
Consider the following Java code:

1 boolean isSorted(int[] a) {

2 return isSortedHelper(a, 0, a.length - 1);

3 }

4 boolean isSortedHelper(int[] a, int from, int to) {

5 if (from > to) {

6 return true;

7 }

8 else if(from == to) {

9 return true;

10 }

11 else {

12 return a[from] <= a[from + 1]

13 && isSortedHelper(a, from + 1, to);

14 }

15 }

Prove, via mathematical induction, that the method isSorted method above correctly returns true
if the array a is sorted in a non-descending order; and false otherwise.

Solution:

We first prove that the recursive helper method isSortedHelper (Line 4 – Line 15) is correct
(i.e., is the subarray {a[from], a[from + 1],. . . , a[to]} sorted).

1. Base Cases

(a) [4 marks] Concept: In an empty array, there is no witness (i.e., adjacent numbers that
are not sorted) ∴ result is true.

(b) [4 marks] Link to Code: Lines 5 – 7 (or just Line 6) of the above code does this.

(c) [4 marks] Concept: In an array of size 1, the only one element is automatically sorted.

(d) [4 marks] Link to Code: Lines 8 – 10 (or just Line 9) of the above code does this.

2. Inductive Cases

(a) [4 marks] Inductive Hypothesis (I.H.): The recursive call isSortedHelper(a, from + 1, to)

returns true if a[from + 1], a[from + 2], . . . , a[to] are sorted in a non-descending order;
false otherwise.

(b) [4 marks] Concept: isSortedHelper(a, from, to) should return true if:

1) a[from] ≤ a[from + 1]; and

2) the subarray {a[from + 1],. . . , a[to]} is sorted.

(c) [4 marks] Link to I.H.: By I.H., condition 2) is satisfied.

(d) [4 marks] Link to Code: Line 12 in the above code does condition 1).

∴ Lines 12 – Line 13 perform a correct combination.

3. Given that the recursive helper method isSortedHelper (Line 4 – Line 4) is correct, we now
argue that the method isSorted (Line 1 – Line 3) is correct.

(a) [4 marks] Concept: isSorted(a) is correct by invoking isSortedHelper(a, 0, a.length - 1) ,
examining the entire array.

(b) [4 marks] Link to Code: Line 2 of the above code does this.

1


