
Unit and Regression Testing using JUnit

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


A Simple Counter (1)

Consider a utility class (where attributes and methods are
static) for keeping track of an integer counter value:

public class Counter {
public final static int MAX_COUNTER_VALUE = 3;
public final static int MIN_COUNTER_VALUE = 0;
public static int value = MIN_COUNTER_VALUE;
. . . /* more code later! */

○ When attempting to access the static attribute value outside the
Counter class, write Counter.value.

○ Two constants (i.e., final) for lower and upper bounds of the
counter value.

○ Initialize the counter value to its lower bound.
○ Requirement :

The counter value must be between its lower and upper bounds.

2 of 29



Encode Precondition Violation
as IllegalArgumentException

Consider two possible scenarios of Precondition Violations (i.e.,
scenarios of throwing IllegalArgumentException):

● When the counter value is attempted (but not yet) to be
updated above its upper bound.

● When the counter value is attempted (but not yet) to be
updated below its upper bound.

3 of 29



A Simple Counter (2)

public static void increment() {

if( value == Counter.MAX COUNTER VALUE ) {
/* Precondition Violation */
throw new IllegalArgumentException("Too large to increment");

}
else { value ++; }

}
public static void decrement() {

if( value == Counter.MIN COUNTER VALUE ) {
/* Precondition Violation */
throw new IllegalArgumentException("Too small to decrement");

}
else { value --; }

}

○ Change the counter value via two mutator methods.
○ Changes on the counter value may violate a precondition:
● Attempt to increment when counter value reaches its maximum.
● Attempt to decrement when counter value reaches its minimum.

4 of 29



Testing the Counter Class from Console:
Test Case 1

Consider a class for testing the Counter class:
public class CounterTester1 {
public static void main(String[] args) {
System.out.println("Init val: " + Counter.value);
System.out.println("Attempt to decrement:");
/* Right before calling the decrement mutator,

* Counter.value is 0 and too small to be decremented.

*/
Counter.decrement();

}
}

Executing it as Java Application gives this Console Output:
Init val: 0
Attempt to decrement:
Exception in thread "main"
java.lang.IllegalArgumentException: Too small to decrement

5 of 29



Testing the Counter Class from Console:
Test Case 2

Consider another class for testing the Counter class:
public class CounterTester2 {
public static void main(String[] args) {
Counter.increment(); Counter.increment(); Counter.increment();
System.out.println("Current val: " + Counter.value);
System.out.println("Attempt to increment:");
/* Right before calling the increment mutator,

* Counter.value is 3 and too large to be incremented.

*/
Counter.increment();

}
}

Executing it as Java Application gives this Console Output:
Current val: 3
Attempt to increment:
Exception in thread "main"
java.lang.IllegalArgumentException: Too large to increment

6 of 29



Limitations of Testing from the Console
● Do Test Cases 1 & 2 suffice to test Counter’s correctness?

○ Is it plausible to claim that the implementation of Counter is
correct because it passes the two test cases?

● What other test cases can you think of?
Counter.value Counter.increment() Counter.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

● So in total we need 8 test cases.
⇒ 6 more separate CounterTester classes to create!

● Problems? It is inconvenient to:
○ Run each TC by executing main of a CounterTester and

comparing console outputs with your eyes.
○ Re-run manually all TCs whenever Counter is changed.

Principle: Any change introduced to your software must not
compromise its established correctness.

7 of 29



Why JUnit?

● Automate the testing of correctness of your Java classes.
● Once you derive the list of tests, translate it into a JUnit test

case, which is just a Java class that you can execute upon.
● JUnit tests are helpful clients of your classes, where each test

may:
○ Either attempt to use a method in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected

○ Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
● Success if precondition violation

(i.e., IllegalArgumentException) occurs.
● Failure if precondition violation

(i.e., IllegalArgumentException) does not occur.

8 of 29



How to Use JUnit: Packages

Step 1:
○ In Eclipse, create a Java project
ExampleTestingUtilityClasses

○ Separation of concerns :
● Group classes for implementation (i.e., Counter)

into package implementation.
● Group classes classes for testing (to be created)

into package tests.

9 of 29



How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.
⇒ If you have n Java classes to test , create n JUnit test cases.

10 of 29



How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

11 of 29



How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

12 of 29



How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.

○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .
⇒When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.

○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.

13 of 29



How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

○
14 of 29



How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○

15 of 29



How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.
● The result of running a test is considered:

○ Failure if either
● an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) occurs; or

● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.

○ Success if neither assertion failures nor unexpected exceptions
occur.

● After running all tests:
○ A green bar means that all tests succeed.
⇒ Keep challenging yourself if more tests may be added.

○ A red bar means that at least one test fails.
⇒ Keep fixing the class under test and re-runing all tests, until you
receive a green bar.

● Question: What is the easiest way to making test a success?
Answer: Delete the call fail("Not yet implemented").

16 of 29



How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.
⇒ Neither assertion failures nor exceptions will occur.
⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.
∴ We will receive a green bar!
Caution: test which passes at the moment is not useful at all!

17 of 29



How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○

18 of 29



How to Use JUnit: Adding More Tests (1)
● Recall the complete list of cases for testing Counter:

c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

● Let’s turn the two cases in the 1st row into two JUnit tests:
○ Test for left cell succeeds if:
● No failures and exceptions occur; and
● The new counter value is 1.

○ Test for right cell succeeds if the expected precondition violation
occurs (IllegalArgumentException is thrown).

● Common JUnit assertion methods (complete list in next slide):
○ void assertNull(Object o)
○ void assertEquals(expected, actual)
○ void assertTrue(boolean condition)
○ void fail(String message)

19 of 29



How to Use JUnit: Assertion Methods

20 of 29



How to Use JUnit: Adding More Tests (2.1)
1 @Test
2 public void testIncAfterCreation() {
3 /* Assert that initial value of counter is correct. */
4 assertEquals(Counter.MIN_COUNTER_VALUE, Counter.value);
5 /* Attempt to increment the counter value,
6 * which is expected to succeed.
7 */
8 Counter.increment();
9 /* Assert that the updated counter value is correct. */

10 assertEquals(1, Counter.value);
11 }

● L4: Alternatively, you can write:
assertTrue(Counter.MIN_COUNTER_VALUE == Counter.value);

● L10: Alternatively, you can write:
assertTrue(1 == Counter.value);

21 of 29



How to Use JUnit: Adding More Tests (2.2)

● Don’t lose the big picture!
● The JUnit test in the previous slide automates the following

console tester which requires interaction with the external user:

public class CounterTester1 {
public static void main(String[] args) {
System.out.println("Init val: " + Counter.value);
System.out.println("Attempt to decrement:");
/* Right before calling the decrement mutator,

* Counter.value is 0 and too small to be decremented.

*/
Counter.decrement();

}
}

● Automation is exactly rationale behind using JUnit!

22 of 29



How to Use JUnit: Adding More Tests (3.1)
1 @Test
2 public void testDecAfterCreation() {
3 assertTrue(Counter.MIN_COUNTER_VALUE == Counter.value);
4 try {
5 Counter.decrement();
6 /* Reaching this line means
7 * IllegalArgumentException not thrown! */
8 fail("Expected Precondition Violation Did Not Occur!");
9 }

10 catch(IllegalArgumentException e) {
11 /* Precondition Violated Occurred as Expected. */
12 } }

○ Lines 4 & 10: We need a try-catch block because of Line 5.
● Method decrement from class Counter is expected to throw the
IllegalArgumentException because of a precondition violation .

○ Lines 3 & 8 are both assertions:
● Lines 3 asserts that Counter.value returns the expected value

(Counter.MIN COUNTER VALUE).
● Line 8: an assertion failure
∵ expected IllegalArgumentException not thrown23 of 29



How to Use JUnit: Adding More Tests (3.2)

● Again, don’t lose the big picture!
● The JUnit test in the previous slide automates the following

console tester which requires interaction with the external user:

public class CounterTester2 {
public static void main(String[] args) {
Counter.increment(); Counter.increment(); Counter.increment();
System.out.println("Current val: " + Counter.value);
System.out.println("Attempt to increment:");
/* Right before calling the increment mutator,

* Counter.value is 3 and too large to be incremented.

*/
Counter.increment();

}
}

● Again, automation is exactly rationale behind using JUnit!

24 of 29



Exercises

1. Convert the rest of the cells into JUnit tests:
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

2. Run all 8 tests and make sure you receive a green bar.
3. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.
○ Re-run all 8 tests and you should receive a red bar. [ Why? ]
○ Undo the error injection, and re-run all 8 tests. [ What happens? ]

25 of 29



Regression Testing

JUnit 
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as 
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.
● Red bar reported: Fix the class under test (CUT) until green bar.
● Green bar reported: Add more tests and Fix CUT when necessary.26 of 29



Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml

27 of 29

http://junit.org/junit4/
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml


Index (1)
A Simple Counter (1)
Encode Precondition Violation
as IllegalArgumentException
A Simple Counter (2)
Testing the Counter Class from Console:
Test Case 1
Testing the Counter Class from Console:
Test Case 2
Limitations of Testing from the Console
Why JUnit?
How to Use JUnit: Packages
How to Use JUnit: New JUnit Test Case (1)
How to Use JUnit: New JUnit Test Case (2)
How to Use JUnit: Adding JUnit Library
How to Use JUnit: Generated Test Case

28 of 29



Index (2)
How to Use JUnit: Running Test Case
How to Use JUnit: Generating Test Report
How to Use JUnit: Interpreting Test Report
How to Use JUnit: Revising Test Case
How to Use JUnit: Re-Running Test Case
How to Use JUnit: Adding More Tests (1)
How to Use JUnit: Assertion Methods
How to Use JUnit: Adding More Tests (2.1)
How to Use JUnit: Adding More Tests (2.2)
How to Use JUnit: Adding More Tests (3.1)
How to Use JUnit: Adding More Tests (3.2)
Exercises
Regression Testing
Resources

29 of 29


	A Simple Counter (1)
	Encode Precondition Violation as IllegalArgumentException
	A Simple Counter (2)
	Testing the Counter Class from Console: Test Case 1
	Testing the Counter Class from Console: Test Case 2
	Limitations of Testing from the Console
	Why JUnit?
	How to Use JUnit: Packages
	How to Use JUnit: New JUnit Test Case (1)
	How to Use JUnit: New JUnit Test Case (2)
	How to Use JUnit: Adding JUnit Library
	How to Use JUnit: Generated Test Case
	How to Use JUnit: Running Test Case
	How to Use JUnit: Generating Test Report
	How to Use JUnit: Interpreting Test Report
	How to Use JUnit: Revising Test Case
	How to Use JUnit: Re-Running Test Case
	How to Use JUnit: Adding More Tests (1)
	How to Use JUnit: Assertion Methods
	How to Use JUnit: Adding More Tests (2.1)
	How to Use JUnit: Adding More Tests (2.2)
	How to Use JUnit: Adding More Tests (3.1)
	How to Use JUnit: Adding More Tests (3.2)
	Exercises
	Regression Testing
	Resources

