition() {
3 Directory d1 = new Directory("D");
4 d1.addFile("f1.txt");
5 d1.addFile("f2.txt");
6 d1.addFile("f3.txt");
7 assertTrue(
8 d1.files[0].name.equals("f1.txt"));
9 }

● L4: a 1st File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L5: a 2nd File object is created and owned exclusively by
d1.
No other directories are sharing this File object with d1.

● L6: a 3rd File object is created and owned exclusively by
d1.
No other directories are sharing this File object with d1.

73 of 147

Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name
“D”

“f1.txt” “f2.txt” “f3.txt”

74 of 147

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: How do you implement a copy instructor for the
Directory class?

class Directory {
Directory(Directory other) {
/* ?? */

}
}

Hints:
● The implementation should be consistent with the effect of

copying and pasting a directory.
● Separate copies of files are created.

75 of 147

Composition: Dependent Containees
Owned by Containers (1.4.1)

Version 1: Shallow Copy by copying all attributes using =.
class Directory {
Directory(Directory other) {
/* value copying for primitive type */
nof = other.nof;
/* address copying for reference type */
name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [NO]
@Test
void testShallowCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files == d2.files); /* violation of composition */
d2.files[0].changeName("f11.txt");
assertFalse(d1.files[0].name.equals("f1.txt")); }

76 of 147

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f11.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name

d2.filesd2

d2.files[0] d2.files[1] d2.files[2]

d2.name

77 of 147

Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < nof; i ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf); } } }

@Test
void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.files != d2.files); /* composition preserved */
d2.files[0].changeName("f11.txt");
assertTrue(d1.files[0].name.equals("f1.txt")); }

78 of 147

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f1.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name
d2.files

d2

d2.files[0] d2.files[1] d2.files[2]

0 1 2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

“D”

File

name

File

name

File

name

“f11.txt” “f2.txt” “f3.txt”

nof

d2.name

79 of 147

Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;
int nof;
File[] getFiles() {
/* Your Task */

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

80 of 147

Aggregation vs. Composition (1)

Terminology:
○ Container object: an object that contains others.
○ Containee object: an object that is contained within another.

Aggregation :
○ Containees (e.g., Course) may be shared among containers

(e.g., Student, Faculty).
○ Containees exist independently without their containers.
○ When a container is destroyed, its containees still exist.

Composition :
○ Containers (e.g, Directory, Department) own exclusive

access to their containees (e.g., File, Faculty).
○ Containees cannot exist without their containers.
○ Destroying a container destroys its containeees cascadingly .

81 of 147

Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:
○ Each workstation owns CPU, monitor, keyword. [compositions]
○ All workstations share the same network. [aggregations]

82 of 147

OOP: Equality (1)

Point p1 = new Point(2, 3);
Point p2 = new Point(2, 3);

boolean sameLoc = (p1 == p2);

System.out.println("p1 and p2 same location?" + sameLoc);

p1 and p2 same location? false

83 of 147

OOP: Equality (2)
● Recall that

○ A primitive variable stores a primitive value
e.g., double d1 = 7.5; double d2 = 7.5;

○ A reference variable stores the address to some object (rather
than storing the object itself)
e.g., Point p1 = new Point(2, 3) assigns to p1 the
address of the new Point object
e.g., Point p2 = new Point(2, 3) assigns to p2 the
address of another new Point object

● The binary operator == may be applied to compare:
○ Primitive variables: their contents are compared

e.g., d1 == d2 evaluates to true
○ Reference variables: the addresses they store are compared

(rather than comparing contents of the objects they refer to)
e.g., p1 == p2 evaluates to false because p1 and p2 are
addresses of different objects, even if their contents are identical .

84 of 147

OOP: Equality (3)
● Implicitly:

○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.

● There are two useful accessor methods that every class
inherits from the Object class:
○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.
● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.

● Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and
toString.

85 of 147

OOP: Contract of equals
Given that reference variables x, y, z are not null:
●

¬ x .equals(null)

● Reflexive :
x .equals(x)

● Symmetric
x .equals(y) ⇐⇒ y .equals(x)

● Transitive

x .equals(y) ∧ y .equals(z)⇒ x .equals(z)

API of equals Inappropriate Def. of equals using hashCode
86 of 147

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-

OOP: Equality (4.1)
● How do we compare contents rather than addresses?
● Define the accessor method equals, e.g.,

class Point {
double x; double y;

boolean equals (Object obj) {

if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
Point other = (Point) obj;
return this.x == other.x && this.y == other.y; } }

class PointTester {
String s = "(2, 3)";
Point p1 = new Point(2, 3); Point p2 = new Point(2, 3);

System.out.println(p1. equals (p1)); /* true */

System.out.println(p1.equals(null)); /* false */
System.out.println(p1.equals(s)); /* false */
System.out.println(p1 == p2); /* false */

System.out.println(p1. equals (p2)); /* true */ }

87 of 147

OOP: Equality (4.2)
● When making a method call p.equals(o):

○ Variable p is of type Point
○ Variable o can be any type

● We define p and o as equal if:
○ Either p and o refer to the same object;
○ Or:
● o is not null.
● p and o are of the same type.
● The x and y coordinates are the same.

● Q: In the equals method of Point, why is there no such a line:
class Point {

boolean equals (Object obj) {

if(this == null) { return false; }

A: If this is null, a NullPointerException would have
occurred and prevent the body of equals from being executed.

88 of 147

OOP: Equality (4.3)
1 class Point {

2 boolean equals (Object obj) {

3 . . .
4 Point other = (Point) obj;
5 return this.x == other.x && this.y == other.y; } }

○ Object obj at L2 declares a parameter obj of type Object.
○ Point p at L4 declares a variable p of type Point.

We call such types declared at compile time as static type.
○ The list of applicable methods that we may call on a variable

depends on its static type.
e.g., We may only call the small list of methods defined in Object
class on obj, which does not include x and y (specific to Point).

○ If we are SURE that an object’s “actual” type is different from its
static type, then we can cast it.

e.g., Given that this.getClass() == obj.getClass(), we are
sure that obj is also a Point, so we can cast it to Point.

○ Such cast allows more attributes/methods to be called upon
(Point) obj at L5.89 of 147

OOP: Equality (5.1)
Exercise: Persons are equal if names and measures are equal.
1 class Person {
2 String firstName; String lastName; double weight; double height;

3 boolean equals (Object obj) {

4 if(this == obj) { return true }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName) } }

Q: At L5, will we get NullPointerException if obj is Null?
A: No ∵ Short-Circuit Effect of ||

obj is null, then obj == null evaluates to true
⇒ no need to evaluate the RHS

The left operand obj == null acts as a guard constraint for
the right operand this.getClass() != obj.getClass().

90 of 147

OOP: Equality (5.2)
Exercise: Persons are equal if names and measures are equal.

1 class Person {
2 String firstName; String lastName; double weight; double height;

3 boolean equals (Object obj) {

4 if(this == obj) { return true }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName) } }

Q: At L5, if swapping the order of two operands of disjunction:
this.getClass() != obj.getClass() || obj == null

Will we get NullPointerException if obj is Null?
A: Yes ∵ Evaluation of operands is from left to right.

91 of 147

OOP: Equality (5.3)
Exercise: Persons are equal if names and measures are equal.

1 class Person {
2 String firstName; String lastName; double weight; double height;

3 boolean equals (Object obj) {

4 if(this == obj) { return true }
5 if(obj == null || this.getClass() != obj.getClass()) {
6 return false; }
7 Person other = (Person) obj;
8 return
9 this.weight == other.weight && this.height == other.height

10 && this.firstName. equals (other.firstName)

11 && this.lastName. equals (other.lastName) } }

L10 & L11 call equals method defined in the String class.
When defining equals method for your own class, reuse
equals methods defined in other classes wherever possible.

92 of 147

OOP: Equality (6)
Two notions of equality for variables of reference types:

● Reference Equality : use == to compare addresses

● Object Equality : define equals method to compare contents

1 Point p1 = new Point(3, 4);
2 Point p2 = new Point(3, 4);
3 Point p3 = new Point(4, 5);
4 System.out.println(p1 == p1); /* true */
5 System.out.println(p1.equals(p1)); /* true */
6 System.out.println(p1 == p2); /* false */
7 System.out.println(p1.equals(p2)); /* true */
8 System.out.println(p2 == p3); /* false */
9 System.out.println(p2.equals(p3)); /* false */

● Being reference-equal implies being object-equal
● Being object-equal does not imply being reference-equal
93 of 147

Hashing: What is a Map?
● A map (a.k.a. table or dictionary) stores a collection of entries.

key

value
Map

entry

ENTRY

(SEARCH) KEY VALUE

1 D
25 C
3 F
14 Z
6 A
39 C
7 Q

● Each entry is a pair: a value and its (search) key .

● Each search key :
○ Uniquely identifies an object in the map
○ Should be used to efficiently retrieve the associated value

● Search keys must be unique (i.e., do not contain duplicates).
94 of 147

Hashing: Arrays are Maps
● Each array entry is a pair: an object and its numerical index.

e.g., say String[] a = {"A", "B", "C"} , how many entries?
3 entries: (0, "A") , (1, "B") , (2, "C")

● Search keys are the set of numerical index values.
● The set of index values are unique [e.g., 0 .. (a.length − 1)]
● Given a valid index value i , we can

○ Uniquely determines where the object is [(i + 1)th item]
○ Efficiently retrieves that object [a[i] ≈ fast memory access]

● Maps in general may have non-numerical key values:
○ Student ID [student record]
○ Social Security Number [resident record]
○ Passport Number [citizen record]
○ Residential Address [household record]
○ Media Access Control (MAC) Address [PC/Laptop record]
○ Web URL [web page]

. . .
95 of 147

Hashing: Naive Implementation of Map

● Problem: Support the construction of this simple map:

ENTRY

(SEARCH) KEY VALUE

1 D
25 C
3 F
14 Z
6 A
39 C
7 Q

Let’s just assume that the maximum map capacity is 100.
● Naive Solution:

Let’s understand the expected runtime structures before seeing
the Java code!

96 of 147

Hashing: Naive Implementation of Map (0)

After executing ArrayedMap m = new ArrayedMap() :

● Attribute m.entries initialized as an array of 100 null slots.
● Attribute m.noe is 0, meaning:

○ Current number of entries stored in the map is 0.
○ Index for storing the next new entry is 0.

ArrayedMap

m
entries null

0

null

1
m.entries

null

2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

0noe

noe

97 of 147

Hashing: Naive Implementation of Map (1)
After executing m.put(new Entry(1, "D")) :

● Attribute m.entries has 99 null slots.
● Attribute m.noe is 1, meaning:

○ Current number of entries stored in the map is 1.
○ Index for storing the next new entry is 1.

ArrayedMap

m
entries

0

null

1
m.entries

1

Entry

key

“D”value

null

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0]

null

99

1noe

noe

98 of 147

Hashing: Naive Implementation of Map (2)
After executing m.put(new Entry(25, "C")) :

● Attribute m.entries has 98 null slots.
● Attribute m.noe is 2, meaning:

○ Current number of entries stored in the map is 2.
○ Index for storing the next new entry is 2.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

1

Entry

key

“D”value

null

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1]

null

99

2noe

noe

99 of 147

Hashing: Naive Implementation of Map (3)
After executing m.put(new Entry(3, "F")) :

● Attribute m.entries has 97 null slots.
● Attribute m.noe is 3, meaning:

○ Current number of entries stored in the map is 3.
○ Index for storing the next new entry is 3.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

1

Entry

key

“D”value

2

null

3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2]

null

99

3noe

noe

100 of 147

Hashing: Naive Implementation of Map (4)
After executing m.put(new Entry(14, "Z")) :

● Attribute m.entries has 96 null slots.
● Attribute m.noe is 4, meaning:

○ Current number of entries stored in the map is 4.
○ Index for storing the next new entry is 4.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

2 3

null

4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3]

null

99

4noe

noe

101 of 147

Hashing: Naive Implementation of Map (5)
After executing m.put(new Entry(6, "A")) :

● Attribute m.entries has 95 null slots.
● Attribute m.noe is 5, meaning:

○ Current number of entries stored in the map is 5.
○ Index for storing the next new entry is 5.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

2 3 4

null

5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4]

null

99

5noe

noe

102 of 147

Hashing: Naive Implementation of Map (6)
After executing m.put(new Entry(39, "C")) :

● Attribute m.entries has 94 null slots.
● Attribute m.noe is 6, meaning:

○ Current number of entries stored in the map is 6.
○ Index for storing the next new entry is 6.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

39

Entry

key

“C”value

2 3 4 5

null

6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4] m.entries[5]

null

99

6noe

noe

103 of 147

Hashing: Naive Implementation of Map (7)

After executing m.put(new Entry(7, "Q")) :

● Attribute m.entries has 93 null slots.
● Attribute m.noe is 7, meaning:

○ Current number of entries stored in the map is 7.
○ Index for storing the next new entry is 7.

ArrayedMap

m
entries

0 1

25

Entry

key

“C”value

m.entries

3

Entry

key

“F”value

14

Entry

key

“Z”value

1

Entry

key

“D”value

6

Entry

key

“A”value

39

Entry

key

“C”value

7

Entry

key

“Q”value

2 3 4 5 6

null

7

null

…

m.entries[0] m.entries[1] m.entries[2] m.entries[3] m.entries[4] m.entries[5] m.entries[6]

null

99

7noe

noe

104 of 147

Hashing: Naive Implementation of Map (8.1)

public class Entry {
private int key;
private String value;

public Entry(int key, String value) {
this.key = key;
this.value = value;

}
/* Getters and Setters for key and value */

}

105 of 147

Hashing: Naive Implementation of Map (8.2)

public class ArrayedMap {
private final int MAX_CAPCAITY = 100;
private Entry[] entries;
private int noe; /* number of entries */
public ArrayedMap() {
entries = new Entry[MAX_CAPCAITY];
noe = 0;

}
public int size() {
return noe;

}
public void put(int key, String value) {
Entry e = new Entry(key, value);
entries[noe] = e;
noe ++;

}

Required Reading: Point and PointCollector
106 of 147

Hashing: Naive Implementation of Map (8.3)
@Test
public void testArrayedMap() {
ArrayedMap m = new ArrayedMap();
assertTrue(m.size() == 0);
m.put(1, "D");
m.put(25, "C");
m.put(3, "F");
m.put(14, "Z");
m.put(6, "A");
m.put(39, "C");
m.put(7, "Q");
assertTrue(m.size() == 7);
/* inquiries of existing key */
assertTrue(m.get(1).equals("D"));
assertTrue(m.get(7).equals("Q"));
/* inquiry of non-existing key */
assertTrue(m.get(31) == null);

}

107 of 147

Hashing: Naive Implementation of Map (8.4)
public class ArrayedMap {
private final int MAX_CAPCAITY = 100;

public String getValue (int key) {

for(int i = 0; i < noe; i ++) {
Entry e = entries[i];
int k = e.getKey();
if(k == key) { return e.getValue(); }

}
return null;

}

Say entries is: {(1, D), (25, C), (3, F), (14, Z), (6, A), (39, C), (7, Q), null, . . .}
○ How efficient is m.get(1)? [1 iteration]
○ How efficient is m.get(7)? [7 iterations]
○ If m is full, worst case of m.get(k)? [100 iterations]
○ If m with 106 entries, worst case of m.get(k)? [106 iterations]
⇒ get’s worst-case performance is linear on size of m.entries!

A much faster (and correct) solution is possible!
108 of 147

Hashing: Hash Table (1)

0 …

A[hc(k)]

hc(k) … A.length - 1

A

k
hashing

● Given a (numerical or non-numerical) search key k :
○ Apply a function hc so that hc(k) returns an integer.

● We call hc(k) the hash code of key k .

● Value of hc(k) denotes a valid index of some array A.
○ Rather than searching through array A, go directly to A[hc(k)] to

get the associated value.
● Both computations are fast:

○ Converting k to hc(k)
○ Indexing into A[hc(k)]

109 of 147

Hashing: Hash Table as a Bucket Array (2)
For illustration, assume A.length is 10 and hc(k) = k%11.

hc(k) = k%11 (SEARCH) KEY VALUE

1 1 D
3 25 C
3 3 F
3 14 Z
6 6 A
6 39 C
7 7 Q

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

● Collision: unequal keys have same hash code (e.g., 25, 3, 14)
⇒ Unavoidable as number of entries ↑, but a good hash
function should have sizes of the buckets uniformly distributed.

110 of 147

Hashing: Contract of Hash Function

● Principle of defining a hash function hc:

k1.equals(k2)⇒ hc(k1) == hc(k2)

Equal keys always have the same hash code.
● Equivalently, according to contrapositive:

hc(k1) ≠ hc(k2)⇒ ¬k1.equals(k2)

Different hash codes must be generated from unequal keys.

inconsistent hashCode and equals
111 of 147

Hashing: Defining Hash Function in Java (1)
The Object class (common super class of all classes) has the
method for redefining the hash function for your own class:
public class IntegerKey {
private int k;
public IntegerKey(int k) { this.k = k; }
@Override
public int hashCode() { return k % 11; }
@Override
public boolean equals(Object obj) {
if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
IntegerKey other = (IntegerKey) obj;
return this.k == other.k;

} }

Q: Can we define equals as return this.hashCode ==
other.hashCode()? [No ∵ Collision; see contract of equals]

112 of 147

Hashing: Defining Hash Function in Java (2)

@Test
public void testCustomizedHashFunction() {
IntegerKey ik1 = new IntegerKey(1);
/* 1 % 11 == 1 */
assertTrue(ik1.hashCode() == 1);

IntegerKey ik39_1 = new IntegerKey(39);
/* 39 % 11 == 3 */
assertTrue(ik39_1.hashCode() == 6);

IntegerKey ik39_2 = new IntegerKey(39);
assertTrue(ik39_1.equals(ik39_2));
assertTrue(ik39_1.hashCode() == ik39_2.hashCode());

}

113 of 147

Hashing: Using Hash Table in Java

@Test
public void testHashTable() {
Hashtable<IntegerKey, String> table = new Hashtable<>();
IntegerKey k1 = new IntegerKey(39);
IntegerKey k2 = new IntegerKey(39);
assertTrue(k1.equals(k2));
assertTrue(k1.hashCode() == k2.hashCode());
table.put(k1, "D");
assertTrue(table.get(k2).equals("D"));

}

114 of 147

Hashing: Defining Hash Function in Java (3)

● When you are given instructions as to how the hashCode
method of a class should be defined, override it manually.

● Otherwise, use Eclipse to generate the equals and hashCode
methods for you.
○ Right click on the class.
○ Select Source.
○ Select Generate hashCode() and equals().
○ Select the relevant attributes that will be used to compute the hash

value.

115 of 147

Hashing: Defining Hash Function in Java (4.1)

Caveat : Always make sure that the hashCode and equals
are redefined/overridden to work together consistently.
e.g., Consider an alternative version of the IntegerKey class:
public class IntegerKey {
private int k;
public IntegerKey(int k) { this.k = k; }
/* hashCode() inherited from Object NOT overridden. */
@Override
public boolean equals(Object obj) {
if(this == obj) { return true; }
if(obj == null) { return false; }
if(this.getClass() != obj.getClass()) { return false; }
IntegerKey other = (IntegerKey) obj;
return this.k == other.k;

} }

Problem? [Hint: Contract of hashCode()]
116 of 147

Hashing: Defining Hash Function in Java (4.2)
1 @Test
2 public void testDefaultHashFunction() {
3 IntegerKey ik39_1 = new IntegerKey(39);
4 IntegerKey ik39_2 = new IntegerKey(39);
5 assertTrue(ik39_1.equals(ik39_2));
6 assertTrue(ik39_1.hashCode() != ik39_2.hashCode()); }
7 @Test
8 public void testHashTable() {
9 Hashtable<IntegerKey, String> table = new Hashtable<>();

10 IntegerKey k1 = new IntegerKey(39);
11 IntegerKey k2 = new IntegerKey(39);
12 assertTrue(k1.equals(k2));
13 assertTrue(k1.hashCode() != k2.hashCode());
14 table.put(k1, "D");

15 assertTrue(table.get(k2) == null); }

L3, 4, 11, 12: Default version of hashCode, inherited from
Object, returns a distinct integer for every new object, despite
its contents. [Fix : Override hashCode of your classes!]

117 of 147

Why Ordering Between Objects? (1)

Each employee has their numerical id and salary.
e.g., (alan, 2, 4500.34), (mark , 3, 3450.67), (tom, 1, 3450.67)

● Problem: To facilitate an annual review on their statuses, we
want to arrange them so that ones with smaller id’s come
before ones with larger id’s.s

e.g., ⟨tom,alan,mark⟩
● Even better, arrange them so that ones with larger salaries

come first; only compare id’s for employees with equal salaries.
e.g., ⟨alan, tom,mark⟩

● Solution :
○ Define ordering of Employee objects.

[Comparable interface, compareTo method]
○ Use the library method Arrays.sort.

118 of 147

Why Ordering Between Objects? (2)
class Employee {
int id; double salary;
Employee(int id) { this.id = id; }
void setSalary(double salary) { this.salary = salary; } }

1 @Test
2 public void testUncomparableEmployees() {
3 Employee alan = new Employee(2);
4 Employee mark = new Employee(3);
5 Employee tom = new Employee(1);
6 Employee[] es = {alan, mark, tom};

7 Arrays.sort(es);

8 Employee[] expected = {tom, alan, mark};
9 assertArrayEquals(expected, es); }

L8 triggers a java.lang.ClassCastException:
Employee cannot be cast to java.lang.Comparable
∵ Arrays.sort expects an array whose element type defines
a precise ordering of its instances/objects.

119 of 147

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#sort-java.lang.Object:A-

Defining Ordering Between Objects (1.1)

class CEmployee1 implements Comparable <CEmployee1> {

. . . /* attributes, constructor, mutator similar to Employee */
@Override
public int compareTo(CEmployee1 e) { return this.id - e.id; }

}

● Given two CEmployee1 objects ce1 and ce2:
○ ce1.compareTo(ce2) > 0 [ce1 “is greater than” ce2]
○ ce1.compareTo(ce2) == 0 [ce1 “is equal to” ce2]
○ ce1.compareTo(ce2) < 0 [ce1 “is smaller than” ce2]

● Say ces is an array of CEmployee1 (CEmployee1[] ces),
calling Arrays.sort(ces) re-arranges ces, so that:

ces[0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CEmployee1 object

≤ ces[1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CEmployee1 object

≤ . . . ≤ ces[ces.length - 1]
´¹¹¹¸¹¹¶

CEmployee1 object

120 of 147

Defining Ordering Between Objects (1.2)
@Test
public void testComparableEmployees_1() {
/*
* CEmployee1 implements the Comparable interface.

* Method compareTo compares id’s only.

*/
CEmployee1 alan = new CEmployee1(2);
CEmployee1 mark = new CEmployee1(3);
CEmployee1 tom = new CEmployee1(1);
alan.setSalary(4500.34);
mark.setSalary(3450.67);
tom.setSalary(3450.67);
CEmployee1[] es = {alan, mark, tom};
/* When comparing employees,

* their salaries are irrelevant.

*/

Arrays.sort(es);

CEmployee1[] expected = {tom, alan, mark};
assertArrayEquals(expected, es);

}

121 of 147

Defining Ordering Between Objects (2.1)
Let’s now make the comparison more sophisticated:
● Employees with higher salaries come before those with lower salaries.
● When two employees have same salary, whoever with lower id comes first.

1 class CEmployee2 implements Comparable <CEmployee2> {

2 . . . /* attributes, constructor, mutator similar to Employee */
3 @Override
4 public int compareTo(CEmployee2 other) {
5 int salaryDiff = Double.compare(this.salary, other.salary);
6 int idDiff = this.id - other.id;
7 if(salaryDiff != 0) { return - salaryDiff; }
8 else { return idDiff; } } }

● L5: Double.compare(d1, d2) returns
- (d1 < d2), 0 (d1 == d2), or + (d1 > d2).

● L7: Why inverting the sign of salaryDiff?
○ this.salary > other .salary ⇒ Double.compare(this.salary ,other .salary) > 0
○ But we should consider employee with higher salary as “smaller”.
∵ We want that employee to come before the other one!

122 of 147

https://docs.oracle.com/javase/8/docs/api/java/lang/Double.html#compare-double-double-

Defining Ordering Between Objects (2.2)

Alternatively, we can use extra if statements to express the logic
more clearly.

1 class CEmployee2 implements Comparable <CEmployee2> {

2 . . . /* attributes, constructor, mutator similar to Employee */
3 @Override
4 public int compareTo(CEmployee2 other) {
5 if(this.salary > other.salary) {
6 return -1;
7 }
8 else if (this.salary < other.salary) {
9 return 1;

10 }
11 else { /* equal salaries */
12 return this.id - other.id;
13 }
14 }

123 of 147

Defining Ordering Between Objects (2.3)

1 @Test
2 public void testComparableEmployees_2() {
3 /*
4 * CEmployee2 implements the Comparable interface.
5 * Method compareTo first compares salaries, then
6 * compares id’s for employees with equal salaries.
7 */
8 CEmployee2 alan = new CEmployee2(2);
9 CEmployee2 mark = new CEmployee2(3);

10 CEmployee2 tom = new CEmployee2(1);
11 alan.setSalary(4500.34);
12 mark.setSalary(3450.67);
13 tom.setSalary(3450.67);
14 CEmployee2[] es = {alan, mark, tom};

15 Arrays.sort(es);

16 CEmployee2[] expected = {alan, tom, mark};
17 assertArrayEquals(expected, es);
18 }

124 of 147

Defining Ordering Between Objects (3)
When you have your class C implement the interface
Comparable<C>, you should design the compareTo method,
such that given objects c1, c2, c3 of type C:
● Asymmetric :

¬(c1.compareTo(c2) < 0 ∧ c2.compareTo(c1) < 0)
¬(c1.compareTo(c2) > 0 ∧ c2.compareTo(c1) > 0)

∴ We don’t have c1 < c2 and c2 < c1 at the same time!
● Transitive :

c1.compareTo(c2) < 0 ∧ c2.compareTo(c3) < 0 ⇒ c1.compareTo(c3) < 0
c1.compareTo(c2) > 0 ∧ c2.compareTo(c3) > 0 ⇒ c1.compareTo(c3) > 0

∴ We have c1 < c2 ∧ c2 < c3⇒ c1 < c3
Q. How would you define the compareTo method for the
Player class of a rock-paper-scissor game? [Hint: Transitivity]

125 of 147

Static Variables (1)

class Account {
int id;
String owner;
Account(int id, String owner) {
this.id = id;
this.owner = owner;

}
}

class AccountTester {
Account acc1 = new Account(1, "Jim");
Account acc2 = new Account(2, "Jeremy");
System.out.println(acc1.id != acc2.id);

}

But, managing the unique id’s manually is error-prone !
126 of 147

Static Variables (2)
class Account {

static int globalCounter = 1;

int id; String owner;
Account(String owner) {

this.id = globalCounter ; globalCounter ++;

this.owner = owner; } }

class AccountTester {
Account acc1 = new Account("Jim");
Account acc2 = new Account("Jeremy");
System.out.println(acc1.id != acc2.id); }

● Each instance of a class (e.g., acc1, acc2) has a local copy of
each attribute or instance variable (e.g., id).
○ Changing acc1.id does not affect acc2.id.

● A static variable (e.g., globalCounter) belongs to the class.
○ All instances of the class share a single copy of the static variable.
○ Change to globalCounter via c1 is also visible to c2.

127 of 147

Static Variables (3)
class Account {

static int globalCounter = 1;

int id; String owner;
Account(String owner) {

this.id = globalCounter ;

globalCounter ++;

this.owner = owner;
} }

● Static variable globalCounter is not instance-specific like
instance variable (i.e., attribute) id is.

● To access a static variable:
○ No context object is needed.
○ Use of the class name suffices, e.g., Account.globalCounter.

● Each time Account’s constructor is called to create a new
instance, the increment effect is visible to all existing objects
of Account.

128 of 147

Static Variables (4.1): Common Error
class Client {
Account[] accounts;

static int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;

} }

class ClientTester {
Client bill = new Client("Bill");
Client steve = new Client("Steve");
Account acc1 = new Account();
Account acc2 = new Account();
bill.addAccount(acc1);
/* correctly added to bill.accounts[0] */

steve.addAccount(acc2);
/* mistakenly added to steve.accounts[1]! */

}
129 of 147

Static Variables (4.2): Common Error

● Attribute numberOfAccounts should not be declared as
static as its value should be specific to the client object.

● If it were declared as static, then every time the
addAccount method is called, although on different objects,
the increment effect of numberOfAccounts will be visible to
all Client objects.

● Here is the correct version:
class Client {
Account[] accounts;
int numberOfAccounts = 0;
void addAccount(Account acc) {
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;

}
}

130 of 147

Static Variables (5.1): Common Error

1 public class Bank {
2 public string branchName;
3 public static int nextAccountNumber = 1;
4 public static void useAccountNumber() {
5 System.out.println (branchName + . . .);
6 nextAccountNumber ++;
7 }
8 }

● Non-static method cannot be referenced from a static context
● Line 4 declares that we can call the method
userAccountNumber without instantiating an object of the
class Bank.

● However, in Lined 5, the static method references a non-static
attribute, for which we must instantiate a Bank object.

131 of 147

Static Variables (5.2): Common Error
1 public class Bank {
2 public string branchName;
3 public static int nextAccountNumber = 1;
4 public static void useAccountNumber() {
5 System.out.println (branchName + . . .);
6 nextAccountNumber ++;
7 }
8 }

● To call useAccountNumber(), no instances of Bank are
required:

Bank .useAccountNumber();

● Contradictorily , to access branchName, a context object is
required:
Bank b1 = new Bank(); b1.setBranch("Songdo IBK");

System.out.println(b1 .branchName);

132 of 147

Static Variables (5.3): Common Error

There are two possible ways to fix:
1. Remove all uses of non-static variables (i.e., branchName) in

the static method (i.e., useAccountNumber).
2. Declare branchName as a static variable.

○ This does not make sense.
∵ branchName should be a value specific to each Bank instance.

133 of 147

OOP: Helper Methods (1)
● After you complete and test your program, feeling confident that

it is correct , you may find that there are lots of repetitions.
● When similar fragments of code appear in your program, we

say that your code “smells”!
● We may eliminate repetitions of your code by:

○ Factoring out recurring code fragments into a new method.

○ This new method is called a helper method :
● You can replace every occurrence of the recurring code fragment by a

call to this helper method, with appropriate argument values.
● That is, we reuse the body implementation, rather than repeating it

over and over again, of this helper method via calls to it.

● This process is called refactoring of your code:
Modify the code structure without compromising correctness.

134 of 147

OOP: Helper (Accessor) Methods (2.1)

class PersonCollector {
Person[] ps;
final int MAX = 100; /* max # of persons to be stored */
int nop; /* number of persons */
PersonCollector() {
ps = new Person[MAX];

}
void addPerson(Person p) {
ps[nop] = p;
nop++;

}
/* Tasks:

* 1. An accessor: boolean personExists(String n)

* 2. A mutator: void changeWeightOf(String n, double w)

* 3. A mutator: void changeHeightOf(String n, double h)

*/
}

135 of 147

OOP: Helper (Accessor) Methods (2.2.1)
class PersonCollector {
/* ps, MAX, nop, PersonCollector(), addPerson */
boolean personExists(String n) {
boolean found = false;
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { found = true; } }

return found;
}
void changeWeightOf(String n, double w) {
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { ps[i].setWeight(w); } }

}
void changeHeightOf(String n, double h) {
for(int i = 0; i < nop; i ++) {
if(ps[i].name.equals(n)) { ps[i].setHeight(h); } }

}
}

136 of 147

OOP: Helper (Accessor) Methods (2.2.2)
class PersonCollector { /* code smells: repetitions! */

/* ps, MAX, nop, PersonCollector(), addPerson */

boolean personExists(String n) {

boolean found = false;

for(int i = 0; i < nop; i ++) {

if(ps[i].name.equals(n)) { found = true; } }

return found;
}

void changeWeightOf(String n , double w) {

for(int i = 0; i < nop; i ++) {

if(ps[i].name.equals(n)) { ps[i] .setWeight(w); } }

}

void changeHeightOf(String n , double h) {

for(int i = 0; i < nop; i ++) {

if(ps[i].name.equals(n)) { ps[i] .setHeight(h); } }

}
}137 of 147

OOP: Helper (Accessor) Methods (2.3)
class PersonCollector { /* Eliminate code smell. */
/* ps, MAX, nop, PersonCollector(), addPerson */

int indexOf (String n) { /* Helper Methods */

int i = -1;
for(int j = 0; j < nop; j ++) {
if(ps[j].name.equals(n)) { i = j; }

}
return i; /* -1 if not found; >= 0 if found. */

}

boolean personExists(String n) { return indexOf (n) >= 0; }
void changeWeightOf(String n, double w) {

int i = indexOf (n); if(i >= 0) { ps[i].setWeight(w); }
}
void changeHeightOf(String n, double h) {

int i = indexOf (n); if(i >= 0) { ps[i].setHeight(h); }
}

}

138 of 147

OOP: Helper (Accessor) Methods (3.1)

Problems:
● A Point class with x and y coordinate values.
● Accessor double getDistanceFromOrigin().
p.getDistanceFromOrigin() returns the distance
between p and (0, 0).

● Accessor double getDistancesTo(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, and between p and p2.

● Accessor double getTriDistances(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, between p and p2, and between p1 and p2.

139 of 147

OOP: Helper (Accessor) Methods (3.2)
class Point {
double x; double y;
double getDistanceFromOrigin() {
return Math.sqrt(Math.pow(x - 0, 2) + Math.pow(y - 0, 2)); }

double getDistancesTo(Point p1, Point p2) {
return
Math.sqrt(Math.pow(x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(x - p2.x, 2), Math.pow(y - p2.y, 2)); }

double getTriDistances(Point p1, Point p2) {
return
Math.sqrt(Math.pow(x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(x - p2.x, 2) + Math.pow(y - p2.y, 2))
+
Math.sqrt(Math.pow(p1.x - p2.x, 2)

+
Math.pow(p1.y - p2.y, 2));

} }
140 of 147

OOP: Helper (Accessor) Methods (3.3)

● The code pattern

Math.sqrt(Math.pow(. . . - . . ., 2) + Math.pow(. . . - . . ., 2))

is written down explicitly every time we need to use it.
● Create a helper method out of it, with the right parameter and

return types:

double getDistanceFrom(double otherX, double otherY) {
return
Math.sqrt(Math.pow(ohterX - this.x, 2)
+
Math.pow(otherY - this.y, 2));

}

141 of 147

OOP: Helper (Accessor) Methods (3.4)
class Point {
double x; double y;
double getDistanceFrom(double otherX, double otherY) {
return Math.sqrt(Math.pow(ohterX - this.x, 2) +

Math.pow(otherY - this.y, 2));
}
double getDistanceFromOrigin() {
return this.getDistanceFrom(0, 0);

}
double getDistancesTo(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y);
}
double getTriDistances(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y) +
p1.getDistanceFrom(p2.x, p2.y)

} }

142 of 147

OOP: Helper (Mutator) Methods (4.1)

class Student {
String name;
double balance;
Student(String n, double b) {
name = n;
balance = b;

}

/* Tasks:

* 1. A mutator void receiveScholarship(double val)

* 2. A mutator void payLibraryOverdue(double val)

* 3. A mutator void payCafeCoupons(double val)

* 4. A mutator void transfer(Student other, double val)

*/
}

143 of 147

OOP: Helper (Mutator) Methods (4.2.1)

class Student {
/* name, balance, Student(String n, double b) */
void receiveScholarship(double val) {
balance = balance + val;

}
void payLibraryOverdue(double val) {
balance = balance - val;

}
void payCafeCoupons(double val) {
balance = balance - val;

}
void transfer(Student other, double val) {
balance = balance - val;
other.balance = other.balance + val;

}
}

144 of 147

OOP: Helper (Mutator) Methods (4.2.2)

class Student { /* code smells: repetitions! */

/* name, balance, Student(String n, double b) */
void receiveScholarship(double val) {

balance = balance + val;
}
void payLibraryOverdue(double val) {

balance = balance − val;
}
void payCafeCoupons(double val) {

balance = balance − val;
}
void transfer(Student other, double val) {

balance = balance − val;

balance = other.balance + val;
}

}

145 of 147

OOP: Helper (Mutator) Methods (4.3)

class Student { /* Eliminate code smell. */
/* name, balance, Student(String n, double b) */

void deposit (double val) { /* Helper Method */

balance = balance + val;
}

void withdraw (double val) { /* Helper Method */

balance = balance - val;
}

void receiveScholarship(double val) { this. deposit (val); }

void payLibraryOverdue(double val) { this. withdraw (val); }

void payCafeCoupons(double val) { this. withdraw (val) }
void transfer(Student other, double val) {

this. withdraw (val);

other. deposit (val);

}
}

146 of 147

Index (1)
Separation of Concerns: App vs. Model
Object Orientation:
Observe, Model, and Execute
Object-Oriented Programming (OOP)
OO Thinking: Templates vs. Instances (1.1)
OO Thinking: Templates vs. Instances (1.2)
OO Thinking: Templates vs. Instances (2.1)
OO Thinking: Templates vs. Instances (2.2)
OO Thinking: Templates vs. Instances (3)
OOP: Classes ≈ Templates
OOP:
Define Constructors for Creating Objects (1.1)
OOP:
Define Constructors for Creating Objects (1.2)
The this Reference (1)
147 of 147

Index (2)
The this Reference (2)
The this Reference (3)
The this Reference (4)
The this Reference (5)
The this Reference (6.1): Common Error
The this Reference (6.2): Common Error
OOP:
Define Constructors for Creating Objects (2.1)
OOP:
Define Constructors for Creating Objects (2.2)
OOP: Methods (1.1)
OOP: Methods (1.2)
OOP: Methods (2)
OOP: Methods (3)
148 of 147

Index (3)
OOP: The Dot Notation (1)
OOP: The Dot Notation (2)
OOP: Method Calls
OOP: Class Constructors (1)
OOP: Class Constructors (2)
OOP: Class Constructors (3)
OOP: Class Constructors (4)
OOP: Object Creation (1)
OOP: Object Creation (2)
OOP: Object Creation (3)
OOP: Object Creation (4)
OOP: Object Creation (5)
OOP: Object Creation (6)
OOP: Mutator Methods
149 of 147

Index (4)
OOP: Accessor Methods
OOP: Use of Mutator vs. Accessor Methods
OOP: Method Parameters
The this Reference (7.1): Exercise
The this Reference (7.2): Exercise
Java Data Types (1)
Java Data Types (2)
Java Data Types (3.1)
Java Data Types (3.2.1)
Java Data Types (3.2.2)
Java Data Types (3.3.1)
Java Data Types (3.3.2)
OOP: Object Alias (1)
OOP: Object Alias (2.1)
150 of 147

Index (5)
OOP: Object Alias (2.2)
Call by Value vs. Call by Reference (1)
Call by Value vs. Call by Reference (2.1)
Call by Value vs. Call by Reference (2.2.1)
Call by Value vs. Call by Reference (2.2.2)
Call by Value vs. Call by Reference (2.3.1)
Call by Value vs. Call by Reference (2.3.2)
Call by Value vs. Call by Reference (2.4.1)
Call by Value vs. Call by Reference (2.4.2)
Aggregation vs. Composition: Terminology
Aggregation: Independent Containees
Shared by Containers (1.1)
Aggregation: Independent Containees
Shared by Containers (1.2)
151 of 147

Index (6)
Aggregation: Independent Containees
Shared by Containers (2.1)
Aggregation: Independent Containees
Shared by Containers (2.2)
OOP: The Dot Notation (3.1)
OOP: The Dot Notation (3.2)
OOP: The Dot Notation (3.3)
OOP: The Dot Notation (3.4)
Composition: Dependent Containees
Owned by Containers (1.1)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
152 of 147

Index (7)
Composition: Dependent Containees
Owned by Containers (1.3)
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)
Composition: Dependent Containees
Owned by Containers (1.5.1)
Composition: Dependent Containees
Owned by Containers (1.5.2)
Composition: Dependent Containees
Owned by Containers (1.6)
Aggregation vs. Composition (1)
Aggregation vs. Composition (2)
OOP: Equality (1)
153 of 147

Index (8)
OOP: Equality (2)
OOP: Equality (3)
OOP: Contract of equals
OOP: Equality (4.1)
OOP: Equality (4.2)
OOP: Equality (4.3)
OOP: Equality (5.1)
OOP: Equality (5.2)
OOP: Equality (5.3)
OOP: Equality (6)
Hashing: What is a Map?
Hashing: Arrays are Maps
Hashing: Naive Implementation of Map
Hashing: Naive Implementation of Map (0)
154 of 147

Index (9)
Hashing: Naive Implementation of Map (1)
Hashing: Naive Implementation of Map (2)
Hashing: Naive Implementation of Map (3)
Hashing: Naive Implementation of Map (4)
Hashing: Naive Implementation of Map (5)
Hashing: Naive Implementation of Map (6)
Hashing: Naive Implementation of Map (7)
Hashing: Naive Implementation of Map (8.1)
Hashing: Naive Implementation of Map (8.2)
Hashing: Naive Implementation of Map (8.3)
Hashing: Naive Implementation of Map (8.4)
Hashing: Hash Table (1)
Hashing: Hash Table as a Bucket Array (2)
Hashing: Contract of Hash Function
155 of 147

Index (10)
Hashing: Defining Hash Function in Java (1)
Hashing: Defining Hash Function in Java (2)
Hashing: Using Hash Table in Java
Hashing: Defining Hash Function in Java (3)
Hashing: Defining Hash Function in Java (4.1)
Hashing: Defining Hash Function in Java (4.2)
Why Ordering Between Objects? (1)
Why Ordering Between Objects? (2)
Defining Ordering Between Objects (1.1)
Defining Ordering Between Objects (1.2)
Defining Ordering Between Objects (2.1)
Defining Ordering Between Objects (2.2)
Defining Ordering Between Objects (2.3)
Defining Ordering Between Objects (3)
156 of 147

Index (11)
Static Variables (1)
Static Variables (2)
Static Variables (3)
Static Variables (4.1): Common Error
Static Variables (4.2): Common Error
Static Variables (5.1): Common Error
Static Variables (5.2): Common Error
Static Variables (5.3): Common Error
OOP: Helper Methods (1)
OOP: Helper (Accessor) Methods (2.1)
OOP: Helper (Accessor) Methods (2.2.1)
OOP: Helper (Accessor) Methods (2.2.2)
OOP: Helper (Accessor) Methods (2.3)
OOP: Helper (Accessor) Methods (3.1)
157 of 147

Index (12)
OOP: Helper (Accessor) Methods (3.2)

OOP: Helper (Accessor) Methods (3.3)

OOP: Helper (Accessor) Methods (3.4)

OOP: Helper (Mutator) Methods (4.1)

OOP: Helper (Mutator) Methods (4.2.1)

OOP: Helper (Mutator) Methods (4.2.2)

OOP: Helper (Mutator) Methods (4.3)

158 of 147

	Separation of Concerns: App vs. Model
	Object Orientation: Observe, Model, and Execute
	Object-Oriented Programming (OOP)
	OO Thinking: Templates vs. Instances (1.1)
	OO Thinking: Templates vs. Instances (1.2)
	OO Thinking: Templates vs. Instances (2.1)
	OO Thinking: Templates vs. Instances (2.2)
	OO Thinking: Templates vs. Instances (3)
	OOP: Classes Templates
	OOP: Define Constructors for Creating Objects (1.1)
	OOP: Define Constructors for Creating Objects (1.2)
	The this Reference (1)
	The this Reference (2)
	The this Reference (3)
	The this Reference (4)
	The this Reference (5)
	The this Reference (6.1): Common Error
	The this Reference (6.2): Common Error
	OOP: Define Constructors for Creating Objects (2.1)
	OOP: Define Constructors for Creating Objects (2.2)
	OOP: Methods (1.1)
	OOP: Methods (1.2)
	OOP: Methods (2)
	OOP: Methods (3)
	OOP: The Dot Notation (1)
	OOP: The Dot Notation (2)
	OOP: Method Calls
	OOP: Class Constructors (1)
	OOP: Class Constructors (2)
	OOP: Class Constructors (3)
	OOP: Class Constructors (4)
	OOP: Object Creation (1)
	OOP: Object Creation (2)
	OOP: Object Creation (3)
	OOP: Object Creation (4)
	OOP: Object Creation (5)
	OOP: Object Creation (6)
	OOP: Mutator Methods
	OOP: Accessor Methods
	OOP: Use of Mutator vs. Accessor Methods
	OOP: Method Parameters
	The this Reference (7.1): Exercise
	The this Reference (7.2): Exercise
	Java Data Types (1)
	Java Data Types (2)
	Java Data Types (3.1)
	Java Data Types (3.2.1)
	Java Data Types (3.2.2)
	Java Data Types (3.3.1)
	Java Data Types (3.3.2)
	OOP: Object Alias (1)
	OOP: Object Alias (2.1)
	OOP: Object Alias (2.2)
	Call by Value vs. Call by Reference (1)
	Call by Value vs. Call by Reference (2.1)
	Call by Value vs. Call by Reference (2.2.1)
	Call by Value vs. Call by Reference (2.2.2)
	Call by Value vs. Call by Reference (2.3.1)
	Call by Value vs. Call by Reference (2.3.2)
	Call by Value vs. Call by Reference (2.4.1)
	Call by Value vs. Call by Reference (2.4.2)
	Aggregation vs. Composition: Terminology
	Aggregation: Independent Containees Shared by Containers (1.1)
	Aggregation: Independent Containees Shared by Containers (1.2)
	Aggregation: Independent Containees Shared by Containers (2.1)
	Aggregation: Independent Containees Shared by Containers (2.2)
	OOP: The Dot Notation (3.1)
	OOP: The Dot Notation (3.2)
	OOP: The Dot Notation (3.3)
	OOP: The Dot Notation (3.4)
	Composition: Dependent Containees Owned by Containers (1.1)
	Composition: Dependent Containees Owned by Containers (1.2.1)
	Composition: Dependent Containees Owned by Containers (1.2.2)
	Composition: Dependent Containees Owned by Containers (1.3)
	Composition: Dependent Containees Owned by Containers (1.4.1)
	Composition: Dependent Containees Owned by Containers (1.4.2)
	Composition: Dependent Containees Owned by Containers (1.5.1)
	Composition: Dependent Containees Owned by Containers (1.5.2)
	Composition: Dependent Containees Owned by Containers (1.6)
	Aggregation vs. Composition (1)
	Aggregation vs. Composition (2)
	OOP: Equality (1)
	OOP: Equality (2)
	OOP: Equality (3)
	OOP: Contract of equals
	OOP: Equality (4.1)
	OOP: Equality (4.2)
	OOP: Equality (4.3)
	OOP: Equality (5.1)
	OOP: Equality (5.2)
	OOP: Equality (5.3)
	OOP: Equality (6)
	Hashing: What is a Map?
	Hashing: Arrays are Maps
	Hashing: Naive Implementation of Map
	Hashing: Naive Implementation of Map (0)
	Hashing: Naive Implementation of Map (1)
	Hashing: Naive Implementation of Map (2)
	Hashing: Naive Implementation of Map (3)
	Hashing: Naive Implementation of Map (4)
	Hashing: Naive Implementation of Map (5)
	Hashing: Naive Implementation of Map (6)
	Hashing: Naive Implementation of Map (7)
	Hashing: Naive Implementation of Map (8.1)
	Hashing: Naive Implementation of Map (8.2)
	Hashing: Naive Implementation of Map (8.3)
	Hashing: Naive Implementation of Map (8.4)
	Hashing: Hash Table (1)
	Hashing: Hash Table as a Bucket Array (2)
	Hashing: Contract of Hash Function
	Hashing: Defining Hash Function in Java (1)
	Hashing: Defining Hash Function in Java (2)
	Hashing: Using Hash Table in Java
	Hashing: Defining Hash Function in Java (3)
	Hashing: Defining Hash Function in Java (4.1)
	Hashing: Defining Hash Function in Java (4.2)
	Why Ordering Between Objects? (1)
	Why Ordering Between Objects? (2)
	Defining Ordering Between Objects (1.1)
	Defining Ordering Between Objects (1.2)
	Defining Ordering Between Objects (2.1)
	Defining Ordering Between Objects (2.2)
	Defining Ordering Between Objects (2.3)
	Defining Ordering Between Objects (3)
	Static Variables (1)
	Static Variables (2)
	Static Variables (3)
	Static Variables (4.1): Common Error
	Static Variables (4.2): Common Error
	Static Variables (5.1): Common Error
	Static Variables (5.2): Common Error
	Static Variables (5.3): Common Error
	OOP: Helper Methods (1)
	OOP: Helper (Accessor) Methods (2.1)
	OOP: Helper (Accessor) Methods (2.2.1)
	OOP: Helper (Accessor) Methods (2.2.2)
	OOP: Helper (Accessor) Methods (2.3)
	OOP: Helper (Accessor) Methods (3.1)
	OOP: Helper (Accessor) Methods (3.2)
	OOP: Helper (Accessor) Methods (3.3)
	OOP: Helper (Accessor) Methods (3.4)
	OOP: Helper (Mutator) Methods (4.1)
	OOP: Helper (Mutator) Methods (4.2.1)
	OOP: Helper (Mutator) Methods (4.2.2)
	OOP: Helper (Mutator) Methods (4.3)

