
Creating Tutorial Materials as Lecture Supplements
by Integrating Drawing Tablet and Video Capturing/Sharing

Chen-Wei Wang
EECS Department, Lassonde School of Engineering, York University, Toronto, Canada

jackie@eecs.yorku.ca

ABSTRACT
We report the experience of adopting an innovative technique for
creating tutorial videos which complement lectures and facilitate
students’ learning. Our technique relies on: 1) preparing starter
pages consisting of code fragments or writings/�gures on a draw-
ing tablet; 2) illustrating complex ideas on the drawing tablet; 3)
recording all computer desktop activities (e.g., development of code
on a programming IDE, illustration on the drawing tablet); and 4)
sharing the recorded tutorial videos with students online. Our tech-
nique has been adopted in creating tutorial series for four Computer
Science and Engineering courses, ranging from the �rst year to the
third year. Analytics of these online tutorial videos is presented to
show the average amount of time which each registered student
spent on watching them. Course evaluation results indicate that our
technique is perceived as e�ective for achieving the course learning
outcomes. Comparison of students’ performance on complex topics
(arrays and loops) also indicates a positive impact of our approach.

CCS CONCEPTS
•Applied computing→Computer-assisted instruction; • So-
cial andprofessional topics→Computational thinking;Com-
puter science education; Software engineering education.
KEYWORDS
Large Class; Laboratory Assignments; Tutorial Videos; Computa-
tional Thinking; Instructional Technologies

ACM Reference Format:
Chen-Wei Wang. 2019. Creating Tutorial Materials as Lecture Supplements
by Integrating Drawing Tablet and Video Capturing/Sharing. In Proceedings
CSERC 2019 18-20 November 2019 Computer Science Education Research Con-
ference Larnaca, Cyprus (CSERC ’19), November 18–20, 2019, Larnaca, Cyprus.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3375258.3375259

1 INTRODUCTION
It is challenging to teach complex computational thinking [1, 6,
7, 28] (e.g., arrays, loops, object-oriented thinking) and software
design principles (e.g., design by contract, object-oriented design
patterns leveraging polymorphism and dynamic binding) in under-
graduate courses, where: students have limited prior exposure to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CSERC ’19, November 18–20, 2019, Larnaca, Cyprus
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7717-1/19/11.
https://doi.org/10.1145/3375258.3375259

the course content; and the class size is typically large (e.g., 400+
for �rst-year courses, 150+ for second-year courses, and 100+ for
third-year courses in our home department).

Many students encounter obstacles to full comprehension of
course content because the class size restricts the instructor’s in-
tentional pauses and student interactions during lectures. To partly
address this, in our recent work, we propose an innovative ap-
proach for in-class instruction of complex ideas [26], which allows
the instructor to record their (verbal and written) explanations and
illustrations entirely, so that students can review these materials
for their learning at their own pace after class.

However, a Computer Science (CS) or Engineering course com-
monly has a weekly laboratory (lab), where students are assigned
exercises, more challenging than examples covered in class, in or-
der to reinforce the covered topics. However, in-class instruction
is limited in two aspects, making it di�cult to implement, among
lectures, a logical decomposition of the taught subjects. First, lec-
ture hours are �xed: very often we have to interrupt the discussion
simply because the class time has run out. Second, lecture hours are
limited: in-depth discussion and illustrations of certain technical
insight cannot be accommodated in class. Consequently, there usu-
ally exists a gap between lecture materials and the pre-requisites
(on concepts and skills) for completing the weekly lab assignments.

How can we make the in-depth and detailed illustrations accessi-
ble to students for their self-paced study outside the classroom, so as
to help them complete the weekly lab assignments? We propose to
address the two limitations of lectures by creating series of tutorial
videos, each of which: 1) is sequentialized according to the suitable
logical order (as judged by the instructor); and 2) includes in-depth
remarks and illustrations on concepts and examples. For 2), such
remarks and illustrations re�ect the instructor’s insight into the
taught subjects, and are thus a valuable aid to student learning.

To create these tutorial videos, we have adopted, in four un-
dergraduate CS and Engineering courses, the integrated use of: 1)
a drawing tablet for illustrating concepts and code examples; 2)
a program for recording all desktop activities, such as the slide
presentation as well as illustrations on the tablet and program-
ming IDEs; 3) a high-end studio microphone ensuring decent sound
quality of the tutorial videos; and 4) online access to recordings
and notes for students to review before attempting their lab as-
signments. Our tutorial videos have been uploaded to this chan-
nel: https://www.youtube.com/user/jackiechenweiwang. To com-
plement our in-class instructions [26], we include links to these tu-
torial series on a lectures page: https://www.eecs.yorku.ca/~jackie/
teaching/lectures/index.html.

The main contribution of this paper is a technique for creating
tutorials videos on complex ideas. Our proposed technique is much
more than recording the occasional annotations on a slide show.

- -

-

-
-

==

-

-

-

CSERC ’19, November 18–20, 2019, Larnaca, Cyprus Chen-Wei Wang

→ Student
SI name

Noc

courses

crzxfy.beRecord →
CourseRecord

→
CourseRecord

"paid cr2 t .

"
1021

" CB t .

"

3311
"

M . O m . O m . O

I . null I . null I . null

(a) Before Annotations Began (26:33)

→
-

Peon
"

A
→

- 5 I e
-

←
→ = - - -

⇒⇒⇐±×¥'¥h¥¥Eg⑧s•8

a- ←

7¥
I

⇒⇐¥z¥3
d.courses

-11*2,0
0

←

⇒⇒is
,

Ethenes
si
,

-
→

mmmm St. Courses-12]=cr3 ;
→

'

si

"¥aus@EthIf.net
's forint 05nasmteude.nfi.ge.④Im⑧E⇐¥i*at s*¥¥$L↳X*

courses v

stereos•*t÷"
::&#Eisen:&tenseness:&Ss!:÷÷{I}

}5xeatmso
" " o o o

null null null

(b) After Annotations Ended (1:17:50)

Figure 1: Illustrating a Code Fragment on a Drawing Tablet (26:33 – 1:17:50 of https://youtu.be/Xuei8pOy7k8)

Instead, our technique requires the instructor to plan and prepare
starter artifacts (e.g., code fragments, �gures) on the drawing tablet
prior to starting the recording, which is more e�ective than setting
up these artifacts on a conventional in-class/in-o�ce blackboard
or whiteboard “on the �y”.

Our proposed technique is novel in that it relies heavily on ex-
plaining and illustrating complex ideas on a drawing tablet, and
that it relies on recording the process of building up complex ex-
amples from scratch. Such explanations and illustrations represent
the instructor’s insight into the taught subjects, as well as their
thinking process which, thanks to the recording, students can re-
view as needed and thereby learn from. As an example, Figure 1b
(p2) shows an annotated fragment of object-oriented code at the
end of our illustration. The reasoning process of moving from Fig-
ure 1a to Figure 1b, through recording, can be reviewed by students
whenever they need.

2 TEACHING CONTEXT
We adopted our approach in four undergraduate CS and Engineer-
ing courses in the academic years of 2017 to 2019. Examples of
course topics are summarized below.

CS1A Mobile Computing and CS1B OOP: From Sensors To Ac-
tuators are the second-semester courses for, respectively, CS and
Engineering1 students at the �rst year. There are 400+ students reg-
istered in each of the two courses. In both CS1A and CS1B, students
learn about basic computational thinking and object orientation,
but through di�erent means. In CS1A, students develop Android
mobile apps using the Android Studio IDE (Integrated Development
Environment), and visualize the e�ects of their Java programs on
physical tablets. In CS1B, students use Phidget interface boards
connected to hardware equipment such an LED light bulb and
Theremin glove. Example topics covered in both courses are: 1)
elementary programming (variables, data types, assignments); 2)

1The majority of students in CS1B are from Computer Engineering and Software
Engineering, whereas others are from Mechanical Engineering and Civil Engineering

conditionals; 3) loops; 4) primitive 1D/2D arrays; and 5) object
orientation (attributes, methods, classes, and class associations).

CS2 Advanced Object Oriented Programming (with 150+ students)
is the �rst-semester course for both CS and engineering students at
the second year. Students in CS2 are required to develop, test, and
debug Java programs in the Eclipse IDE. Example topics covered in
CS2 are: 1) unit testing; 2) code reuse and subtyping via inheritance;
3) polymorphic assignments and dynamic binding; 4) recursion; and
5) asymptotic upper bounds (i.e., the big-O notation) of programs.

CS3 Software Design (with 100+ students) is a required course
for third-year CS and Software Engineering students. Example
topics covered in CS3 are: 1) the Design-by-Contract (DbC) method
for constructing object-oriented software (using loop invariants
and variants, method preconditions and postconditions, and class
invariants); 2) the information hiding design principle (exempli�ed
by the Iterator design pattern); 3) object-oriented design patterns
leveraging polymorphism and dynamic binding (e.g., composite,
visitor, observer); and 4) introduction to program veri�cation.

3 THE PROPOSED APPROACH
We propose an approach as visualized in Figure 2 for preparing self-
paced tutorial materials (i.e., videos, illustration notes, and program
source code) which facilitate both the instructor’s teaching and
students’ learning of complex ideas (e.g., computational, design,
abstract). We discuss the proposed approach from two perspectives.

First, the instructor chooses a set of relevant topics and creates a
series of tutorial videos by presenting and illustrating those topics
on their personal computer. Formats of presentation and illustration
include the conventional slide show, code demonstrations on some
programming IDE, as well as tracing runtime execution of program
code and explaining complex logic on a drawing tablet. The entire
presentation and illustration occur as various desktop activities,
which are recorded, edited, and uploaded to an online sharing
platform accessible to students (e.g., before attempting their weekly
lab assignments). Given that illustrations on the connected drawing

Drawing Tablet and Video Capturing/Sharing for Tutorials CSERC ’19, November 18–20, 2019, Larnaca, Cyprus

instructor

Computer Desktop Screen
- Slide Show
- Code Demos on Programming IDE
- Illustrations on Drawing Tablet

present

outside-class, pre-lab

students

outside-class

- Recording
- Illustration Notes
- Source Code

recorded & uploaded re-iterated on demand

information flow

Figure 2: Creating Tutorials for Outside-Class Learning

tablet become part of the desktop activities, the instructor is able
to record thorough discussion of pre-selected topics (e.g., a code
fragment, an example to be solved from scratch) using coloured
annotations. The use of a drawing tablet for illustration, although
analogous to the in-class use of a whiteboard or blackboard, has the
advantages of greater visibility and being “re-playable” by students.

Second, students follow the tablet-focused presentation on the
screen of a computer or a mobile device. This means that visibility
is ensured (as opposed to the case of a whiteboard or blackboard
which may have limited visibility due to the size of classroom,
the position of students’ seats, etc.). Students may also download
the notes from the instructor’s drawing tablet (exported as PDF
documents) to review the illustration process.

4 TUTORIAL SERIES
In this section, we summarize how the proposed technique was
adopted to create tutorial materials for the four undergraduate
courses (see Section 2 for examples of the topics and learning out-
comes of the course). Twelve series of 148 tutorial videos (with
a total duration of approximately 59.5 hours) have been created
for the purpose of students’ learning. For each tutorial series, the
ordering of videos with various lengths corresponds to a logical
decomposition of the taught topics.

We divide these tutorial series into two categories: 1) study
materials for lab assignments (Section 4.1); and 2) preparation ma-
terials for lab tests (Section 4.2). All of our tutorial videos have been
made available to students in this channel: https://www.youtube.
com/user/jackiechenweiwang. To complement our in-class instruc-
tions [26], we include links to these tutorial series on a lectures
page (where students can access slides, notes, source code, and
lecture and tutorial recordings): https://www.eecs.yorku.ca/~jackie/
teaching/lectures/index.html. For this paper, links to speci�c playlists
and videos will be referenced in the following two subsections.

4.1 Study Materials for Lab Assignments
Each of the four undergraduate courses has scheduled weekly lab
sessions: CS1A and CS1B have 3 hours, whereas CS2 and CS3 have
1.5 hours. Weekly lab assignments are meant for students to acquire
the required practical skills (e.g., programming, object-oriented
thinking, design patterns). Thus, the level of di�culty of these
weekly assignments should be such that students are expected to
dedicate hours before and after lab sessions to complete them.

However, given the limited number of lecture hours2, it is chal-
lenging to �ll the conceptual gap between the covered topics in
class and the pre-requisites of each lab assignment. Our proposed
approach attempts to solve this problem by creating self-contained
tutorials on the relevant topics:

• For CS1A, students are exposed to the Android Studio pro-
gramming environment on Day One of the semester to de-
velop working apps deployable on a tablet. Assuming that
students have no prior experience on programming in Java,
we created the �rst tutorial series [17], which uses the de-
velopment of a simple Body Mass Index (BMI) calculator to
illustrate aspects of an event-driven controller, a graphical
user interface (with simple buttons and menu boxes), and an
object-oriented model. As we progress the course, three fur-
ther tutorial series were created to elaborate on: 1) separat-
ing controller and model [20]; 2) declaring a reference-typed
attribute [19]; and 3) declaring an array whose element is
reference-typed [18].

• For CS1B, students are given weekly programming assign-
ments, expected to be completed prior to their scheduled
lab sessions. Each week students are assigned four to �ve
tutorial videos to study (each of which guiding them through
the reasoning process of developing fragments of code). The
lab assignments are designed in such a way that students
�nishing the assigned videos are able to complete the actual
lab assignments independently (or with minor assistance
from the teaching assistants or online forum). The tutorial
series [27] contains 46 videos with the following roadmap:
– Lab 1 (Videos 01 to 08): Simple Console Applications using
Primitive Variable Assignments

– Lab 2 (Videos 09 to 17): Simple If-Statements using the
Boolean Data Type and Logical Operations

– Lab 3 (Videos 18 to 19): A Simple Bank Account Applica-
tion using Nested If-Statements

– Lab 4 (Videos 20 to 24): Syntax and Semantics of for-Loops
and while-Loops, Using Breakpoints and Debugger in the
Programming IDE to Reveal Defects

– Lab 5 (Videos 25 to 28): Basics of Arrays – Initialization
using Loops and Tracing

– Lab 6 (Videos 29 to 33): Deciding if Array Elements Uni-
versally/Existentially Satisfy Given Properties

– Lab 7 (Videos 34 to 39): Object Orientation – Classes, Meth-
ods, Object Creations, and Method Calls

– Lab 8 (Videos 40 to 46): Understanding and Implementing
Associations between Classes

2There are two lecture hours per week for CS1A and CS1B, and three lecture hours
per week for CS2 and CS3.

CSERC ’19, November 18–20, 2019, Larnaca, Cyprus Chen-Wei Wang

• For CS2, lab assignments require the use of classes from
the Java collection library. To help students gain hands-on
experience, as well as understanding the data structures of
these collections (e.g., ArrayList, HashTable), we created
a tutorial series [21] for them to review before attempting
the lab assignments.

• For CS3, the composite/visitor design patterns are expected
to be used in one of the labs and projects. Due to the limited
number of lecture hours, we cannot guide students through
the process of implementing these two advanced design
patterns. Instead, we created a tutorial series [16] which im-
plements and debugs a simple language processor using the
two design patterns. For some labs and the project, we adopt
a programming framework [10] which restricts all students
to work under a given API, while being allowed to design
their own programming modules that implement the com-
mon API. This programming framework is challenging for
students to use due to its sophisticated architecture. To help
students get started, we created a tutorial series [24] which
guides them through the use of the framework: architecture,
extension, regression testing, and debugging.

In all CS1B, CS2, and CS3, we require students to apply the
common software engineering practice of managing their projects
using a revision control system such as Github.We created a tutorial
series [22] to help them initiate a private account and workspace
on their computers, as well as understand the work�ow of common
operations (e.g., clone, commit, push, pull).

4.2 Preparation Materials for Lab Tests
An important learning outcome of CS1A, CS1B, and CS2 is being
able to write runnable programs (upon which students are assessed
through automated unit tests). We emphasize to students that when
they write an essay, if there are grammatical mistakes, it can still
be interpreted by a human. Computer programs, on the other hand,
just cannot be run (and hence unde�ned runtime behaviour) when
they contain compile-time syntax or type errors.

In order to help students (especially those in CS1A and CS1B
who have little prior programming experience and discipline) write
compilable code during in-lab computer tests, we created a tutorial
series [25] to guide them through the process. For CS1A and CS1B,
we show how to write valid Java methods, given: 1) an API 2) a
console application tester; and 3) expected console outputs. For
CS2, we show how to write valid classes/methods, given a set of
unit tests.

Furthermore, in order to help students apply the above code-
writing process to solve real problems:

• For CS1A and CS1B, we created a tutorial series [23] on
going through the code and thinking process for solving
twelve practice problems (involving arrays and loops).

• For CS2, we created a tutorial series [15] on developing
a complete Birthday Book application (using two parallel
arrays with methods for insertions, removals, and lookups).

5 A PATTERN FOR TUTORIALS
The majority of our tutorial videos (Section 4) conform to the fol-
lowing general pattern:

(1) Present the Problem. This can be done by using a slide
show to present the general problem to be solved, by using
a programming IDE to demonstrate what is ultimately ex-
pected from the �nal (e.g,. software) product, or even by just
pointing to what has been achieved in the previous tutorial
video(s).

(2) Sketch the Solution. This part emphasizes the high-level
thinking process, which can be illustrated on the drawing
tablet, which may be pre-set with starter pages containing,
e.g., code fragments, formulas, writings, �gures.

(3) Develop the Solution. This is typically done in a program-
ming IDE, or any software tool that is applicable to the course
being taught.

(4) Discuss the Solution. This is to be done on starter pages on
the drawing tablet. These starter pages may be set up either
before the recording starts, or after Step 33 (by copying and
pasting snapshots of parts of the solution developed). As the
discussion progresses, we annotate on the starter pages to
gradually build towards the solutions or conclusions.

The above pattern requires the instructor to determine what
concepts/examples they will illustrate in the same series of tutorial
videos, and then to create the starter pages on the drawing tablet
accordingly. Some steps (except tablet illustrations) may be omitted,
and the order of choreographing these components may be adjusted
according to the subject being taught.

As an example of instantiating the above pattern, consider Video
42 from the Java Tutorial Series for CS1B [27]: https://youtu.be/
Xuei8pOy7k8. This tutorial video shows how to implement Student
objects, each of which stores an array of CourseRecord objects:

• 00:00 – 03:03 : Summarize classes and methods developed
in the previous videos, and brie�y mention the extension to
be completed in the current tutorial video.

• 03:04 – 26:32 : Develop the programming solution on Eclipse
right away (and sketch the idea later).

• 26:33 – 47:05 : On the drawing tablet, trace the developed
code line by line, by visualizing object creations and method
calls. This part was actually recorded separately and ap-
pended to the previous recording, so that it was possible
to take snapshots of the code developed between 03:04 and
26:32, and to paste them to starter pages on the tablet.

• 47:06 – 50:49 : On Eclipse, extend the code by introducing
a second version of the implemented methods.

• 50:50 – 58:04 : On the drawing tablet, sketch the idea about
the second version of implementation.

• 58:05 – 59:57 : On Eclipse, execute the second version of
implementation, faulty due to a null pointer.

• 59:58 – 1:07:00 : On the drawing tablet, illustrate how the
runtime exception occurs and go back to Eclipse to �x the
code accordingly.

• 1:07:01 – end : On the drawing tablet, justify why the �nal
implementation works in two boundary cases: empty array
vs. fully-occupied array.

3This alternative would require editing of the recordings.

Drawing Tablet and Video Capturing/Sharing for Tutorials CSERC ’19, November 18–20, 2019, Larnaca, Cyprus

Contrast Figure 1a with Figure 1b on page 2 to see how much
illustrations of complex ideas has been performed in the above tuto-
rial video. There are many more instantiations of the above pattern
that can be found from our series of tutorials videos (Section 4).

6 ADOPTING THE APPROACH
Figure 3 summarizes how to assemble the equipment to imple-
ment the proposed approach. Here we describe what we use, but
the interested reader may choose other equipment with the same
functionality.

Personal
Computer

Online
Sharing
Platform

Screen
Recording

Tablet
Projection

Presentation

Programming
IDE

High-End Studio
USB Microphone

Drawing Tablet
installed
connected to
uploaded to

hardwaresoftware

Figure 3: Adopting the Approach: Schematic View

Install the following software programs on your teaching com-
puter (e.g., a MacBook): 1) a presentation program (e.g., a PDF or
PowerPoint reader) for your slides; 2) a programming IDE as ap-
plicable to your course (e.g., Android Studio, Eclipse); 3) a screen
recording program (e.g., Active Presenter [11] for recording all
desktop activities on the computer; and 4) a program for projecting
the screen of your drawing tablet (e.g., the free QuickTime Player).

Connect the following hardware to your computer: 1) a high-end
studio microphone (e.g., Blue Yeti [2]) using a USB cable; and 2) a
drawing tablet (e.g., iPad Pro) installed with an app for annotations
(e.g., GoodNotes, Notability). For 2), a wired connection to the
USB port is recommended for stability throughout the recording
session. To project the screen of the drawing tablet to your computer
desktop, if you use the QuickTime player and an iPad Pro, start a
“New Movie Recording” and select your iPad as the camera.

When ready to start your tutorial recording, start the screen
recording program and choose the connected microphone as the
input device. Our experience has shown that a small amount of
basic editing is necessary in order to: 1) add a cover page (with
the instructor’s information, topics, etc.); and 2) combine parts of
recordings into an integral unit. As we become more experienced
in preparing the starter artifacts and recording long sessions, item
2) becomes less common as we need not stop because of errors or
imperfections on the explanations or illustrations.

When each recording session is �nished, stop the screen record-
ing, export it to an acceptable form (e.g., MP4), upload it to an
online video sharing platform (e.g., YouTube), add it to the relevant
playlist, and publish the link to students. The annotation app on
your drawing tablet should allow you to export the annotated notes
(e.g., Figure 1b, p2) as a PDF �le.

7 EVALUATIONS
7.1 Student Engagement
Table 1 summarizes on YouTube, as of April 2019 when all courses
were completed: 1) the average number of minutes which each
registered student spent watching the videos4; and 2) the average
completion rate (i.e., the ratio of average watch time to the duration
of the tutorial series in question) accordingly. The average time is
calculated based on one iteration of CS1A (Winter 2018 with 357
students5), one iteration of CS1B (Winter 2019 with 459 students),
two iterations of CS2 (Fall 2017 with 99 students and Fall 2018 with
134 students), and three iterations of CS3 (Fall 2017 with 82 students,
Fall 2018 with 88 students, and Winter 2019 with 95 students).

C����� S����� A��. W���� T��� (M��) Completion Rate

CS1A

[17] 304.58 86.52%
[20] 42.48 45.34%
[19] 31.25 65.04%
[18] 75.83 18.33%

CS1B [27] 365.36 21.15%
CS1A,B [23] 35.33 14.23%

CS2 [15] 108.67 41.21%
[21] 28.00 34.50%

CS3 [24] 58.9 48.59%
[16] 25.1 22.80%

CS1B,2,3 [22] 35.06 43.62%

Table 1: Average Watch Time and Completion Rates

In Table 1, the measures of average watch times, and of com-
pletion rates accordingly, are arguably underestimates: apathetic
students (e.g., those who never watched any of the videos) are
not excluded. Consequently, a “good” student (e.g., those who at-
tempted to watch these videos) in these courses should have a
higher completion rate. Such engagement is con�rmed by many
students in the (informal) midterm and (formal) end-of-semester
course evaluations, expressing that these tutorial videos are helpful.

7.2 Improvement on Performance
Our proposed approach to making tutorial videos is meant for
helping students understand complex computational thinking. One
example is writing procedural code (in Java) using primitive arrays
and loops. Table 2 shows the results of two in-lab computer tests
in Winter 20186 from CS1A (taught by us, and our tutorial series
on practice test solution [23] was supplied prior to the lab test) and
CS1B (not taught by us, and no tutorial videos were supplied).
4We exclude [25], which is not directly related to computational thinking.
5There was an abnormal drop on the number of students due to a labour disruption.
6The lab test for CS1B had more participants because it was taken prior to a labour
disruption, whereas the lab test for CS1A was taken during the remediation period.

CSERC ’19, November 18–20, 2019, Larnaca, Cyprus Chen-Wei Wang

C����� T��������? # �� S������� Avg. Performance
CS1A Yes 201 57.7%
CS1B No 439 43.75%

Table 2: Performance Comparison: Arrays and Loops

As can be observed from Table 2, our tutorial solutions [23] had a
positive impact on CS1A students. Although the two tests in Table 2
used di�erent questions, the level of di�culty of tasks in CS1A (e.g.,
given as inputs two sorted arrays, return a new sorted array that
merges them) is signi�cantly higher than that of tasks in CS1B (e.g.,
given as inputs a list of numbers and an integer n, return a sublist
whose values are larger than or equal to n).

7.3 Student Feedback
The anonymized online course evaluations7 of CS1A, CS1B, CS2,
and CS3 indicate that our tutorial videos (Section 4 and Section 5),
despite their length, are perceived by students as e�ective:

• “... coming into the course knowing nothing about java, his online
tutorials allowed me to understand the course material It was easy
to follow, very in-depth with the explanations and most importantly,
had relevance to the lab and course syllabus.” [CS1B]

• “He [the author] puts in a lot of e�ort to get the students involved in
the course material and also makes very long tutorial videos for us to
really understand and concepts.” [CS1B]

• “The best things about this course are] Just the way he explains ev-
erything in the tutorial videos. Tracing code line by line makes it so
helpful and easy to understand[.]” [CS1B]

• “The lecture recordings were immensely helpful and the tutorial videos
for the most part were crucial to my success ...” [CS1B]

• “... the tutorial videos. They really helped me understand the skills
necessary to learn the course objectives.” [CS1B]

• “The tutorial videos explained alot of concepts.” [CS1B]
• “The prof is the best, lots of resources provided. Made di�cult con-
cepts easier to understand through all methods, tutorial video, iPad
illustrations, test cases, etc” [CS1B]

• “Jackie is a very passionate and respected professor. He puts in a lot of
e�ort to get the students involved ... and also makes very long tutorial
videos for us to really understand the concepts.” [CS1B]

• “Jackie prepares online tutorial to help students. And he recorded his
lectures, so that students can save time coming to lecture. Some say
those videos are too long. But to me, they are essential and neccesary. I
really appreciate those videos and e�orts Jackie put in making them.
Thanks professor.” [CS1B]

• “[The best part of the course is] Just the way he explains everything in
the tutorial videos. Tracing code line by line makes it so helpful and
easy to understand Probably the best coding professor so far.” [CS1B]

• “The course was hard hut the tutorial video were too helpful[.]” [CS1B]
• “The instructor was very organized and helpful, he would post all
lecture materials and record java tutorials out of his own time to
support the students in the lab exercises. He did a great job in teaching
the course for beginner programmers[.]” [CS1B]

• “He really puts in the e�ort and wants us to succeed which is simply
fantastic. I have never seen a professor put that much time into making
tutorial videos for us. (Although some of us just can’t get it in our heads)
Thanks Jackie!” [CS1B]

7We do not include numerical ratings because it is hard to distinguish between the
impact of our in-class instruction and that of our tutorial series.

• “The professor was very great. He was very knowledgable and had a
passion for the course which greatly encouraged others to take part in
the course. He would also take much time out of his own schedule to
post weekly tutorial videos which greatly covered every little detail of
every concept.” [CS1B]

• “Professor Wang is great! The tutorial videos are an immense help and
I actually understand what is going on in the course.” [CS1B]

• “This course is easy to understand. Also, tutorial videos are better than
the lectures.” [CS1A]

• “[The best things about this course are] Professor and his teaching style!
he is excellent! the thing that he records every lecture and tutorials
enable students to go over the material as much as they need.” [CS1A]

• “... video tutorials are extremely useful (although very long and time
consuming to watch), and he took the time to explain concepts thor-
oughly and in detail which was helpful to complete labs and further
my understanding.” [CS1A]

• “The tutorial videos were also great because he led us step by step of the
way of a very new and complicated android application development
process.” [CS1A]

• “The instructor did his best for understanding the course materials.
Specially, all of his tutorial videos were very helpful to me to ful�ll
learning outcomes. I highly appreciate the instructors e�orts toward
the student.” [CS1A]

• “The extra tutorial videos helped a lot in understanding some of the
concepts and how to complete the labs.” [CS1A]

• “The extensive online tutorials for every new topic in the course was
very helpful.” [CS1A]

• “Great teacher, really good at explaining di�cult concepts. Made the
course understandable for everyone. Labs were designed well to work
in unison with the youtube tutorial videos.” [CS1A]

• “Very excellent teaching style, the youtube tutorials and available
notes made for a great experience.” [CS2]

• “The tutorial series and the recording system help me a lot in this
course.” [CS2]

• “[The best things about this course are] The volume of material pro-
vided by the professor. Between the lecture notes, the recorded lectures,
and tutorial videos there was more than enough material to ensure I
could learn about the required topics.” [CS2]

• “Professor Jackie is a great instructor. The recordings of his lectures and
extra tutorials are helpful and he is always very nice and courteous
with his students.” [CS2]

• “I admire how passionate the instructor when he is teaching the course.
Also, how dedicated the instructor in helping students to do well in this
hard course by accommodating additional review sessions and online
video tutorials.” [CS2]

• “... really great to have the tutorial videos for the labs, it really helped
us to where we needed to start for the lab.” [CS3]

• “The professor did a great job at explaining the course material as well
as provided vast amount of resources for the students to succeed in
class such as videos and tutorials plus a lot of o�ce hours.” [CS3]

• “The professor was very helpful even though the language and envi-
ronment used were not great. He made videos for us to learn from and
tutorials to follow along ...” [CS3]

• “[The best things about this course are] The availability of video lec-
tures and tutorials.” [CS3]

• “It was also really great to have the tutorial videos for the labs, it really
helped us to where we needed to start for the lab.” [CS3]

• “Jackie explains it [the Eifel design language] well enough and he has
enough tutorials and resources on his website that it is possible to learn
the language over the span of the course.” [CS3]

• “The professor put lots of e�ort into making tutorial video to help us
faster adapter the Ei�el language.” [CS3]

Drawing Tablet and Video Capturing/Sharing for Tutorials CSERC ’19, November 18–20, 2019, Larnaca, Cyprus

8 REFLECTION
Drawing Tablet vs. Blackboard/Whiteboard. By using a draw-
ing tablet, we can teach more e�ectively by creating starter pages,
and then gradually adding annotations as illustrated between Fig-
ure 1a and Figure 1b. This is essentially a dynamic way for con-
trolling the pace and level of details that the instructor judges
appropriate for how the current class is understanding the materi-
als. Furthermore, the ability to draw and annotate with the various
colours (e.g., red-underline a line of code, colour a portion of draw-
ing) helps the instructor communicate key points to students.

Alternatively, many excellent instructors prefer to creating their
tutorial videos by recording them standing in front of a black-
board/whiteboard, which may also be pre-set with writings or
drawings. However, when the current discussion is �nished and
before a new discussion can be started, the recording must be in-
terrupted in order to clear and setup the blackboard/whiteboard.
On the other hand, our use of an annotation app allows us to pre-
set multiple starter pages on the drawing tablet, and to launch
them without interruptions in a single recording session. Moreover,
starter pages of a drawing tablet in our case are digital and can thus
be reused and elaborated over time.
Instructor’s Required E�orts. Our proposed approach relies
heavily on the instructor’s determination on dedicating time and
e�orts to: 1) planing what concepts/examples they will illustrate
in each tutorial video in the same series; 2) creating all necessary
starter pages on the drawing tablet accordingly; and 3) choreograph-
ing a logical interleaving between various explanations and/or il-
lustrations (e.g., on a programming IDE, on the drawing tablet,
on a slide show, etc.). Rather than simply writing/drawing illus-
trations/explnations “on they �y”, we advise that the instructor
spend time carefully planning the layout of each starter page. Most
valuably, these starter pages, once created, may be elaborated over
time and later reused for teaching the same or similar subjects.
Lack of Student Interaction. Lectures do not scale well for stu-
dent learning because: 1) in a large venue there is a negative e�ect
on visibility and audibility of the presentation; 2) a large class
restricts interaction between students and the instructor; and 3)
in-depth, comprehensive explanations and illustrations cannot be
�t into the limited time. Our recent work [26] partly addresses 1)
and 3). Our proposed approach for creating tutorial videos in this
paper intends to address 1) and 3) further. Addressing 2), for large
classes, is beyond the scope of this paper.

9 RELATEDWORKS
We report a novel technique for creating tutorial videos which
complement lectures and facilitate students’ learning. Some rec-
ommendations for creating engaging tutorial videos from [4] —
“continuous visual �ow” and “the instructor speaks ... with high
enthusiasm” — correspond to the guiding principles of creating
our tutorial series. However, also as indicated in [4], videos shorter
than six minutes are more e�ective for students’ engagement. Some
students in CS1B (close to 20% of those who completed the on-
line evaluation) complained that the lengthy videos increased their
course workload. Nonetheless, it was only a much smaller group of
students (less than 5%) expressing that these videos are unnecessary
or useless for them to achieve the course learning outcomes.

Our tutorial videos o�er new, more sophisticated examples,
which cannot be completed in class, rather than repeating demon-
strations done in class [12]. Consequently, given that our tutorial
videos are meant for thoroughly demonstrating sophisticated exam-
ples, they are not comparable to short “podcast highlights” or full-
length lecture footage [8]. Moreover, unlike many other attempts
of making better tutorial videos [5, 9], our approach is meant for
teaching complex computational thinking [1, 6, 7, 28] by requiring
the careful setup of starter artifacts (e.g., code fragments, �gures,
writings) on a drawing tablet for illustrations, which are recorded
for students to review outside class. Our videos were perceived as
e�ective (see Section 7.3 for examples).

Stanford Online [14], designed for online distance learning, o�ers
similar tutorial support. The use of a drawing tablets for intensive
illustrations, as well as constant switches between the various desk-
top activities, is not typical for courses there. Similar to Stanford
Online are the online course repositories such as Coursera [3] and
Udemy [13], but these are meant to be commercial, unlike our in-
tention. Moreover, the use of intensive tablet illustrations is also
not typical in these commercial courses.

10 CONCLUSION
In this paper, we report the experience of adopting an innovative
technique for creating tutorial videos on complex ideas which com-
plement lectures and facilitate students’ learning. Our proposed
technique is novel in that it relies heavily on explaining and il-
lustrating complex ideas on a drawing tablet, and that it relies on
recording the process of building up complex examples from scratch.
Such explanations and illustrations represent the instructor’s in-
sight into the taught subjects, as well as their thinking process
which, thanks to the recording, students can review as needed and
thereby learn from. Furthermore, our proposed technique is much
more than recording the occasional annotations on a slide show.
Instead, our technique requires the instructor to plan and prepare
starter artifacts (e.g., code fragments, �gures) on the drawing tablet
prior to starting the recording, which is more e�ective than setting
up these artifacts on a conventional in-class/in-o�ce blackboard
or whiteboard “on the �y”.

Our technique has been adopted in creating tutorial series for
four Computer Science and Engineering courses, ranging from
the �rst year to the third year. Analytics of these online tutorial
videos is presented to show the average amount of time which
each registered student spent on watching them. Course evaluation
results indicate that our technique is perceived as e�ective for
achieving the course learning outcomes. Comparison of students’
performance on complex topics (arrays and loops) also indicates a
positive impact of our approach.

As future work, we will: 1) distribute a questionnaire speci�c
to the learning experience of our tutorial videos; 2) conduct more
performance comparison on other subjects; and 3) re�ect on the
proposed pattern (Section 5) by creating tutorials for other CS or
Engineering courses (e.g., a course on the introduction to theory of
computation). Furthermore, we may also investigate why or why
not our development of long, thorough tutorial videos helps the
learning process of students in under-represented groups (who
maybe perform relatively poorly in large classes).

CSERC ’19, November 18–20, 2019, Larnaca, Cyprus Chen-Wei Wang

REFERENCES
[1] Jens Bennedsen, Michael E. Caspersen, and Michael Klling. 2008. Re�ections on

the Teaching of Programming: Methods and Implementations (1 ed.). Springer
Publishing Company, Incorporated.

[2] Blue. [n.d.]. Blue Yeti: Professional Multi-Pattern USB Mic for Recording and
Streaming. https://www.bluedesigns.com/products/yeti/.

[3] Coursera. [n.d.]. https://www.coursera.org/.
[4] Philip J. Guo, Juho Kim, and Rob Rubin. 2014. How Video Production A�ects

Student Engagement: An Empirical Study of MOOC Videos. In Proceedings of the
First ACM Conference on Learning @ Scale Conference (Atlanta, Georgia, USA)
(L@S ’14). ACM, New York, NY, USA, 41–50. https://doi.org/10.1145/2556325.
2566239

[5] Juho Kim. 2013. Toolscape: Enhancing the Learning Experience of How-to Videos.
In CHI ’13 Extended Abstracts on Human Factors in Computing Systems (Paris,
France) (CHI EA ’13). ACM, 2707–2712. https://doi.org/10.1145/2468356.2479497

[6] Anna Lamprou and Alexander Repenning. 2018. Teaching How to Teach Compu-
tational Thinking. In Proceedings of the 23rd Annual ACMConference on Innovation
and Technology in Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018).
ACM, New York, NY, USA, 69–74. https://doi.org/10.1145/3197091.3197120

[7] James Lockwood and AidanMooney. 2017. Computational Thinking in Education:
Where does it Fit? A systematic literary review. CoRR abs/1703.07659 (2017).
arXiv:1703.07659 http://arxiv.org/abs/1703.07659

[8] Mia Minnes, Christine Alvarado, Max Geislinger, and Joyce Fang. 2019. Pod-
cast Highlights: Targeted Educational Videos From Repurposed Lecture-capture
Footage. In Proceedings of the 50th ACM Technical Symposium on Computer Sci-
ence Education (Minneapolis, MN, USA) (SIGCSE ’19). ACM, 365–371. https:
//doi.org/10.1145/3287324.3287465

[9] Cuong Nguyen and Feng Liu. 2015. Making Software Tutorial Video Responsive.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). ACM, 1565–1568. https://doi.org/
10.1145/2702123.2702209

[10] J. S. Ostro� and C. Wang. 2018. Modelling and Testing Requirements via Ex-
ecutable Abstract State Machines. In 2018 IEEE 8th International Model-Driven
Requirements Engineering Workshop (MoDRE). 1–10. https://doi.org/10.1109/
MoDRE.2018.00007

[11] Active Presenter. Version 7. All-in-one Screen Recorder, Video Editor & eLearning
Authoring Software. https://atomisystems.com/activepresenter/

[12] Ben Stephenson. 2019. Coding Demonstration Videos for CS1. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). ACM, 105–111. https://doi.org/10.1145/3287324.3287445

[13] Udemy. [n.d.]. https://www.udemy.com/.
[14] Stanford University. [n.d.]. Stanford Online. https://online.stanford.edu/courses.
[15] Chen-Wei Wang. 2017. Developing a Birthday Book Application in Java: Console

Tester vs. JUnit Tests.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_6USwWU8e9XrJYZNShNSEmw.

[16] Chen-WeiWang. 2017. Implementing the Composite and Visitor Design Patterns.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4z5eXGW-ZBgsS2WZTyBHY2.

[17] Chen-Wei Wang. 2018. Developing a BMI Calculator: Model, View, Controller.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_7WvY_QnJrcPczM_KjABxBn.

[18] Chen-Wei Wang. 2018. Developing a Model Using Array-Typed Attributes.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_6KPR7g2mcUh7OwQML7RG1M.

[19] Chen-Wei Wang. 2018. Developing a Model Using Reference-Typed Attributes.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_6I1AoUbxkwUd5OiDZFA6IJ.

[20] Chen-Wei Wang. 2018. Even-Driven Controller vs. Object-Oriented Model.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4qD4f9le4HMsji7ltReldu.

[21] Chen-Wei Wang. 2018. Java Collection Library.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4rOxjfTfIxNp42vO8SnT8n.

[22] Chen-Wei Wang. 2018. Managing Software Projects Using Github.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_58KxTSd1CRbpinmSF8EPJx.

[23] Chen-Wei Wang. 2018. Solutions to Practice Test on Arrays and Loops.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4UZNiLzeFPAgDDv2vLCGb4.

[24] Chen-Wei Wang. 2018. Use of the Ei�el Testing Framework (ETF).
https://www.youtube.com/playlist?list=PL5dxAmCmjv_5unIgLB9XiLwBey105y3kI.

[25] Chen-Wei Wang. 2018. Writing Valid Java Code Based on Given Tests.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_66n9HGJ3tlzPbX3KYt_8zs.

[26] Chen-Wei Wang. 2019. Integrating Drawing Tablet and Video Capturing/Sharing
to Facilitate Student Learning. In Proceedings of the ACM Conference on Global
Computing Education (Chengdu,Sichuan, China) (CompEd ’19). ACM, New York,
NY, USA, 150–156. https://doi.org/10.1145/3300115.3309530

[27] Chen-Wei Wang. 2019. Java: from Procedural to Object-Oriented Programming.
https://www.youtube.com/playlist?list=PL5dxAmCmjv_5NRNPG3OiWZWAqmvCjiLfG.

[28] Jeannette M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35. https://doi.org/10.1145/1118178.1118215

