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A Simple Counter (1)

Consider a utility class (where attributes and methods are
static) for keeping track of an integer counter value:

public class Counter {
public final static int MAX_COUNTER_VALUE = 3;
public final static int MIN_COUNTER_VALUE = 0;
public static int value = MIN_COUNTER_VALUE;
. . . /* more code later! */

○ When attempting to access the static attribute value outside the
Counter class, write Counter.value.

○ Two constants (i.e., final) for lower and upper bounds of the
counter value.

○ Initialize the counter value to its lower bound.
○ Requirement :

The counter value must be between its lower and upper bounds.
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Encode Precondition Violation
as IllegalArgumentException

Consider two possible scenarios of Precondition Violations (i.e.,
scenarios of throwing IllegalArgumentException):

● When the counter value is attempted (but not yet) to be
updated above its upper bound.

● When the counter value is attempted (but not yet) to be
updated below its upper bound.
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A Simple Counter (2)

public static void increment() {

if( value == Counter.MAX COUNTER VALUE ) {
/* Precondition Violation */
throw new IllegalArgumentException("Too large to increment");

}
else { value ++; }

}
public static void decrement() {

if( value == Counter.MIN COUNTER VALUE ) {
/* Precondition Violation */
throw new IllegalArgumentException("Too small to decrement");

}
else { value --; }

}

○ Change the counter value via two mutator methods.
○ Changes on the counter value may violate a precondition:
● Attempt to increment when counter value reaches its maximum.
● Attempt to decrement when counter value reaches its minimum.
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Testing the Counter Class from Console:
Test Case 1

Consider a class for testing the Counter class:
public class CounterTester1 {
public static void main(String[] args) {
System.out.println("Init val: " + Counter.value);
System.out.println("Attempt to decrement:");
/* Right before calling the decrement mutator,

* Counter.value is 0 and too small to be decremented.

*/
Counter.decrement();

}
}

Executing it as Java Application gives this Console Output:
Init val: 0
Attempt to decrement:
Exception in thread "main"
java.lang.IllegalArgumentException: Too small to decrement
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Testing the Counter Class from Console:
Test Case 2

Consider another class for testing the Counter class:
public class CounterTester2 {
public static void main(String[] args) {
Counter.increment(); Counter.increment(); Counter.increment();
System.out.println("Current val: " + Counter.value);
System.out.println("Attempt to increment:");
/* Right before calling the increment mutator,

* Counter.value is 3 and too large to be incremented.

*/
Counter.increment();

}
}

Executing it as Java Application gives this Console Output:
Current val: 3
Attempt to increment:
Exception in thread "main"
java.lang.IllegalArgumentException: Too large to increment
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Limitations of Testing from the Console
● Do Test Cases 1 & 2 suffice to test Counter’s correctness?

○ Is it plausible to claim that the implementation of Counter is
correct because it passes the two test cases?

● What other test cases can you think of?
Counter.value Counter.increment() Counter.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

● So in total we need 8 test cases.
⇒ 6 more separate CounterTester classes to create!

● Problems? It is inconvenient to:
○ Run each TC by executing main of a CounterTester and

comparing console outputs with your eyes.
○ Re-run manually all TCs whenever Counter is changed.

Principle: Any change introduced to your software must not
compromise its established correctness.
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Why JUnit?

● Automate the testing of correctness of your Java classes.
● Once you derive the list of tests, translate it into a JUnit test

case, which is just a Java class that you can execute upon.
● JUnit tests are helpful clients of your classes, where each test

may:
○ Either attempt to use a method in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected

○ Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
● Success if precondition violation

(i.e., IllegalArgumentException) occurs.
● Failure if precondition violation

(i.e., IllegalArgumentException) does not occur.
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How to Use JUnit: Packages

Step 1:
○ In Eclipse, create a Java project
ExampleTestingUtilityClasses

○ Separation of concerns :
● Group classes for implementation (i.e., Counter)

into package implementation.
● Group classes classes for testing (to be created)

into package tests.
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How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.
⇒ If you have n Java classes to test , create n JUnit test cases.
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How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.
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How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.
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How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.

○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .
⇒When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.

○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.
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How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

○
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How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○
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How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.
● The result of running a test is considered:

○ Failure if either
● an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) occurs; or

● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.

○ Success if neither assertion failures nor unexpected exceptions
occur.

● After running all tests:
○ A green bar means that all tests succeed.
⇒ Keep challenging yourself if more tests may be added.

○ A red bar means that at least one test fails.
⇒ Keep fixing the class under test and re-runing all tests, until you
receive a green bar.

● Question: What is the easiest way to making test a success?
Answer: Delete the call fail("Not yet implemented").
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How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.
⇒ Neither assertion failures nor exceptions will occur.
⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.
∴ We will receive a green bar!
Caution: test which passes at the moment is not useful at all!
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How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○
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How to Use JUnit: Adding More Tests (1)
● Recall the complete list of cases for testing Counter:

c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

● Let’s turn the two cases in the 1st row into two JUnit tests:
○ Test for left cell succeeds if:
● No failures and exceptions occur; and
● The new counter value is 1.

○ Test for right cell succeeds if the expected precondition violation
occurs (IllegalArgumentException is thrown).

● Common JUnit assertion methods (complete list in next slide):
○ void assertNull(Object o)
○ void assertEquals(expected, actual)
○ void assertTrue(boolean condition)
○ void fail(String message)

19 of 29



How to Use JUnit: Assertion Methods
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How to Use JUnit: Adding More Tests (2.1)
1 @Test
2 public void testIncAfterCreation() {
3 /* Assert that initial value of counter is correct. */
4 assertEquals(Counter.MIN_COUNTER_VALUE, Counter.value);
5 /* Attempt to increment the counter value,
6 * which is expected to succeed.
7 */
8 Counter.increment();
9 /* Assert that the updated counter value is correct. */

10 assertEquals(1, Counter.value);
11 }

● L4: Alternatively, you can write:
assertTrue(Counter.MIN_COUNTER_VALUE == Counter.value);

● L10: Alternatively, you can write:
assertTrue(1 == Counter.value);
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How to Use JUnit: Adding More Tests (2.2)

● Don’t lose the big picture!
● The JUnit test in the previous slide automates the following

console tester which requires interaction with the external user:

public class CounterTester1 {
public static void main(String[] args) {
System.out.println("Init val: " + Counter.value);
System.out.println("Attempt to decrement:");
/* Right before calling the decrement mutator,

* Counter.value is 0 and too small to be decremented.

*/
Counter.decrement();

}
}

● Automation is exactly rationale behind using JUnit!
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How to Use JUnit: Adding More Tests (3.1)
1 @Test
2 public void testDecAfterCreation() {
3 assertTrue(Counter.MIN_COUNTER_VALUE == Counter.value);
4 try {
5 Counter.decrement();
6 /* Reaching this line means
7 * IllegalArgumentException not thrown! */
8 fail("Expected Precondition Violation Did Not Occur!");
9 }

10 catch(IllegalArgumentException e) {
11 /* Precondition Violated Occurred as Expected. */
12 } }

○ Lines 4 & 10: We need a try-catch block because of Line 5.
● Method decrement from class Counter is expected to throw the
IllegalArgumentException because of a precondition violation .

○ Lines 3 & 8 are both assertions:
● Lines 3 asserts that Counter.value returns the expected value

(Counter.MIN COUNTER VALUE).
● Line 8: an assertion failure
∵ expected IllegalArgumentException not thrown23 of 29



How to Use JUnit: Adding More Tests (3.2)

● Again, don’t lose the big picture!
● The JUnit test in the previous slide automates the following

console tester which requires interaction with the external user:

public class CounterTester2 {
public static void main(String[] args) {
Counter.increment(); Counter.increment(); Counter.increment();
System.out.println("Current val: " + Counter.value);
System.out.println("Attempt to increment:");
/* Right before calling the increment mutator,

* Counter.value is 3 and too large to be incremented.

*/
Counter.increment();

}
}

● Again, automation is exactly rationale behind using JUnit!
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Exercises

1. Convert the rest of the cells into JUnit tests:
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

2. Run all 8 tests and make sure you receive a green bar.
3. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.
○ Re-run all 8 tests and you should receive a red bar. [ Why? ]
○ Undo the error injection, and re-run all 8 tests. [ What happens? ]
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Regression Testing

JUnit 
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as 
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.
● Red bar reported: Fix the class under test (CUT) until green bar.
● Green bar reported: Add more tests and Fix CUT when necessary.26 of 29



Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml
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