
Integrating Drawing Tablet and Video Capturing/Sharing
to Facilitate Student Learning

Chen-Wei Wang
EECS Department, Lassonde School of Engineering, York University, Toronto, Canada

jackie@eecs.yorku.ca

ABSTRACT
We report the experience of adopting an innovative technique for
in-class instruction. The technique relies on: 1) replacing the black-
board/whiteboard by a portable drawing tablet; 2) preparing starter
pages consisting of code fragments or writings/�gures on the draw-
ing tablet for in-class illustrations on complex ideas; 3) recording
the in-class illustrations on the drawing tablet for students to review
the thinking process after class. This technique has been adopted in
three Computer Science and Software Engineering courses, ranging
from freshman to junior years, and the student evaluation results
indicate that this technique is e�ective and helps students achieve
the course learning outcomes. Comparison of student performance
on complex ideas also indicates a positive impact of our approach.

KEYWORDS
Communication Skills; Computational Thinking; Instructional Tech-
nologies; Learning Environment; Undergraduate Instruction

ACM Reference Format:
Chen-WeiWang. 2019. IntegratingDrawing Tablet andVideo Capturing/Sharing
to Facilitate Student Learning. In ACM Global Computing Education Confer-
ence 2019 (CompEd ’19), May 17–19, 2019, Chengdu,Sichuan, China. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3300115.3309530

1 INTRODUCTION
It is challenging to teach complex computational thinking [2, 5, 6,
14] (e.g., nested loops on 2D arrays, recursion) and design principles
(e.g., design by contract, object-oriented design patterns leveraging
polymorphism and dynamic binding) in undergraduate courses,
when the students have limited prior exposure to the course con-
tent. The class size of these courses is typically large (e.g., 400+ for
freshman courses, 150+ for sophomore courses, and 100+ for junior
courses in our department). Many students encounter obstacles
to full comprehension of course content because: 1) the class size
restricts the instructor’s intentional pauses and student interac-
tions; and 2) students are occupied by copying (often blindly) the
instructor’s remarks and board notes. For 2), such remarks and
notes re�ect the instructor’s insights into the taught subjects, and
are thus a valuable aid for student learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6259-7/19/05. . . $15.00
https://doi.org/10.1145/3300115.3309530

How can we make the in-depth and detailed illustrations in class
accessible to students for their self-paced study outside the class-
room? To address this question, we support student learning by
allowing them, outside the classroom, to review contents taught
in class (presented verbally and in written form). To achieve this,
we have adopted, in three undergraduate Computer Science (CS)
courses, the integrated use of: 1) a drawing tablet (replacing the
blackboard/whiteboard) for illustrating concepts and code exam-
ples; 2) a program for recording all desktop activities, such as the
slide presentation as well as illustrations on the tablet and program-
ming IDEs; 3) a wireless microphone allowing the instructor to
move around the classroom without compromising the recorded
sound quality; and 4) online access to recordings and notes for
students to review the class.

Our proposed teaching technique is novel in that it replaces
a conventional blackboard/whiteboard with a portable drawing
tablet, and it relies on recording the process of building up com-
plex examples (e.g., static software architecture, dynamic runtime
execution) from scratch. Such illustrations and examples represent
the insight into the taught subjects and thinking process which,
due to the recording, students can review as needed and thereby
learn from. We maintain a website for students to access the record-
ings and illustration notes after class, and even after completing
the courses: https://www.eecs.yorku.ca/~jackie/teaching/lectures/
index.html. As an example, Figure 2b (p4) shows an annotated
fragment of code at the end of our illustration on a 2D array. The
reasoning process of moving from Figure 2a to Figure 2b, through
recording, can be reviewed by students whenever they need.

Nonetheless, our proposed teaching technique cannot be imple-
mented via a smart board (e.g., [11]). First, the installation of a smart
board, similar to that of a conventional blackboard/whiteboard, has
limited visibility due to the size of classroom and the position of
students’ seats. Second, it is not e�ective for the instructor to build
up illustrations on complex examples, requiring a large amount
of hand writing, on the touch screen of a smart board. Third, it is
not yet the standard practice for a classroom to be equipped with a
smart board: our technique with a portable drawing tablet can be
adopted in any classroom with a standard projector.

The main contribution of this paper is a technique (as exempli-
�ed in Section 4) for setting up in-class illustrations on complex
ideas. Our proposed technique is much more than the occasional
and lightweight annotations on an in-class slide show using a tablet
computer. Instead, our technique requires the instructor to pre-
pare starter artifacts (e.g., code fragments, �gures, an enumeration
of theorems) on the drawing tablet prior to each class, so as to
save time on setting up these artifacts on a conventional in-class
blackboard/whiteboard “on the �y”. Such carefully prepared starter
artifacts provide the basis for building up the illustrations in class.

- I
-

.

- -

-

=

-

-

=

- -

=

=

The rest of the paper is organized as follows. Section 2 summa-
rizes the topics and learning outcomes of the three undergraduate
CS courses, in which we adopted the proposed approach. Section 3
discusses our proposed approach. Section 4 describes an exam-
ple of adopting our approach. Section 5 presents results of course
evaluations and performance comparison. Section 6 outlines the
equipment requirements. Section 7 re�ects on our experience. Sec-
tion 8 discussed the related works. Section 9 concludes the paper.

2 TEACHING CONTEXT
The proposed approach is meant for e�ective teaching (for in-
structors) and learning (for students) of courses involving complex
computational thinking or abstract theories. For example, in the
academic year of 2017 – 2018, we adopted this approach in three
undergraduate, computer science courses. Examples of some of the
course topics and course learning outcomes (CLOs) are summarized
below.

2.1 First-Year Course: Introductory OOP
CS1 Mobile Computing (with 400+ students) is the second-semester
course for CS1 students at the �rst year. Students learn about basic
computational thinking and object orientation through developing
Android mobile apps using the Android Studio IDE (Integrated
Development Environment), and visualizing the e�ects of their Java
programs on physical tablets. Example topics covered in CS1 are:
1) elementary programming (variables, data types, assignments); 2)
conditionals; 3) loops; 4) primitive 1D and 2D arrays; and 5) object
orientation (attributes, methods, classes, and class associations).

SomeCLOs of CS1 are:CLO1)Understand software development
within an object-oriented framework using a modern programming
language and tool set; and CLO2) Use a set of computing skills
such as reasoning about algorithms, tracing programs, test-driven
development, and diagnosing faults.

2.2 Second-Year Course: More Advanced OOP
CS2 Advanced Object Oriented Programming (with 150+ students)
is the �rst-semester course for both CS and engineering students
at the second year. Students in CS2 are required to develop, test,
and debug their Java programs in the Eclipse IDE. Example topics
covered in CS2 are: 1) unit testing (using JUnit); 2) code reuse
and subtyping via inheritance; 3) polymorphic assignments and
dynamic binding; 4) recursion; 5) asymptotic upper bounds (i.e.,
the big-o notation) of programs; and 6) implementations of simple
data structures such as singly-linked lists, stacks and queues, and
binary trees.

Some CLOs of CS2 are: CLO1) Implement aggregations and
compositions;CLO2) Implement inheritance;CLO3)Use recursion;
and CLO4) Implement linked lists.

2.3 Third-Year Course: Software Design
CS3 Software Design (with 100+ students) is a required course for
third-year CS and software engineering students. Example topics
covered in CS3 are: 1) the Design-by-Contract (DbC) method for
constructing object-oriented software [7] (using loop invariants and
1The corresponding Java course for engineering students uses �dget boards connected
with hardware equipment such as LED light bulbs.

variants, method preconditions and postconditions, and class invari-
ants); 2) the information hiding design principle [9] (exempli�ed
by the Iterator design pattern); 3) object-oriented design patterns
leveraging polymorphism and dynamic binding (e.g., composite,
visitor, observer); and 4) introduction to program veri�cation using
Hoare Triples [4].

Some CLOs of CS3 are: CLO1) Describe software speci�cations
via Design by Contract; CLO2) Implement speci�cations with de-
signs that are correct, e�cient andmaintainable; andCLO3)Design
software using appropriate abstractions, modularity, information
hiding, and design patterns.

3 THE PROPOSED APPROACH
This paper proposes an approach visualized in Figure 1 to both
e�ective teaching (for instructors) and learning (for students) of
complex ideas (e.g., computational, design, abstract). We discuss
the proposed approach from two perspectives.

instructor students

Projector Screen
- Slide Show
- Code Demos on Programming IDE
- Illustrations on Drawing Pad

present

answer

ask

in-class

students

after-class

- Recording
- Notes
- Source Code

recorded & uploaded re-iterated on demand

information flow

Figure 1: ProposedApproach: E�ectiveAfter-Class Learning

The instructor presents course materials on a personal computer.
The entire presentation, as desktop activities of the instructor’s
computer, is not only projected to the projector screen for students
to follow in class, but also recorded (and later uploaded andmade ac-
cessible) for students to review after class. Formats of presentation
include the conventional slide show and code demonstrations on
some programming IDE. Furthermore, a drawing tablet connected
to the instructor’s computer replaces the conventional whiteboard
or blackboard (See Section 6 for its con�guration). Given that il-
lustrations on the connected drawing tablet become part of the
desktop activities, the instructor is able to record: 1) discussion of
pre-selected topics (e.g., a code fragment, an example to be solved
from scratch) using coloured annotations; and 2) answers to stu-
dents’ questions that require detailed illustrations.

The students follow the tablet-based presentation via the same
projector screen as the slideshow meaning that visibility is ensured

(as opposed to the case of a whiteboard or blackboard which may
have limited visibility due to the size of classroom, the position of
students’ seats). With the understanding that the entire presenta-
tion is recorded and will later be made accessible for review at their
own pace, students may focus more on thinking through the con-
tents and asking questions accordingly, without being distracted
by copying (often blindly) the instructor’s written or verbal notes.

4 EXAMPLE: TEACHING 2D ARRAYS
In this section, we illustrate how the proposed technique was
adopted to teach the topic of two-dimensional arrays in CS1 (see
Section 2 for examples of the topics and learning outcomes of the
course). The same approach was also adopted for teaching CS2 and
CS3.

Consider the following problem: Given a two-dimensional table
specifying the distances between cities (where rows and columns
denote, respectively, departure and destination cities), and given
an itinerary of an array of cities, calculate the total distance. How
would you teach students about solving this problem programati-
cally (using a 2D array)?

Recording of how we taught concepts involved in the solution
to this problem can be found here: https://youtu.be/Vrukh2LKvbE
(from 00:00 to 43:48). The assumption is that the previous lectures
already covered the basics of manipulating 2D arrays. This lecture
is composed of various forms of illustrations:

• Using a slide show, review the problem at a high level without
mentioning any code. (00:00 – 01:44)

• Using the tablet, illustrate how program variables are de-
clared andmanipulated. (1:44 – 6:47)

• Using the Android Studio IDE, illustrate a use-case for the
calculator (with no errors). (6:47 – 10:06)

• Using a �rst starter page on the tablet, containing the main
code of calculation, illustrate for the given use-case and how
each line of code is executed, by visualizing how variables
are initialized and manipulated. (10:06 – 27:03)
Figure 2 (p4) compares the “clean” starter page and the an-
notated page at the end of this illustration.

• Using a second starter page on the tablet containing code
handling errors, illustrate how the �ow execution would
branch di�erently, again by visualizing how variables are
manipulated accordingly. (27:03 – 37:57)

• Starting with a blank page on the tablet, respond to a stu-
dent’s confusion as to how the two parts of the code work.
Here the illustration is meant for reviewing the critical con-
trol structure from scratch. (37:57 – 43:48)

Remark. The above teaching pattern—choreographing slide show,
code demo on a programming IDE, tablet illustration with a starter
page, and answering questions or making additional remarks using
tablet illustration with a blank page—is su�ciently general and
may thus be applied to teaching many other topics.

In order for students from CS1, CS2, and CS3 to access recorded
illustrations and notes for their self-study, even after the completion
of the courses, we have maintained a public site of recorded lectures
organized by topics, and containing hyperlinks to the recording
on YouTube, PDF notes of tablet illustrations, example source code,
and slides. Examples on teaching other complicated topics in all

three courses can be found on this lectures page: https://www.eecs.
yorku.ca/~jackie/teaching/lectures/index.html.

5 EVALUATIONS
5.1 Improvement on Performance
Table 1 (p3) presents data on students’ performance on questions
related to the various complex ideas:

(1) Subcontracting (Inheritance of Contracts inDescendant Classes)
(2) The Visitor Design Pattern
(3) Genericity
(4) Formal Veri�cation of Software (Proofs of Loop Correctness

and Termination)
(5) Object-Oriented Programming (Inferring Classes, Attributes,

and Methods from a Given API Tester)
Topics (1) to (4) were taught in CS32 by the author in both

Summer 2015 (where the proposed technique was not adopted)
and Fall 2017 (where the proposed technique was adopted), and we
compare the percentage values of students’ scores on the same set
of �nal exam questions. Topic (5) was taught in CS1 by the author in
both Spring 20173 (where the proposed technique was not adopted)
and Winter 20184 (where the proposed technique was adopted),
and we compare the percentage values of students’ scores on the
same set of computer test questions.

C����� CS3 (SU15) CS3 (F17)
P������� T������� A������? No Yes

C���� S��� 49 80
T���� S������ A������ S�����

Subcontracting 51.63% 54.81%
Visitor Pattern 51.33% 58.33%
Genericity 63.27% 67.00%

Formal Veri�cation of Software 63.62% 63.17%
C����� CS1 (SP17) CS1 (W18)

P������� T������� A������? No Yes
C���� S��� 38 190

T���� S������ A������ S�����
Object-Oriented Programming 42.97% 56.4%

Table 1: Comparison of Student Performance

Table 1 (p3) indicates that our proposed teaching technique has
a positive impact5 upon students’ performance on complex topics,
particularly the visitor design pattern (a 16.64% improvement from
51.33% to 58.33%) and programming with classes and objects (a 30%
improvement from 42.97% to 56.4%).

2Both instances had a large project. Before the project, the earlier instance of CS3 in
2015 had a single assignment, whereas the one in 2017 had six.
3This topic was taught at the author’s previous institution, in a course whose curricu-
lum overlaps with that of CS1.
4Due to a labour disruption at our institution in Winter 2018, this test occurred during
the remediation period, where only a subset of the students participated.
5Although the results of an independent t-test showed that there was no signi�cant
di�erence between the two groups, in Subcontracting (t(127) = .77, p > .05), Visitor
Pattern (t (127) = 1.81, p > .05), Genericity (t (127) = .72, p > .05), and Formal Veri�ca-
tion of Software (t (127) = .13, p > .05), there was a signi�cant di�erence between the
two groups in Object-Oriented Programming (t (226) = 2.29, p < .05).

Motivating Example Solution : Part 2

Console :

(a) Before Annotations Began (11:02)

y
3

Motivating Example Solution :Pat2

off
a → trip

.bg#wyayGnsde

:

o¥FE't:I€xFEa_#×do
-

@×@*x .|→•g×x**¥"#ftp.#hp...aY**z#-
o

' ' Boston
"

t#P→l*Ma#
"n@*g

4

ljffonnitgjwaaowa
-

z# ←

adf.mg#orsundefinedkHestlFlIu

,

(b) After Annotations Ended (27:03)

Figure 2: Illustrating a Code Fragment on a Drawing Tablet (11:02 – 27:03 of https://youtu.be/Vrukh2LKvbE)

5.2 Student Evaluations
The anonymized online course evaluations of the three context
courses, which contain both numerical ratings and student com-
ments6, indicate that the in-class instruction, which relies on the
proposed technique of this report, is e�ective. The data are repre-
sentative due to the high response rates:

C����� CS1 CS2 CS3
R������� 58.09% (219/377) 58.42% (59/101) 85.73% (70/82)

In this section, we present the numerical results (on a 7-point
scale7) for those questions that are relevant to the e�ectiveness of
teaching and learning:

Q1: The course helped me grow intellectually.
Q2: The course learning outcomes were clearly stated and
achieved in the course.
Q3: The instructor conveyed the subject matter in a clear
and well-organized manner.
Q4: The instructor helped me understand the importance
and signi�cance of the course content.
Q5: Overall, the instructor was an e�ective teacher in this
course.

Table 2 (p4) summarizes the responses grouped as: Agree (de-
noting the percentage of responses > 4), Disagree (denoting the
percentage of responses < 4), and Neutral (denoting the percentage
of responses = 4). Table 2 clearly indicates that students value the
instructor’s method of teaching as proposed in this paper. Questions
1, 2, and 4 explicitly address students’ views on their learning out-
comes and indicate that the approach is highly e�ective in helping
them achieve the course learning outcomes and grow intellectually.
Although the evaluation results for Q3 – Q5 are not available for

6Some student comments are quoted in Section 7.
77 for “Strongly Agree”, 6 for “Agree”, 5 for “Somewhat Agree”, 4 for “Neither Agree nor
Disagree”, 3 for “Somewhat Disagree”, 2 for “Disagree”, and 1 for “Srongly Disagree”.

CS18, their results may be anticipated as similar to those of CS2 and
CS3, extrapolated from observing that the majority of essay results
of the three courses are positive about the teaching instructions.

Q1 Q2 Q3 Q4 Q5

CS1
agree 82.33 90.6 not available
neutral 9.02 4.51 not available
disagree 7.15 4.14 not available

CS2
agree 91.53 98.3 100 98.3 96.61
neutral 6.78 0 0 0 1.69
disagree 1.69 1.69 0 1.69 1.69

CS3
agree 80 80 94.28 98.3 90
neutral 1.43 11.43 2.86 0 2.86
disagree 18.57 8.58 2.86 10.0 7.25

Table 2: Numerical Evaluation Results: Distribution

Furthermore, Table 3 (p5) suggests that answers to all questions
have a high median value, and have a mean value that is consis-
tently9 higher than that of the department and faculty.

6 ADOPTING THE APPROACH
Figure 3 summarizes how to assemble the various equipment to
implement the proposed approach. Here we described what we
used, but the interested reader may choose other equipment with
the same functionality.

Install the following software programs on your teaching com-
puter (e.g., a MacBook): 1) a presentation program (e.g., any PDF
reader, PowerPoint reader) for your slides; 2) a programming IDE
8Due to a recent labour disruption at our institution, Q3 – Q5 were excluded from the
course evaluation, preventing instructors supporting it by not continuing with classes.
9The only exceptions are the mean values of Q1 and Q2 for CS3, which may be
explained by the essay results, where a good number of students do not appreci-
ate the chosen language for teaching design that is not at the same time a popular
implementation language in the industry.

Q1 Q2 Q3 Q4 Q5

CS1

mean 5.76 5.97 not available
median 6.0 6.0 not available
std. dev. 1.41 1.13 not available
dep. mean 5.3 5.48 not available
fac. mean 5.48 5.65 not available

CS2

mean 6.32 6.34 6.74 6.59 6.51
median 7.0 7.0 7.0 7.0 7.0
std. dev. 1.11 0.99 0.55 0.65 0.86
dep. mean 5.63 5.74 5.89 5.78 5.89
fac. mean 5.66 5.8 5.87 5.82 5.88

CS3

mean 5.41 5.67 6.39 6.10 6.23
median 6.0 6.0 7.0 7.0 7.0
std. dev. 1.97 1.53 1.07 1.70 1.33
dep. mean 5.63 5.74 5.89 5.78 5.89
fac. mean 5.66 5.8 5.87 5.82 5.88

Table 3: Numerical Evaluation Results: Mean and Median

Personal
Computer

Online
Sharing
Platform

Screen
Recording

Tablet
Projection

Presentation

Programming
IDE

Wireless
Microphone

Drawing Tablet

Wireless
Control/Pointing

Device

installed
connected to
uploaded to

hardwaresoftware

Figure 3: Adopting the Approach: Schematic View

as applicable to your course (e.g., Android Studio, Eclipse); 3) a
screen recording program (e.g., the free Active Presenter [10]10)
for recording all desktop activities on the computer; and 4) a pro-
gram for projecting the screen of your drawing tablet (e.g., the free
QuickTime Player).

Upon arriving in the classroom, connect the following hardware
to your teaching computer: 1) a wireless microphone (e.g., Revolabs
xTag [15]) using a USB cable; 2) a wireless control or pointing
device (e.g., a wireless or bluetooth mouse, trackpad, keyboard,
laser pointing device) for showing slides, typing code in an IDE, or
switching between programs; and 3) a drawing tablet (e.g., iPad Pro)
installed with an app for annotations (e.g., GoodNotes, Notability).
For 3), a wire connection to the USB port is recommended for a
stable connection throughout the class. To project the screen of the
drawing tablet to your computer desktop, if you use the QuickTime
player and an iPad Pro, start a “New Movie Recording” and select
your iPad as the camera.
10Another lecture capturing system such as Panopto and TechSmith may also work.

When ready to start your lecture: 1) wear the wireless micro-
phone connected to your teaching computer (and optionally an-
other microphone connected to the classroom speaker); and 2) start
the screen recording program and choose the connected wireless
microphone as the input device.

When the lecture is �nished, stop the screen recording, export
it to an acceptable form (e.g., MP4), upload it to an online video
sharing platform (e.g., YouTube), and publish the link to students.
The annotation app on your drawing tablet should allow you to
export the annotated notes (e.g., Figure 2a, p4) as an PDF �le.

7 REFLECTION
In this section we share our re�ections on the proposed approach,
after adopting it for teaching the three courses (Section 2).
DrawingTablet vs. Blackboard/Whiteboard. Often students sit-
ting at the rear or sides of a class room �nd it di�cult to copy con-
tents of the front blackboard/whiteboard into their notes, let alone
comprehend the concepts and processes being illustrated. Instead,
projecting contents to a high, centred screen allows students not to
miss any parts of the instructor’s presentation. More importantly,
the use of an annotation app allows the instructor to save time on
copying, e.g., code fragments, in order to start a new discussion.
Instead, a starter page on the tablet can be preset and launched at
the appropriate time. Furthermore, the ability to draw and annotate
with the various colours (e.g., red-underline a line of code, colour a
portion of drawing) helps the instructor communicate key points
to students.

Essay results of student evaluations from all three context courses
con�rm the e�ectiveness of using a drawing tablet: e.g.,

• “Lectures are well planned and use of iPad with slides is a
great way to explain things.” [CS1]

• “[Best things about the course are] Using iPad notes to ex-
plain the logic and to trace the certain parts of code. ” [CS1]

• “the teaching style of instructor is awesome, he uses an Ipad
instead of black board and record every lecture, which is very
helpful. if this kind teaching style is used by other instructor
then student will pay more attention to teacher then copying
notes from blackboard and doing multitasking.” [CS2]

• “Great supplementary materials (recordings, lecture notes,
ipad notes, etc..)” [CS3]

Drawing Tablet vs. Slide Animations. Animated slides have the
great advantage that information can be revealed at a planned
time. However, when teaching complicated ideas, it is often not
e�ective to encode all details in animations, since the order of
animations is static, and the instructor may not be able to account
for how students actually understand the concepts dynamically
in class. Instead, with the use of a drawing tablet, the instructor
can teach more e�ectively by creating a starter page, and then
gradually adding annotations as illustrated in Section 4. This is
essentially a dynamic way to control the pace and level of details
that the instructor judges appropriate for how the current class is
understanding the materials.
Review of Lectures.We strongly believe that the most valuable
component of in-class instruction is the dynamic illustrations of
di�cult concepts. Despite how e�ective such illustrations are, we

would never expect students to fully comprehend the concepts
from in-class presentation alone simply because they are hard and
naturally require repetitions. As a result, being able to record all
transitions among the slide show, code demos, and tablet illustra-
tions is invaluable for students to review the concepts after class.
Such review11 also helps them re�ect on the materials and ask
thoughtful questions. Furthermore, the proposed approach also al-
lows students who miss classes for legitimate reasons (e.g., medical,
family) to catch up with the course content at their own pace. To
facilitate students’ selection of parts of a lecture recording which
they are interested in reviewing, we may add links to the various
timings of starting critical examples or concepts.
A Suitable, Transferrable Teaching Pattern. How would the
teaching and learning experience be di�erent if the proposed ap-
proach, particularly the interactive experience of tablet illustrations,
was not adopted for teaching the 2D array solution (Section 4)? Our
previous experience of teaching concepts with a similar or higher
level of di�culty, without using the proposed approach, was that
we had to rush through parts that really need the most detailed,
in-depth illustrations, primarily because it was time consuming
to copy the starting code fragments onto the board. Even if such
illustrations were performed, students would not be able to review
them after class. Therefore, with the ability to record illustrations
on a drawing tablet, the teaching pattern as observed in Section 4
may be generalized as follows:

• Use slide show to present the general problem to be solved.
• Use a programming IDE to demonstrate what is ultimately
expected from the �nal (e.g,. software) product.

• Pre-set a list of starter pages on the drawing tablet, each con-
taining selected code fragments or formulas, then annotate
them to gradually build towards the solutions or conclusions.

• Answer students’ questions by starting a blank page on the
drawing tablet, and build up the answers there from scratch.

Some items (except tablet illustrations) may be omitted, and
the order of choreographing these components may be adjusted
according to the subject being taught.
Required Preparation. The instructor should determine what
concepts/examples they will illustrate in class, and then create the
starter pages on the drawing tablet accordingly. Compared with
simply writing them “on they �y” in class, the instructor may take
more time carefully planning the layout of each page. But most
valuably, these starter pages, once created, may be elaborated over
time and later reused for teaching the same or similar subjects.
Complexity of Integration. The current practice of the proposed
approach requires us to manually assemble an array of equipment
(Section 6). A better solution is to have the classroom podium
computer being setup according to the schematics (Figure 3, p5).

8 RELATEDWORKS
Our proposed teaching technique requires the careful setup of
starter artifacts (e.g., code fragments, �gures, writings) on a draw-
ing tablet for in-class illustrations, which are recorded for students
to review after class. Our technique is suitable for teaching complex
11According to the YouTube statistics, students in all three courses spent a decent
amount of time reviewing the recorded lectures: each student in CS1 spent an average
time of 213 minutes, 740 minutes for CS2 students, and 871 minutes for CS3 students.

computational thinking [2, 5, 6, 14] through carefully planned illus-
trations on a drawing tablet which, based on our experience, are
perceived as less di�cult and boring by students compared with
in-class instruction that heavily relies on slide shows. Although
there are other systems allowing the instructor to handwrite on
slides projected from a tablet PC (e.g., [1]), our approach also allows
other desktop activities (such as demonstrating on a programming
IDE) to be integrated into the lecture instruction and recording.

The platform o�ering the most similar support is the MIT Open
Course [8], but the posted contents there are limited to �lming
of instructors and the projector screen (as opposed to desktop
activities of the instructor’s computer) and in-class illustrations on a
blackboard. Setting up the starting ground for such illustrations on
a conventional in-class blackboard “on the �y” takes up class time,
whereas in our proposed approach, the instructor can carefully set
up the starter artifacts (e.g., code fragments, �gures, writings) on
the drawing tablet and plan their lectures accordingly.

Also relevant is the Stanford Online [13], which is designed for
online distance learning. The use of a drawing tablets for intensive
illustrations, as well as constant switches between the various desk-
top activities, is not typical for courses there. On the other hand,
we have also adopted the proposed technique to prepare tutorial
videos as detailed pre-study materials for lab assignments. Our
students expressed in their written comments that these tutorial
videos, with detailed and in-depth illustrations on a drawing tablet,
are valuable study materials for completing lab assignments and
preparing for tests. For example, for CS1, a tutorial series (21 videos,
6 hours) is made available on day one of the course on developing,
from scratch, an Android Mobile app for calculating the BMI (Body
Mess Index), with a clear separation among the model, the view,
and the controller. Similar to Stanford Online are the online course
repositories such as Coursera [3] and Udemy [12], but these are
meant to be commercial, unlike the proposed approach as well
as MIT Open Course and Stanford Online. Moreover, the use of
intensive tablet illustrations is also not typical in these commercial
courses (e.g., an introduction to Android app development).

9 CONCLUSION
We describe the use of a drawing tablet to conduct in-depth and
detailed illustrations of complex ideas, and to record all in-class
desktop activities on the instructor’s computer (including slide
show, code demonstrations, tablet illustrations). Comparison of
student performance on complex topics indicates a positive impact
of our approach. Student evaluation results also indicate that this
approach is e�ective for helping students achieve the expected
course learning outcomes.

The proposed approachwas only adopted in three undergraduate
CS courses so far. Nonetheless, given 1) the total number (344) of
students participating in the online course evaluation; 2) the vast
majority of (numerical and essay) evaluation results concerning
the e�ectiveness of the instruction being positive; and 3) the wide
range of topics being covered in these courses, we believe that this
experience report would bene�t colleagues who wish to improve
their teaching of complex (programming, design, or abstract) ideas.

To rea�rm the e�ectiveness of the approach, we will adopt it in
teaching courses involving more abstract theories of computation.

REFERENCES
[1] Richard Anderson, Ruth Anderson, Beth Simon, Steven A. Wolfman, Tammy

VanDeGrift, and Ken Yasuhara. 2004. Experiences with a Tablet PC Based Lecture
Presentation System in Computer Science Courses. SIGCSE Bull. 36, 1 (March
2004), 56–60. https://doi.org/10.1145/1028174.971323

[2] Jens Bennedsen, Michael E. Caspersen, and Michael Klling. 2008. Re�ections on
the Teaching of Programming: Methods and Implementations (1 ed.). Springer
Publishing Company, Incorporated.

[3] Coursera. [n. d.]. https://www.coursera.org/
[4] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.

ACM 12, 10 (Oct. 1969), 576–580. https://doi.org/10.1145/363235.363259
[5] Anna Lamprou and Alexander Repenning. 2018. Teaching How to Teach Compu-

tational Thinking. In Proceedings of the 23rd Annual ACMConference on Innovation
and Technology in Computer Science Education (ITiCSE 2018). ACM, New York,
NY, USA, 69–74. https://doi.org/10.1145/3197091.3197120

[6] James Lockwood and AidanMooney. 2017. Computational Thinking in Education:
Where does it Fit? A systematic literary review. CoRR abs/1703.07659 (2017).

arXiv:1703.07659 http://arxiv.org/abs/1703.07659
[7] Bertrand Meyer. 1997. Object-oriented Software Construction (2Nd Ed.). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA.
[8] Masschusetts Institute of Technology. [n. d.]. MIT Open Courseware. https:

//ocw.mit.edu/index.htm
[9] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into

Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https://doi.org/10.1145/
361598.361623

[10] Active Presenter. Version 7. All-in-one Screen Recorder, Video Editor & eLearning
Authoring Software. https://atomisystems.com/activepresenter/

[11] SMART. [n. d.]. SMART Board for Education. https://smarttech.com/
[12] Udemy. [n. d.]. https://www.udemy.com/
[13] Stanford University. [n. d.]. Stanford Online. https://online.stanford.edu/courses
[14] Jeannette M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),

33–35. https://doi.org/10.1145/1118178.1118215
[15] Revolabs xTag. 2007. Wireless Microphone System. Model 02-DSKMAN-DPP-11.

