
Elementary Programming

EECS2030: Advanced
Object Oriented Programming

Fall 2017

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes

• Learn ingredients of elementary programming:
◦ data types [numbers, characters, strings]
◦ literal values
◦ constants
◦ variables
◦ operators [arithmetic, relational]
◦ expressions
◦ input and output

• Given a problem:
◦ First, plan how you would solve it mathematically.
◦ Then, Implement your solution by writing a Java program.

2 of 33

Entry Point of Execution: the “main” Method

For now, all your programming exercises will be defined within the
body of the main method.

public class MyClass {
public static void main(String[] args) {

/* Your programming solution is defined here. */
}

}

The main method is treated by Java as the starting point of
executing your program.

The execution starts with the first line in the main method,
proceed line by line, from top to bottom, until there are no more
lines to execute, then it terminates .

3 of 33

Compile Time vs. Run Time

• Compile time is when you write Java programs in the Eclipse
editor.
◦ Syntax errors: your program does not conform to the grammar of

Java
e.g., missing the semicolon, curly braces, or round parentheses

◦ Type errors: your program manipulates data in a inconsistent way
e.g., computing "SUNY" + 23

• Run time is when you execute/run the main method of some
Java class.
◦ Exceptions: your program crashes and terminates abnormally

e.g., computing 10 / 0, accessing an undefined place in memory
◦ Logical errors: your program terminates normally but does not

behave as expected
e.g., the magic card game program guesses a wrong card!

4 of 33

Literals (1)
A literal is a constant value that appears directly in a program.
1. Character Literals
◦ A single character enclosed within a pair of single quotes
◦ e.g., ‘a’, ‘1’, ‘*’, ‘(’, ‘ ’
◦ It is invalid to write an empty character: ‘’

2. String Literals
◦ A (possibly empty) sequence of characters enclosed within a pair

of double quotes
◦ e.g., ‘‘’’, ‘‘a’’, ‘‘SUNY’’, ‘‘*#@$’’, ‘‘ ’’

3. Integer Literals
◦ A non-empty sequence of numerical digits
◦ e.g., 0, -123, 123, 23943

4. Floating-Point Literals
◦ Specified using a combination of an integral part and a fractional

part, separated by a decimal point, or using the scientific notation
◦ e.g., 0.3334, 12.0, 34.298, 1.23456E+2 (for 1.23456× 102),

1.23456E-2 (for 1.23456× 10−2)
5 of 33

Literals (2)

Q. Outputs of System.out.println(‘a’) versus
System.out.println(‘‘a’’)? [SAME]
Q. Result of comparison ‘‘a’’ == ‘a’? [TYPE ERROR]
◦ Literal ‘‘a’’ is a string (i.e., character sequence) that consists of

a single character.
◦ Literal ‘a’ is a single character .

∴ You cannot compare a character sequence with a character.

6 of 33

Escape Sequences
An escape sequence denotes a single character.
• Specified as a backslash (\) followed by a single character
◦ e.g., \t, \n, \’, \", \\

• Does not mean literally , but means specially to Java compiler
◦ \t means a tab
◦ \n means a new line
◦ \\ means a back slash
◦ \’ means a single quote
◦ \" means a double quote

• May use an escape sequence in a character or string literal:
◦ ‘’’ [INVALID; need to escape ’]
◦ ‘\’’ [VALID]
◦ ‘"’ [VALID; no need to escape "]
◦ ‘‘"’’ [INVALID; need to escape "]
◦ ‘‘\"’’ [VALID]
◦ ‘‘’’’ [VALID; no need to escape ’]
◦ ‘‘\n\t\"’’ [VALID]

7 of 33

Operations
An operation refers to the result of applying an operator to its
operand(s).

1. Numerical Operations [results are numbers]
e.g., 1.1 + 0.34
e.g., 13 / 4
e.g., 13.0 / 4
e.g., 13 % 4
e.g., -45
e.g., -1 * 45

2. Relational Operations [results are true or false]
e.g., 3 <= 4
e.g., 5 < 3
e.g., 56 == 34

3. String Concatenations [results are strings]
e.g., ‘‘SUNY’’ + ‘‘ ’’ + ‘‘Korea’’

8 of 33

Java Data Types
A (data) type denotes a set of related runtime values.

1. Integer Type
byte 8 bits −128, . . . ,−1,0,1, . . . ,27 − 1]
short 16 bits [−215, 215 − 1]
int 32 bits [−231, 231 − 1]
long 64 bits [−263, 263 − 1]

2. Floating-Point Number Type

float 32 bits
double 64 bits

3. Character Type
char: the set of single characters

4. String Type
String: the set of all possible character sequences

9 of 33

Identifiers & Naming Conventions
• Identifiers are names for identifying Java elements: classes,

methods, constants, and variables.
• An identifier:
◦ Is an arbitrarily long sequence of characters: letters, digits,

underscores (), and dollar signs ($).
◦ Must start with a letter, an underscore, or a dollar sign.
◦ Must not start with a digit.
◦ Cannot clash with reserved words (e.g., class, if, for, int).

• Valid ids: $2, Welcome, name, name, SUNY Korea, SUNYKorea
• Invalid ids: 2name, +SUNY, Seoul@Korea
• More conventions:
◦ Class names are compound words, all capitalized:

e.g., Tester, HelloWorld, TicTacToe, MagicCardGame
◦ Variable and method names are like class names, except 1st word

is all lower cases: e.g, main, firstName, averageOfClass
◦ Constant names are underscore-separated upper cases:

e.g., PI, USD IN WON
10 of 33

Named Constants vs. Variables

A named constant or a variable:
• Is an identifier that refers to a placeholder

• Must be declared with its type (of stored value) before use:

final double PI = 3.14159; /* a named constant */
double radius; /* an uninitialized variable */

• Can only store a value that is compatible with its declared type
However, a named constant and a variable are different in that:
• A named constant must be initialized , and cannot change its

stored value.
• A variable may change its stored value as needed.

11 of 33

Expressions (1)
An expression is a composition of operations .
An expression may be:
• Type Correct : for each constituent operation, types of the

operands are compatible with the corresponding operator .
e.g., (1 + 2) * (23 % 5)

e.g., ‘‘Hello ’’ + ‘‘world’’

• Not Type Correct
e.g., ‘‘46’’ % ‘‘4’’
e.g., (‘‘SUNY ’’ + ‘‘Korea’’) * (46 % 4)
◦ ‘‘SUNY’’ and ‘‘Korea’’ are both strings

∴ LHS of * is type correct and is of type String
◦ 46 and 4 are both integers

∴ RHS of % is type correct and is of type int
◦ Types of LHS and RHS of * are not compatible

∴ Overall the expression (i.e., a multiplication) is not type correct
12 of 33

Assignments
An assignment designates a value for a variable, or initializes a
named constant .

That is, an assignment replaces the old value stored in a
placeholder with a new value.

An assignment is done using the assignment operator (=).

An assignment operator has two operands:
• The left operand is called the assignment target

which must be a variable name
• The right operand is called the assignment source

which must be an expression whose type is compatible with the
declared type of assignment target

This is a valid assignment:
String name1 = ‘‘Alan’’;

This is an invalid assignment:
String name1 = (1 + 2) * (23 % 5);

13 of 33

Multiple Executions of Same Print Statement

Executing the same print statement multiple times may or may
not output different messages to the console.
e.g., Print statements involving literals or named constants only:

System.out.println("Pi is " + 3.14);
System.out.println("Pi is " + 3.14);

e.g., Print statements involving literals and variables:

String msg = "Counter value is ";
int counter = 1;
System.out.println(msg + counter);
System.out.println(msg + counter);
counter = 2;
System.out.println(msg + counter);

14 of 33

Case Study 1: Compute the Area of a Circle
Problem: declare two variables radius and area, initialize
radius as 20, compute the value of area accordingly, and print
out the value of area.

public class ComputeArea {
public static void main(String[] args) {

double radius; // Declare radius
double area; // Declare area
/* Assign a radius */
radius = 20; // New value is radius
/* Compute area */
area = radius * radius * 3.14159;
/* Display results */
System.out.print("The area of circle with radius ");
System.out.println(radius + " is " + area);

}
}

15 of 33

Input and Output
Reading input from the console enables user interaction.
import java.util.Scanner;
public class ComputeAreaWithConsoleInput {
public static void main(String[] args) {

/* Create a Scanner object */
Scanner input = new Scanner(System.in);

/* Prompt the user to enter a radius */
System.out.print("Enter a number for radius: ");
double radius = input.nextDouble();

/* Compute area */
double area = radius * radius * 3.14159;

/* Display result */
System.out.println(
"Area for circle of radius " + radius + " is " + area);

}
}16 of 33

Useful Methods for Scanner

• nextInt() which reads an integer value from the keyboard
• nextDouble() which reads a double value from the keyboard
• nextLine() which reads a string value from the keyboard

17 of 33

Variables: Common Mistakes (1)

Mistake: The same variable is declared more than once.

int counter = 1;
int counter = 2;

Fix 1: Assign the new value to the same variable.

int counter = 1;
counter = 2;

Fix 2: Declare a new variable (with a different name).

int counter = 1;
int counter2 = 2;

Which fix to adopt depends on what you need!

18 of 33

Variables: Common Mistakes (2)

Mistake: A variable is used before it is declared.

System.out.println("Counter value is " + counter);
int counter = 1;
counter = 2;
System.out.println("Counter value is " + counter);

Fix : Move a variable’s declaration before its very first usage.

int counter = 1;
System.out.println("Counter value is " + counter);
counter = 2;
System.out.println("Counter value is " + counter);

Remember, Java programs are always executed, line by line,
from top to bottom .

19 of 33

Case Study 2: Display Time
Problem: prompt the user for an integer value of seconds, divide
that value into minutes and remaining seconds, and print the
results. For example, given an input 200, output “200 seconds is 3
minutes and 20 seconds”.

import java.util.Scanner;
public class DisplayTime {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
/* Prompt the user for input */
System.out.print("Enter an integer for seconds: ");
int seconds = input.nextInt();
int minutes = seconds / 60; /* minutes */
int remainingSeconds = seconds % 60; /* seconds */
System.out.print(seconds + " seconds is ");
System.out.print(" minutes and ");
System.out.println(remainingSeconds + " seconds");

}
}20 of 33

Where May Assignment Sources Come From?
In tar = src, the assignment source src may come from:
• A literal
int i = 23;

• A variable
int i = 23;
int j = i;

• An expression involving literals and variables
int i = 23;
int j = i * 2;

• An input from the user
Scanner input = new Scanner(System.in);
int i = input.nextInt();
int j = i * 2;

21 of 33

Numerical Type Conversion (1)
• Coercion
◦ Implicit and automatic type conversion
◦ Java automatically converts an integer value to a real number

when necessary (which adds a fractional part).

double value1 = 3 * 4.5; /* 3 coerced to 3.0 */
double value2 = 7 + 2; /* result of + coerced to 9.0 */

• Casting
◦ Explicit and manual type conversion
◦ Usage 1: To assign a real number to an integer variable, you need

to use explicit casting (which throws off the fractional part).

int value3 = (int) 3.1415926;

◦ Usage 2: You may also use explicit casting to force precision.

System.out.println(1 / 2); /* 0 */
System.out.println((double) 1 / 2); /* 0.5 */
System.out.println((double) (1 / 2)); /* 0.0 */

22 of 33

Numerical Type Conversion (2)
Consider the following Java code:

1 double d1 = 3.1415926;
2 System.out.println("d1 is " + d1);
3 double d2 = d1;
4 System.out.println("d2 is " + d2);
5 int i1 = (int) d1;
6 System.out.println("i1 is " + i1);
7 d2 = i1 * 5;
8 System.out.println("d2 is " + d2);

Write the exact output to the console.

d1 is 3.1415926
d2 is 3.1415926
i1 is 3
d2 is 15.0

23 of 33

Expressions (2.1)

Consider the following Java code, is each line type-correct?
Why and Why Not?

1 double d1 = 23;
2 int i1 = 23.6;
3 String s1 = ’ ’;
4 char c1 = " ";

• L1: YES [coercion]
• L2: NO [cast assignment source, i.e., (int) 23.6]
• L3: NO [cannot assign char to string]
• L4: NO [cannot assign string to char]

24 of 33

Expressions (2.2)

Consider the following Java code, is each line type-correct?
Why and Why Not?

1 int i1 = (int) 23.6;
2 double d1 = i1 * 3;
3 String s1 = "La ";
4 String s2 = s1 + "La Land";
5 i1 = (s2 * d1) + (i1 + d1);

• L1: YES [proper cast]
• L2: YES [coercion]
• L3: YES [string literal assigned to string var.]
• L4: YES [type-correct string concat. assigned to string var.]
• L5: NO [string × number is undefined]

25 of 33

Round-off Errors (1)

• What is the output from the following Java program?
public class TestAddition {
public static void main(String[] args) {
System.out.println(0.1 + 0.1 + 0.1);

}
}

0.30000000000000004

• Round-Off Error : difference between the computer-calculated
approximation of a number and its exact mathematical value.

• Many fractional numbers can only be approximated and not
stored with complete accuracy in the binary form.
∴ Calculations involving these numbers are not precise either!

26 of 33

Round-off Errors (2)

Problem: How do you represent 0.1 in the binary form?

(0.1)10 = (0.00011)2

See here for how we lose the precision for representing 0.1 as a FP number.
27 of 33

http://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/

Round-off Errors (3)

Solution: Use BigDecimal:

BigDecimal pointOne = new BigDecimal("0.1");
BigDecimal pointTwo = pointOne.add(pointOne);
BigDecimal pointThree = pointTwo.add(pointOne);
System.out.println(pointThree);

28 of 33

Augmented Assignments
• You very often want to increment or decrement the value of a

variable by some amount.
balance = balance + deposit;
balance = balance - withdraw;

• Java supports special operators for these:
balance += deposit;
balance -= withdraw;

• Java supports operators for incrementing or decrementing by 1:
i ++; j --;

• Confusingly , these increment/decrement assignment operators
can be used in assignments:
int i = 0; int j = 0; int k = 0;
k = i ++; /* k is assigned to i’s old value */
k = ++ j; /* k is assigned to j’s new value */

29 of 33

Beyond this lecture. . .

• Try out the examples give in the slides.
• Read Chapter 2 in the textbook.
• In Eclipse, try out the examples (e.g., Section 2.16 Compute

Loan and Section 2.17 Counting Monetary Units) in Chapter 2.
• Complete as many exercises listed at the end of Chapter 2 as

possible.
• See https://docs.oracle.com/javase/tutorial/
java/nutsandbolts/datatypes.html for more
information about data types in Java.

30 of 33

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Index (1)
Learning Outcomes
Entry Point of Execution: the “main” Method
Compile Time vs. Run Time
Literals (1)
Literals (2)
Escape Sequence
Operations
Java Data Types
Identifiers and Naming Conventions in Java
Named Constants vs. Variables
Expressions (1)
Assignments
Multiple Executions of Same Print Statement
Case Study 1: Compute the Area of a Circle

31 of 33

Index (2)
Input and Output
Useful Methods for Scanner
Variables: Common Mistakes (1)
Variables: Common Mistakes (2)
Case Study 2: Display Time
Where May Assignment Sources Come From?
Numerical Type Conversion (1)
Numerical Type Conversion (2)
Expressions (2.1)
Expressions (2.2)
Round-off Errors (1)
Round-off Errors (2)
Round-off Errors (3)
Augmented Assignments

32 of 33

Index (3)
Beyond this lecture. . .

33 of 33

	Learning Outcomes
	Entry Point of Execution: the ``main'' Method
	Compile Time vs. Run Time
	Literals (1)
	Literals (2)
	Escape Sequence
	Operations
	Java Data Types
	Identifiers and Naming Conventions in Java
	Named Constants vs. Variables
	Expressions (1)
	Assignments
	Multiple Executions of Same Print Statement
	Case Study 1: Compute the Area of a Circle
	Input and Output
	Useful Methods for Scanner
	Variables: Common Mistakes (1)
	Variables: Common Mistakes (2)
	Case Study 2: Display Time
	Where May Assignment Sources Come From?
	Numerical Type Conversion (1)
	Numerical Type Conversion (2)
	Expressions (2.1)
	Expressions (2.2)
	Round-off Errors (1)
	Round-off Errors (2)
	Round-off Errors (3)
	Augmented Assignments
	Beyond this lecture…

