
EECS2030 Fall 2016

Preparation Exercise for Lab Test 2:

A Birthday Book

Chen-Wei Wang

Contents

1 Before Getting Started 2

2 Task: Implementing Classes for Birthdays, Entries, and Books 3
2.1 Requirements for Task . 3
2.2 Tips for Task . 4
2.3 BirthdayBookTester.java . 5
2.4 Expected Output from Executing BirthdayBookTester . 10

1

Objectives of this Exercise

– Given requirements (descriptions written in English) and expected uses of software (i.e., tester classes), declare
and define classes and methods accordingly.

– Write an application (some kind of tester) which interacts with user inputs and manipulate objects.

– Understanding the behaviours of nested loops, by means of the complete tracing of a given input value.

– Using the combination of iterations (for-loops or while-loops), selections (if-statements), and the data struc-
ture of one-dimensional arrays to solve problems.

– Using breakpoints and debugger in the Eclipse IDE to help find errors in programs with sophisticated control
structures (e.g., nested and/or series of loop and/or if-statements) and data structures (e.g., several arrays).

– Exercising a common pattern of interaction: reading inputs (numbers or strings) from users, performing
calculations, and displaying results on the console.

Required Readings

– Slides on classes and objects

– Watch the tutorial video here and study the slides here on Encapsulation in Java.

1 Before Getting Started

– You are only allowed to do so using Java arrays. The use of any Java library classes such as ArrayList,
LinkedList, HashMap, etc., is forbidden in this exercise.

– For each problem, start by sketching your solution (not necessarily in valid Java syntax) on a piece of paper,
as if it were a paper test.

– When your program does not behave as you expected (which is very likely!) on certain input values, set
breakpoints at the beginning of the main method, or at critical points of your program, and then run the
debugger to observe closely the changes on Variables and Expressions line by line.

– For each of the tasks below, study the expected runs (where user inputs are marked in red) that we give to
you carefully, and make sure that your program outputs in the same manner.

– However, the input values that we give in these expected runs are just examples. You should test your
program with various input values to convince yourself that your program is indeed correct.

2

https://www.youtube.com/watch?v=d2Q-uasRmAU
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2017/F/EECS2030/slides/Encapsulation.pdf

2 Task: Implementing Classes for Birthdays, Entries, and Books

A birthday book stores a collection of entries, where each entry is a pair of a person’s name and their birthday. No
two entries stored in the book are allowed to have the same name. Each birthday is characterized by a month and
a day. A birthday book is first created to contain an empty collection of entires, and may store up to 10 entries.

Given a birthday book, we may inquire about the number of entries currently stored in the book, add a new
entry by supplying its name and the associated birthday, remove the entry associated with a particular person, find
the birthday of a particular person, or get a reminder list of names of people who share a given birthday.

You are required to create and define Java classes, attributes, and methods to implement the above (informal)
system requirements. Follow these steps to complete this task:

– Study the following BirthdayBookTester class (Section 2.3) carefully. It indicates the minimum set of classes
and signatures of methods that you need to define in order to make it compile. In addition to what is suggested
from this tester class, you are free to declare new classes, attributes, or methods as you find necessary, as
long as you satisfy all the requirements as outlined in Section 2.1, and your final developed project remains
compilable.

– Create and type verbatim the tester class BirthdayBookTester (Section 2.3) in your lab test project. You
may do this incrementally: as soon as you encounter a line that does not compile (because of missing
classes or methods), you make the necessary class or method definitions accordingly. To make this tester
class compile, you must create the indicated classes and methods with the indicated signatures (i.e., names,
parameters, and return types).

– Implement the methods that are suggested by the tester class, according to its expected outputs (Section 2.4).

2.1 Requirements for Task

Here are requirements that you must follow stringently:

1. Nowhere in all methods (e.g., the toString() method, which returns a string, rather than print-
ing a string to the console) that you define can contain any print statements. That is, the only
System.out.println(...) statements that can be found in your project are in the tester class BirthdayBookTester
that you are given.

2. Watch the tutorial video and study the slides on Encapsulation in Java. All attributes declared in
your classes must be private, meaning that no outside classes can access these attributes. Instead,
all outside classes can only call accessor methods (to gain information) or mutator methods (to change
attribute values). For example, the following class

1 class A {

2 int i;

3 String s;

4 }

is unacceptable for this exercise as the two attributes i and s are not declared as private. Here is the
expected version:

1 class A {

2 /* Only within class A can we access these two attributes directly. */

3 private int i;

4 private String s;

5 /* These accessors and mutators are for outside classes to

6 * access and mutate the two attribute values.

7 */

8 public int getI() { return i; }

9 public void setI(int i) { this.i = i; }

10 public String getS() { return s; }

11 public void setS(String s) { this.s = s; }

12 }

3

3. To implement the collection of entries of a birthday book, you are only allowed to do so using Java
arrays. The use of any Java library classes such as ArrayList, LinkedList, HashMap, etc., is forbidden
in this exercise.

2.2 Tips for Task

Each birthday book contains a (possibly empty) array of entries. When removing an entry from the array, you
have two options of implementing it:

1. Assign to null the corresponding position in the array (i.e., where the birthday book entry to be removed is
stored). For example, say there are three entries in the book:

{ ("Alan", 1954− 6− 13), ("Mark", 1964− 7− 14), ("Tom", 1944− 3− 16) }

Then after removing the entry associated with "Mark" from the book, we have:

{ ("Alan", 1954− 6− 13), null, ("Tom", 1944− 3− 16) }

The consequence of this first approach is that when later printing the book or scanning through the book for
removal, you have to avoid1 all null slots in the middle of the array(s). Similarly, when later adding a new
entry to the book, you will need to scan through the array and find the first available null slot.

2. Find where the entry to be removed is in the array, then: 1) shift all its right neighbours to the left by one
position; and 2) assign the old right-most right neighbour to null. For example, say there are three entries
in the book:

{ ("Alan", 1954− 6− 13), ("Mark", 1964− 7− 14), ("Tom", 1944− 3− 16) }

Then after removing Mark from the book, we have:

{ ("Alan", 1954− 6− 13), ("Tom", 1944− 3− 16), null }

Notice that before the shift, the right-most right neighbour in the above example (i.e., Tom) is located at
index 2. After the shift, index 2 points to null, meaning that particular slot is available for a new entry to be
stored. Observe that this second approach, unlike the first approach, does not result in any null slots in the
middle of the array, but only at the end.

1Otherwise, you will have NullPointerException at runtime.

4

2.3 BirthdayBookTester.java

1 public class BirthdayBookTester {

2 public static void main(String[] args) {

3 System.out.println("(01)--");

4 /* Create a birthday instance with month and day. */

5 Birthday bd01 = new Birthday(1, 11);

6 System.out.println("(" + bd01.getMonth() + ", " + bd01.getDay() + ")");

7
8 System.out.println("(02)--");

9 Birthday bd02 = new Birthday(2, 12);

10 Birthday bd03 = new Birthday(3, 13);

11 Birthday bd04 = new Birthday(4, 14);

12 Birthday bd05 = new Birthday(5, 15);

13 Birthday bd06 = new Birthday(6, 16);

14 Birthday bd07 = new Birthday(7, 17);

15 Birthday bd08 = new Birthday(8, 18);

16 Birthday bd09 = new Birthday(9, 19);

17 Birthday bd10 = new Birthday(10, 20);

18 Birthday bd11 = new Birthday(11, 21);

19 Birthday bd12 = new Birthday(12, 22);

20 System.out.println(bd01.toString());

21 System.out.println(bd02.toString());

22 System.out.println(bd03.toString());

23 System.out.println(bd04.toString());

24 System.out.println(bd05.toString());

25 System.out.println(bd06.toString());

26 System.out.println(bd07.toString());

27 System.out.println(bd08.toString());

28 System.out.println(bd09.toString());

29 System.out.println(bd10.toString());

30 System.out.println(bd11.toString());

31 System.out.println(bd12.toString());

32
33 System.out.println("(03)--");

34 Birthday bd13 = new Birthday(6, 16);

35 System.out.println("bd06: " + bd06.toString());

36 System.out.println("bd07: " + bd07.toString());

37 System.out.println("bd13: " + bd13.toString());

38 System.out.println("Contents of bd06 and bd13 are equal: " + bd06.equals(bd13));

39 System.out.println("Contents of bd07 and bd13 are equal: " + bd07.equals(bd13));

40
41 System.out.println("(04)--");

42 /* Create a new entry using a name and a birthday. */

43 Entry e1 = new Entry("A", bd01);

44 System.out.println("Entry e1’s name: " + e1.getName());

45 System.out.println("Entry e1’s birthday: " + e1.getBirthday().toString());

46 System.out.println("Entry e1’s string value: " + e1.toString());

47
48 System.out.println("(05)--");

49 /* Create a new entry using a name, a birth month, and a birth day. */

50 Entry e2 = new Entry("B", 2, 12);

51 System.out.println("Entry e2’s name: " + e2.getName());

52 System.out.println("Entry e2’s birthday: " + e2.getBirthday().toString());

53 System.out.println("Entry e2’s string value: " + e2.toString());

54

5

55 System.out.println("(06)--");

56 Entry e3 = new Entry("A", 1, 11);

57 System.out.println("e1: " + e1.toString());

58 System.out.println("e2: " + e2.toString());

59 System.out.println("e3: " + e3.toString());

60 System.out.println("Entries e1 and e2 are equal: " + e1.equals(e2));

61 System.out.println("Entries e1 and e3 are equal: " + e1.equals(e3));

62
63 System.out.println("(07)--");

64 e2.setName("A");

65 /* Change e2’s birthday to January 11. */

66 e2.setBirthday(1, 11);

67 System.out.println("e1: " + e1.toString());

68 System.out.println("e2: " + e2.toString());

69 System.out.println("e3: " + e3.toString());

70 System.out.println("Entries e1 and e2 are equal: " + e1.equals(e2));

71 System.out.println("Entries e1 and e3 are equal: " + e1.equals(e3));

72
73 System.out.println("(08)--");

74 /* Change e3’s birthday to the same as bd03. */

75 e3.setBirthday(bd03);

76 System.out.println("e1: " + e1.toString());

77 System.out.println("e2: " + e2.toString());

78 System.out.println("e3: " + e3.toString());

79 System.out.println("Entries e1 and e2 are equal: " + e1.equals(e2));

80 System.out.println("Entries e1 and e3 are equal: " + e1.equals(e3));

81
82 System.out.println("(09)--");

83 BirthdayBook bb = new BirthdayBook();

84 System.out.println("Number of entries: " + bb.getNumberOfEntries());

85 System.out.println("Returned number of entries: " + bb.getEntries().length);

86
87 System.out.println("(10)--");

88 System.out.println(bb.toString());

89
90 System.out.println("(11)--");

91 System.out.println("Name A exists in book: " + bb.nameExists("A"));

92 System.out.println("Name B exists in book: " + bb.nameExists("B"));

93 System.out.println("Name C exists in book: " + bb.nameExists("C"));

94
95 System.out.println("(12)--");

96 Birthday bdOfA = bb.getBirthday("A");

97 Birthday bdOfB = bb.getBirthday("B");

98 Birthday bdOfC = bb.getBirthday("C");

99 /* Return birthdays on names.

100 * When names are non-existing, their associated birthdays are nulls.

101 */

102 System.out.println("Birthday of A: " + bdOfA);

103 System.out.println("Birthday of B: " + bdOfB);

104 System.out.println("Birthday of C: " + bdOfC);

105
106 System.out.println("(13)--");

107 /* Get reminders on birthdays.

108 * When birthdays are non-existing, no persons will be reminded. */

109 String[] toRemind = bb.getReminders(bd13);

110 System.out.println("Number of reminders of bd13 (from empty book): " + toRemind.length);

6

111 toRemind = bb.getReminders(6, 16);

112 System.out.println("Number of reminders of June 16 (from empty book): " + toRemind.length);

113
114 System.out.println("(14)--");

115 /* Remove entries from the book.

116 * When names are non-existing name, removing their associated entries have no effect.

117 */

118 bb.removeEntry("A");

119 bb.removeEntry("B");

120 bb.removeEntry("C");

121 bb.removeEntry("D");

122 System.out.println("Number of entries: " + bb.getNumberOfEntries());

123 System.out.println("Returned number of entries: " + bb.getEntries().length);

124
125 System.out.println("(15)--");

126 /* Add new entries to the book.

127 * When names are non-existing, new entries are added to the book.

128 */

129 bb.addEntry(e1.getName(), e1.getBirthday().getMonth(), e1.getBirthday().getDay());

130 bb.addEntry("B", bd13);

131 bb.addEntry("C", 6, 16);

132 System.out.println("Number of entries: " + bb.getNumberOfEntries());

133 System.out.println("Returned number of entries: " + bb.getEntries().length);

134 System.out.println("First returned entry: " + bb.getEntries()[0].toString());

135 System.out.println("Second returned entry: " + bb.getEntries()[1].toString());

136 System.out.println("Third returned entry: " + bb.getEntries()[2].toString());

137
138 System.out.println("(16)--");

139 System.out.println(bb.toString());

140
141 System.out.println("(17)--");

142 System.out.println("Name A exists in book: " + bb.nameExists("A"));

143 System.out.println("Name B exists in book: " + bb.nameExists("B"));

144 System.out.println("Name C exists in book: " + bb.nameExists("C"));

145
146 System.out.println("(18)--");

147 bdOfA = bb.getBirthday("A");

148 bdOfB = bb.getBirthday("B");

149 bdOfC = bb.getBirthday("C");

150 /* Birthdays of existing names are not nulls */

151 System.out.println("Birthday of A: " + bdOfA.toString());

152 System.out.println("Birthday of B: " + bdOfB.toString());

153 System.out.println("Birthday of C: " + bdOfC.toString());

154
155 System.out.println("(19)--");

156 /* Return names of persons whose birthdays are January 16.

157 * No entries added so far have this birthday.

158 */

159 toRemind = bb.getReminders(1, 16);

160 System.out.println("Number of reminders of January 16: " + toRemind.length);

161
162 System.out.println("(20)--");

163 toRemind = bb.getReminders(1, 11);

164 /* Return names of persons whose birthdays are January 11.

165 * One entry added so far has this birthday.

166 */

7

167 System.out.println("Number of reminders of January 11: " + toRemind.length);

168 System.out.println("First person to remind: " + toRemind[0]);

169
170 System.out.println("(21)--");

171 toRemind = bb.getReminders(6, 16);

172 /* Return names of persons whose birthdays are June 16.

173 * Two entries added so far have this birthday.

174 */

175 System.out.println("Number of reminders of June 16: " + toRemind.length);

176 System.out.println("First person to remind: " + toRemind[0]);

177 System.out.println("Secon person to remind: " + toRemind[1]);

178
179 System.out.println("(22)--");

180 /* removing non-existing name: no effect */

181 bb.removeEntry("D");

182 System.out.println(bb.toString());

183
184 System.out.println("(23)--");

185 /* removing existing name: remove the associated entry */

186 bb.removeEntry("A");

187 System.out.println(bb.toString());

188
189 System.out.println("(24)--");

190 toRemind = bb.getReminders(1, 11);

191 /* After the entry associated with "A" is deleted,

192 * no entries added so far have this birthday.

193 */

194 System.out.println("Number of reminders of January 11: " + toRemind.length);

195
196 System.out.println("(25)--");

197 /* removing existing name: remove the associated entry */

198 bb.removeEntry("C");

199 System.out.println(bb.toString());

200
201 System.out.println("(26)--");

202 System.out.println("B’s birthday: " + bb.getBirthday("B").toString());

203 System.out.println("C’s birthday: " + bb.getBirthday("C"));

204
205 System.out.println("(27)--");

206 Birthday bd = new Birthday(6, 16);

207 toRemind = bb.getReminders(bd);

208 /* After the entry associated with "C" is deleted,

209 * only the entry associated with "B" has this birthday.

210 */

211 System.out.println("Number of reminders of June 16: " + toRemind.length);

212 System.out.println("First person to remind: " + toRemind[0]);

213
214 System.out.println("(28)--");

215 bb.addEntry("D", bd04);

216 bb.addEntry("E", 9, 19);

217 System.out.println(bb.toString());

218
219 System.out.println("(29)--");

220 toRemind = bb.getReminders(bd04);

221 System.out.println("Number of reminders for bd04: " + toRemind.length);

222 System.out.println("First person to remind: " + toRemind[0]);

8

223
224 System.out.println("(30)--");

225 /* Adding an entry whose name already exists

226 * replaces the associated entry’s birthday.

227 */

228 bb.addEntry("E", 04, 14);

229 System.out.println(bb.toString());

230
231 System.out.println("(31)--");

232 toRemind = bb.getReminders(4, 14);

233 System.out.println("Number of reminders for April 14: " + toRemind.length);

234 System.out.println("First person to remind: " + toRemind[0]);

235 System.out.println("Second person to remind: " + toRemind[1]);

236
237 System.out.println("(32)--");

238 /* Non-empty and empty books are not equal. */

239 BirthdayBook bb2 = new BirthdayBook();

240 System.out.println("bb and bb2 are equal: " + bb.equals(bb2));

241
242 System.out.println("(33)--");

243 /* Non-empty books of different sizes are not equal. */

244 bb2.addEntry("B", 6, 16);

245 bb2.addEntry("D", 4, 14);

246 System.out.println("bb and bb2 are equal: " + bb.equals(bb2));

247
248 System.out.println("(34)--");

249 /* Non-empty books,

250 * of same sizes and where entries at corresponding positions are equal,

251 * are equal.

252 */

253 bb2.addEntry("E", bd04);

254 System.out.println("bb and bb2 are equal: " + bb.equals(bb2));

255
256 System.out.println("(35)--");

257 /* Non-empty books of different sizes are not equal. */

258 bb2.addEntry("F", 10, 15);

259 System.out.println("bb and bb2 are equal: " + bb.equals(bb2));

260 }

261 }

9

2.4 Expected Output from Executing BirthdayBookTester

(01)--

(1, 11)

(02)--

January 11

February 12

March 13

April 14

May 15

June 16

July 17

August 18

September 19

October 20

November 21

December 22

(03)--

bd06: June 16

bd07: July 17

bd13: June 16

Contents of bd06 and bd13 are equal: true

Contents of bd07 and bd13 are equal: false

(04)--

Entry e1’s name: A

Entry e1’s birthday: January 11

Entry e1’s string value: A was born on January 11

(05)--

Entry e2’s name: B

Entry e2’s birthday: February 12

Entry e2’s string value: B was born on February 12

(06)--

e1: A was born on January 11

e2: B was born on February 12

e3: A was born on January 11

Entries e1 and e2 are equal: false

Entries e1 and e3 are equal: true

(07)--

e1: A was born on January 11

e2: A was born on January 11

e3: A was born on January 11

Entries e1 and e2 are equal: true

Entries e1 and e3 are equal: true

(08)--

e1: A was born on January 11

e2: A was born on January 11

e3: A was born on March 13

Entries e1 and e2 are equal: true

Entries e1 and e3 are equal: false

(09)--

Number of entries: 0

Returned number of entries: 0

(10)--

There are 0 entries in the book

(11)--

10

Name A exists in book: false

Name B exists in book: false

Name C exists in book: false

(12)--

Birthday of A: null

Birthday of B: null

Birthday of C: null

(13)--

Number of reminders of bd13 (from empty book): 0

Number of reminders of June 16 (from empty book): 0

(14)--

Number of entries: 0

Returned number of entries: 0

(15)--

Number of entries: 3

Returned number of entries: 3

First returned entry: A was born on January 11

Second returned entry: B was born on June 16

Third returned entry: C was born on June 16

(16)--

There are 3 entries in the book

A was born on January 11

B was born on June 16

C was born on June 16

(17)--

Name A exists in book: true

Name B exists in book: true

Name C exists in book: true

(18)--

Birthday of A: January 11

Birthday of B: June 16

Birthday of C: June 16

(19)--

Number of reminders of January 16: 0

(20)--

Number of reminders of January 11: 1

First person to remind: A

(21)--

Number of reminders of June 16: 2

First person to remind: B

Secon person to remind: C

(22)--

There are 3 entries in the book

A was born on January 11

B was born on June 16

C was born on June 16

(23)--

There are 2 entries in the book

B was born on June 16

C was born on June 16

(24)--

Number of reminders of January 11: 0

(25)--

There are 1 entries in the book

B was born on June 16

(26)--

11

B’s birthday: June 16

C’s birthday: null

(27)--

Number of reminders of June 16: 1

First person to remind: B

(28)--

There are 3 entries in the book

B was born on June 16

D was born on April 14

E was born on September 19

(29)--

Number of reminders for bd04: 1

First person to remind: D

(30)--

There are 3 entries in the book

B was born on June 16

D was born on April 14

E was born on April 14

(31)--

Number of reminders for April 14: 2

First person to remind: D

Second person to remind: E

(32)--

bb and bb2 are equal: false

(33)--

bb and bb2 are equal: false

(34)--

bb and bb2 are equal: true

(35)--

bb and bb2 are equal: false

12

	Before Getting Started
	Task: Implementing Classes for Birthdays, Entries, and Books
	Requirements for Task
	Tips for Task
	BirthdayBookTester.java
	Expected Output from Executing BirthdayBookTester

