Unit and Regression Testing using JUnit

EECS2030: Advanced
Object Oriented Programming

YORKQI

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

A Simple Counter (1)

|

SSONDE

Consider a utility class (where attributes and methods are
static) for keeping track of an integer counter value:

public class Counter {
public final static int MAX COUNTER_VALUE = 3;
public final static int MIN_COUNTER_VALUE = 0;
public static int value = MIN_COUNTER_VALUE;

* more code later! x/

o When attempting to access the static attribute value outside the
Counter class, write Counter.value.

o Two constants (i.e., f£inal) for lower and upper bounds of the
counter value.

o Initialize the counter value to its lower bound.

o | Requirement|:

The counter value must be between its lower and upper bounds.

Encode Precondition Violation
as IllegalArgumentException

Consider two possible scenarios of Precondition Violations (i.e.,
scenarios of throwing I1legalArgumentException):

¢ When the counter value is attempted (but not yet) to be
updated above its upper bound.

¢ When the counter value is attempted (but not yet) to be
updated below its upper bound.

/|

SSONDE

A Simple Counter (2)
’public static void increment () {
if (value == Counter.MAX_COUNTER.VALUE)
1% on */
throw new IllegalArgumentExceptlon("Too large to increment");

ks

{

/+ Precondition

}

{

{

}

else { value ++

public static void decrement ()
if (value == Counter MIALCOUNTER VALUE)

atior

throw new IllegalArgumentExceptlon("Too small to decrement");

}

/+ Precondition

}

}

else { value --;
}

o Change the counter value via two mutator methods
o Changes on the counter value may violate a precondition:
o Attempt to increment when counter value reaches its maximum.
o Attempt to decrement when counter value reaches its minimum.
4.ai29
e

/|

Testing the Counter Class from Console: ..o

Test Case 1

Consider a class for testing the Counter class:

public class CounterTesterl {
public static void main(Stringl[]
System.out.println("Init val:
System.out.println("

efore de

Counter.decrement () ;
}
}

args)
" + Counter.value);
'"Attempt to decrement:");

{

Executing it as Java Application gives this Console Output:

Init val: O

Attempt to decrement:

Exception in thread "main"
java.lang.IllegalArgumentException:

Too small to decrement

a.0f29

/|

Testing the Counter Class from Console: ssono:
Test Case 2

Consider another class for testing the Counter class:

public class CounterTester2 {

public static void main(String[] args) {
Counter.increment (); Counter.increment (); Counter.increment () ;
System.out.println("Current val: " + Counter.value);
System.out.println("Attempt to increment:");
'* Right before calling the increment ator

Counter.increment () ;
}
}

Executing it as Java Application gives this Console Output:

Current val: 3

Attempt to increment:

Exception in thread "main"
java.lang.IllegalArgumentException: Too large to increment

fof29

/|

Limitations of Testing from the Console isono:

=

e Do Test Cases 1 & 2 suffice to test Counter’s correctness?
o lIs it plausible to claim that the implementation of Counter is
correct because it passes the two test cases?
e What other test cases can you think of?

Counter.value H Counter.increment () [Counter.decrement ()
0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooBig 2

e So in total we need 8 test cases.
= 6 more separate CounterTester classes to create!
e Problems? It is inconvenient to:
o Run each TC by executing main of a CounterTester and
comparing console outputs with your eyes.
o Re-run manually all TCs whenever Counter is changed.
Principle: Any change introduced to your software must not
compromise its established correctness.

e

-
Why JUnit?

e Automate the testing of correctness of your Java classes.

* Once you derive the list of tests, translate it into a JUnit test
case, which is just a Java class that you can execute upon.

|

SSONDE

o JUnit tests are helpful clients of your classes, where each test
may:
o Either attempt to use a method in a legal way (i.e., satisfying its
precondition), and report:
e Success if the result is as expected
e Failure if the result is not as expected
o Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
e Success if precondition violation
(i.e., I1legalArgumentException) OCCUrS.
e Failure if precondition violation
(i.e., I1legalArgumentException) does not occur.

8029

ks

R
How to Use JUnit: Packages "'éésésom

Step 1:
o In Eclipse, create a Java project
ExampleTestingUtilityClasses

Separation of concerns :
e Group classes for implementation (i.e., Counter)

(o)
into package implementation.
o Group classes classes for festing (to be created)

into package tests.
v TD‘J ExampleTestingUtilityClasses

b =i\ JRE System Library [JavaSE-1.8]

v (P src
v £ implementation

» [J] Counter.java
H tests
e

S
How to Use JUnit: New JUnit Test Case (1)

Step 2: Create a new JUnit Test Case in tests package.

¥ [ExampleTestingUtilityClasses
» &\ JRE System Library [JavaSE-1.8]
v (B src
v £ implementation
» [J] Counter.java

SSONDE

ks

i New » 22 Java Project

o i

Open in New Window [Project...

Open Type Hierarchy F4 # Package

Show In N8W » @ Class

[Copy 8C @ Interface

E5 Copy Qualified Name @ Enum

(& Paste %v | @ Annotation

% Delete ®| 9 Source Folder
48 Java Working Set

Remove from Context % Folder

Build Path > < File

Source A= [£ Untitled Text File

Refactor X&®8T >

(7 Task

2 Import... JUnit Test Case

Create one JUnit Test Case to test one Java class only.
= If you have n Java classes to test, create n JUnit test cases.

e

How to Use JUnit: New JUnit Test Case (2) issono:

Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

[] o New JUnit Test Case
JUnit Test Case
Select the name of the new JUnit test case. You have the options to specify E
the class under test and on the next page, to select methods to be tested. L=l
New Junit 3 test| © New Junit 4 test
Source folder: | ExampleTestingUtilityClasses/src Browse...
Package: tests Browse...

Name:

.Object Browse.

Superclass: I

Which method stubs would you like to create?
setUpBeforeClass() tearDownAfterClass()
setUp() tearDown()

Do you want to add comments? (Configure templates and default value here)

‘ Generate comments

Class under test: Browse...

® Cancel @ [
e

S
How to Use JUnit: Adding JUnit Library Jcowe

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

[] [] New JUnit Test Case

1 JUnit 4 is not on the build path. Do you want to add it?

Not now
Open the build path property page

° Perform the following action:

=\ Add JUnit 4 library to the build path

Cancel @

/|

ks

How to Use JUnit: Generated Test Case

[J] TestCounter.java 82

1 package tests;
2=import static org.junit.Assert.*;
3 import org.junit.Test;
4 public class TestCounter {
5 @Test
6
7
8

SSONDE

| public void testQ) {
fail("Not yet implemented™);
3
9%
o Lines 6 — 8: test is just an ordinary mutator method that has a
one-line implementation body.
o Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test.
= When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.
o Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.

How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

ASSONDE

| Ty

¥ (=2 ExampleTestingUtilityClasses New >
» mi\ JRE System Library [JavaSE-1.8]
v (P src Open F3
> £ implementation Open With »
v ffi tests Open Type Hierarchy Fa
S I o
»> &\ JUnit 4
[Copy %C
E5 Copy Qualified Name
[Paste 8V
& Delete ®
Remove from Context
Build Path >
Source X3S >
Refactor X®8T »
g Import...
£ Export...
References >
Declarations » 1 [console 52

Ition] /Library/Java/JavaVirtualMachines/jdk 1.
«" Refresh F5

Assign Working Sets...

Coverage As >

Run As » 1 JUnit Te XBXT

/|

S
How to Use JUnit: Generating Test Report "'éésésom

A report is generated after running all tests (i.e., methods

ks

oz " =
5F Outline (m]
. v

prepended with @Test) in TestCounter.

[# Package Explor | giu JUnit 5%
O 4oaddEE QR
Finished after 0.032 seconds
Runs: 1/1 B Errors: O B Failures: 1
¥ Fii] tests.TestCounter [Runner: JUnit 4] (0.003 s)
3 test (0.003 s)

= Fai -L
= Failure Trace a5
J; java.lang.AssertionError: Not yet implemented
i IE = at tests.TestCounter.test(TestCounter.java:11)

/|

|

How to Use JUnit: Interpreting Test Report

» A test is a method prepended with the @Test tag.
e The result of running a test is considered:
o Failure if either
e an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) OCCUrS; or
e an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) is thrown.
o Success if neither assertion failures nor unexpected exceptions
occur.
e After running all tests:
o A green bar means that all tests succeed.
= Keep challenging yourself if more tests may be added.
o A red bar means that at least one test fails.
= Keep fixing the class under test and re-runing all tests, until you
receive a green batr.

¢ Question: What is the easiest way to making test a success?

Answer: Delete the call fail ("Not yet implemented").
16.0f29

SSONDE

/|

|

How to Use JUnit: Revising Test Case

1J] TestCounter.java 3%
package tests;
import static org.junit.Assert.*;
import org.junit.Test;
public class TestCounter {
@Test
public void test() {
// fail("Not yet implemented");
1

SSONDE

[

NoOUVhAE WwN

0 oo

}

Now, the body of test simply does nothing.
= Neither assertion failures nor exceptions will occur.
= The execution of test will be considered as a success.

-+ There is currently only one test in TestCounter.

.. We will receive a green bar!

Caution: test which passes at the moment is not useful at all!
izat29

|

How to Use JUnit: Re-Running Test Case

A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

[£ Package Explor gfu JUnit 82 |G= Outlne = O

e L1EE @ EHy ¥
Finished after 0.017 seconds

SSONDE

Runs: 1/1 B Errors: O B Failures: 0

¥ Fj-]tests.TestCounter [Runner: JUnit 4] (0.000 s)
el test (0.000)

= S
= Failure Trace o4

| Sl

S
How to Use JUnit: Adding More Tests (1) P

» Recall the complete list of cases for testing Counter:
c.getValue()\\c.increment() \c.decrement()
ValueTooSmall
0

1
2

1

2

0
1
3
ValueTooBig

2
3
e Let’s turn the two cases in the 1st row into two JUnit tests:

o Test for left cell succeeds if:
o No failures and exceptions occur; and
¢ The new counter value is 1.
o Test for right cell succeeds if the expected precondition violation
occurs (I1legalArgumentException is thrown).
e Common JUnit assertion methods (complete list in next slide):

o void assertNull (Object o)
o void assertEquals (expected, actual)
o void assertTrue (boolean condition)
o void fail (String message)
19.0f29
e

. = 3
How to Use JUnit: Assertion Methods LAssoNDE
method name / parameters description
assertTrue (fest) . Causes this test method to fail if the given boolean
assertTrue("message", test) N
test is not true.
tFalse (fest) - P 3
:::Z:mzlzz(”ms“ﬂ"' test) Cause§ this test method to fail if the given boolean
test is not false.
assertEquals (expectedValue, value) 5 5 5 5
aSserthanals - message" , expectedValue, value) Causes this test method to fail if the g'lVeItl two values
are not equal to each other. (For objects, it uses the
equals method to compare them.) The first of the two
values is considered to be the result that you expect;
the second is the actual result produced by the class
under test.
assertNotEquals (valuel, value2) 3 3 3 3
SertNotEauals (" message-, valuel, value) Causes this test method to fail 1:F the gwen two values
are equal to each other. (For objects, it uses the
equals method to compare them.)
assertNull(value) Causes this test method to fail if the given value is
assertNull("message", value)
not nuii.
assertNotNull (value) 5 5 3 3 ;
SecertNOtNull, “mesbage”, value) Causes this test method to fail if the given value is
null.
assertSame (expectedValue, value) o 5
assertoame (" message’ , expectedvalue, value) Identical to assertrquals ar?d assertNotEquals respectively,
assertNotSame (valuel, value2) except that for objects, it uses the == operator rather
assertNotSame ("message", valuel, value2) than the equais method to compare them. (The difference
is that two objects that have the same state might be
equals to each other, but not == to each other. An
object is only == to itself.)
fail() - .
fail(message") Causes this test method to fail.

e

/|

How to Use JUnit: Adding More Tests (2.1)

LA!
i

SSONDE
1 | @Test
2 |public void testIncAfterCreation() {
3 /+ Assert that initial value of c r is correct. x/
4 assertEquals(Counter MIN_COUNTER _VALUE, Counter.value);
5 / ¢
6
7
8 Counter.increment () ;
9 /+ Assert that the updated counter value 1is cor t. */
10 assertEquals(l, Counter.value);
11 |}
e L4: Alternatively, you can write:
assertTrue (Counter.MIN_COUNTER_VALUE == Counter.value); ‘

e L10: Alternatively, you can write:

assertTrue (1 == Counter.value); ‘

210t29

How to Use JUnit: Adding More Tests (2.2)

SSONDE

|

e Don't lose the big picture!

* The JUnit test in the previous slide automates the following
console tester which requires interaction with the external user:

public class CounterTesterl {
public static void main(String[] args) {
System.out.println("Init val: " + Counter.value);
System.out.println("Attempt to decrement:");

Counter.decrement () ;
}
}

e Automation is exactly rationale behind using JUnit!

e

/|

How to Use JUnit: Adding More Tests (3.1) iassono:

©CoOoONOOLhAhWN =

@Test

public void testDecAfterCreation() {
assertTrue (Counter.MIN_COUNTER_VALUE == Counter.value);
try {

Counter.decrement () ;

fall("Expected Precondltlon Violation Did Not Occur!");
}
catch(IllegalArgumentException e) {

/#+ Precondition Violated Occurred as Expected. #*/

bl

23.0t.29

o Lines 4 & 10: We need a try-catch block because of Line 5.
¢ Method decrement from class Counter is expected to throw the
IllegalArgumentException because of a precondition violation .
o Lines 3 & 8 are both assertions:
e Lines 3 asserts that Counter.value returns the expected value
(Counter .MIN_COUNTER_VALUE).
e Line 8: an assertion failure
- expected I1legalArgumentException hot thrown

/|

How to Use JUnit: Adding More Tests (3.2)

|

SSONDE

e Again, don’t lose the big picture!

e The JUnit test in the previous slide automates the following
console tester which requires interaction with the external user:

public class CounterTester2 {

public static void main(String[] args) {
Counter.increment (); Counter.increment (); Counter.increment () ;
System.out.println("Current val: " + Counter.value);

System.out.println("Attempt to increment:");

*/

Counter.increment () ;
}
}

e Again, automation is exactly rationale behind using JUnit!

24.0£29

ExerCises hASSONDE

1. Convert the rest of the cells into JUnit tests:

c.getValue()\\c.increment() \c.decrement()
0 1 ValueTooSmall
1 2 0
2 8 1
3 ValueTooBig 2

2. Run all 8 tests and make sure you receive a green bar.
3. Now, introduction an error to the implementation: Change the
line value ++in Counter.increment to —-.

o Re-run all 8 tests and you should receive a red bar. [Why?]
o Undo the error injection, and re-run all 8 tests. [What happens?]

25.0t.29

SSONDE

|

Regression Testing

Jfix the Java class under test

when some test fails

Java Classes
(e.g., Counter)

(re-)run as
Jjunit test case

JUnit Test Case
(e.g., TestCounter)

when all tests pass

add more tests

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
¢ Derive and run tests as soon as your CUD is testable .
i.e., A Java class is testable when defined with method signatures.
e Red bar reported: Fix the class under test (CUT) until green bar.
e Green bar reported: Add more tests and Fix CUT when necessary.

26.0t.29

|

SSONDE

Resources

o Official Site of JUnit 4:
http://dunit.org/junitd/

http://junit.sourceforge.net/javadoc/org/junit/Assert.html

¢ API of JUnit assertions:

e Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cseld3/11wi/

eclipse—tutorial/qjunit.shtml

http://junit.org/junit4/
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml

Index (1) ;ASSONDE
A Simple Counter (1)
Encode Precondition Violation

as IllegalArqumentException
A Simple Counter (2)
Testing the Counter Class from Console:

Jest Case 1

Testing the Counter Class from Console:

Jest Case 2

Limitations of Testing from the Console

Why JUnit?

How to Use JUnit: Packages

How to Use JUnit: New JUnit Test Case (1)

How to Use JUnit: New JUnit Test Case (2)

How to Use JUnit: Adding JUnit Library

Imm.US&.LUnir_Gﬂnﬂl:amd_IesLQase
e

Index (2) ;ASSONDE

How to Use JUnit: Running Test Case
How to Use JUnit: Generating Test Report

How to Use JUnit: Interpreting Test Report
How to Use JUnit: Revising Test Case

How to Use JUnit: Re-Running Test Case
How to Use JUnit: Adding More Tests (1)
How to Use JUnit: A ion Method
How to Use JUnit: Adding More Tests (2.1)
How to Use JUnit: Adding More Tests (2.2)

How to Use JUnit: Adding More Tests (3.1)

How to Use JUnit: Adding More Tests (3.2)
Exercises

Regression Testing

Fgeguicas
e

	A Simple Counter (1)
	Encode Precondition Violation as IllegalArgumentException
	A Simple Counter (2)
	Testing the Counter Class from Console: Test Case 1
	Testing the Counter Class from Console: Test Case 2
	Limitations of Testing from the Console
	Why JUnit?
	How to Use JUnit: Packages
	How to Use JUnit: New JUnit Test Case (1)
	How to Use JUnit: New JUnit Test Case (2)
	How to Use JUnit: Adding JUnit Library
	How to Use JUnit: Generated Test Case
	How to Use JUnit: Running Test Case
	How to Use JUnit: Generating Test Report
	How to Use JUnit: Interpreting Test Report
	How to Use JUnit: Revising Test Case
	How to Use JUnit: Re-Running Test Case
	How to Use JUnit: Adding More Tests (1)
	How to Use JUnit: Assertion Methods
	How to Use JUnit: Adding More Tests (2.1)
	How to Use JUnit: Adding More Tests (2.2)
	How to Use JUnit: Adding More Tests (3.1)
	How to Use JUnit: Adding More Tests (3.2)
	Exercises
	Regression Testing
	Resources

